trie: enforce monotonic range in prover and return end marker (#21130)

* trie: add hasRightElement indicator

* trie: ensure the range is monotonic increasing

* trie: address comment and fix lint

* trie: address comment

* trie: make linter happy

Co-authored-by: Péter Szilágyi <peterke@gmail.com>
This commit is contained in:
gary rong 2020-05-27 22:37:37 +08:00 committed by GitHub
parent b2c59e297b
commit 389da6aa48
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 142 additions and 113 deletions

View File

@ -133,7 +133,7 @@ func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader)
// The main purpose of this function is recovering a node // The main purpose of this function is recovering a node
// path from the merkle proof stream. All necessary nodes // path from the merkle proof stream. All necessary nodes
// will be resolved and leave the remaining as hashnode. // will be resolved and leave the remaining as hashnode.
func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, error) { func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, []byte, error) {
// resolveNode retrieves and resolves trie node from merkle proof stream // resolveNode retrieves and resolves trie node from merkle proof stream
resolveNode := func(hash common.Hash) (node, error) { resolveNode := func(hash common.Hash) (node, error) {
buf, _ := proofDb.Get(hash[:]) buf, _ := proofDb.Get(hash[:])
@ -151,7 +151,7 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV
if root == nil { if root == nil {
n, err := resolveNode(rootHash) n, err := resolveNode(rootHash)
if err != nil { if err != nil {
return nil, err return nil, nil, err
} }
root = n root = n
} }
@ -159,7 +159,7 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV
err error err error
child, parent node child, parent node
keyrest []byte keyrest []byte
terminate bool valnode []byte
) )
key, parent = keybytesToHex(key), root key, parent = keybytesToHex(key), root
for { for {
@ -171,9 +171,9 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV
// we can prove all resolved nodes are correct, it's // we can prove all resolved nodes are correct, it's
// enough for us to prove range. // enough for us to prove range.
if allowNonExistent { if allowNonExistent {
return root, nil return root, nil, nil
} }
return nil, errors.New("the node is not contained in trie") return nil, nil, errors.New("the node is not contained in trie")
case *shortNode: case *shortNode:
key, parent = keyrest, child // Already resolved key, parent = keyrest, child // Already resolved
continue continue
@ -183,10 +183,10 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV
case hashNode: case hashNode:
child, err = resolveNode(common.BytesToHash(cld)) child, err = resolveNode(common.BytesToHash(cld))
if err != nil { if err != nil {
return nil, err return nil, nil, err
} }
case valueNode: case valueNode:
terminate = true valnode = cld
} }
// Link the parent and child. // Link the parent and child.
switch pnode := parent.(type) { switch pnode := parent.(type) {
@ -197,8 +197,8 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV
default: default:
panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode)) panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode))
} }
if terminate { if len(valnode) > 0 {
return root, nil // The whole path is resolved return root, valnode, nil // The whole path is resolved
} }
key, parent = keyrest, child key, parent = keyrest, child
} }
@ -351,9 +351,38 @@ func unset(parent node, child node, key []byte, pos int, removeLeft bool) error
} }
} }
// hasRightElement returns the indicator whether there exists more elements
// in the right side of the given path. The given path can point to an existent
// key or a non-existent one. This function has the assumption that the whole
// path should already be resolved.
func hasRightElement(node node, key []byte) bool {
pos, key := 0, keybytesToHex(key)
for node != nil {
switch rn := node.(type) {
case *fullNode:
for i := key[pos] + 1; i < 16; i++ {
if rn.Children[i] != nil {
return true
}
}
node, pos = rn.Children[key[pos]], pos+1
case *shortNode:
if len(key)-pos < len(rn.Key) || !bytes.Equal(rn.Key, key[pos:pos+len(rn.Key)]) {
return bytes.Compare(rn.Key, key[pos:]) > 0
}
node, pos = rn.Val, pos+len(rn.Key)
case valueNode:
return false // We have resolved the whole path
default:
panic(fmt.Sprintf("%T: invalid node: %v", node, node)) // hashnode
}
}
return false
}
// VerifyRangeProof checks whether the given leaf nodes and edge proofs // VerifyRangeProof checks whether the given leaf nodes and edge proofs
// can prove the given trie leaves range is matched with given root hash // can prove the given trie leaves range is matched with given root hash
// and the range is consecutive(no gap inside). // and the range is consecutive(no gap inside) and monotonic increasing.
// //
// Note the given first edge proof can be non-existing proof. For example // Note the given first edge proof can be non-existing proof. For example
// the first proof is for an non-existent values 0x03. The given batch // the first proof is for an non-existent values 0x03. The given batch
@ -364,102 +393,74 @@ func unset(parent node, child node, key []byte, pos int, removeLeft bool) error
// (unless firstProof is an existent proof). // (unless firstProof is an existent proof).
// //
// Expect the normal case, this function can also be used to verify the following // Expect the normal case, this function can also be used to verify the following
// range proofs: // range proofs(note this function doesn't accept zero element proof):
// //
// - All elements proof. In this case the left and right proof can be nil, but the // - All elements proof. In this case the left and right proof can be nil, but the
// range should be all the leaves in the trie. // range should be all the leaves in the trie.
// //
// - Zero element proof(left edge proof should be a non-existent proof). In this
// case if there are still some other leaves available on the right side, then
// an error will be returned.
//
// - One element proof. In this case no matter the left edge proof is a non-existent // - One element proof. In this case no matter the left edge proof is a non-existent
// proof or not, we can always verify the correctness of the proof. // proof or not, we can always verify the correctness of the proof.
func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, values [][]byte, firstProof ethdb.KeyValueReader, lastProof ethdb.KeyValueReader) error { //
// Except returning the error to indicate the proof is valid or not, the function will
// also return a flag to indicate whether there exists more accounts/slots in the trie.
func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, values [][]byte, firstProof ethdb.KeyValueReader, lastProof ethdb.KeyValueReader) (error, bool) {
if len(keys) != len(values) { if len(keys) != len(values) {
return fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values)) return fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values)), false
}
if len(keys) == 0 {
return errors.New("empty proof"), false
}
// Ensure the received batch is monotonic increasing.
for i := 0; i < len(keys)-1; i++ {
if bytes.Compare(keys[i], keys[i+1]) >= 0 {
return errors.New("range is not monotonically increasing"), false
}
} }
// Special case, there is no edge proof at all. The given range is expected // Special case, there is no edge proof at all. The given range is expected
// to be the whole leaf-set in the trie. // to be the whole leaf-set in the trie.
if firstProof == nil && lastProof == nil { if firstProof == nil && lastProof == nil {
emptytrie, err := New(common.Hash{}, NewDatabase(memorydb.New())) emptytrie, err := New(common.Hash{}, NewDatabase(memorydb.New()))
if err != nil { if err != nil {
return err return err, false
} }
for index, key := range keys { for index, key := range keys {
emptytrie.TryUpdate(key, values[index]) emptytrie.TryUpdate(key, values[index])
} }
if emptytrie.Hash() != rootHash { if emptytrie.Hash() != rootHash {
return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, emptytrie.Hash()) return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, emptytrie.Hash()), false
} }
return nil return nil, false // no more element.
}
// Special case, there is a provided non-existence proof and zero key/value
// pairs, meaning there are no more accounts / slots in the trie.
if len(keys) == 0 {
// Recover the non-existent proof to a path, ensure there is nothing left
root, err := proofToPath(rootHash, nil, firstKey, firstProof, true)
if err != nil {
return err
}
node, pos, firstKey := root, 0, keybytesToHex(firstKey)
for node != nil {
switch rn := node.(type) {
case *fullNode:
for i := firstKey[pos] + 1; i < 16; i++ {
if rn.Children[i] != nil {
return errors.New("more leaves available")
}
}
node, pos = rn.Children[firstKey[pos]], pos+1
case *shortNode:
if len(firstKey)-pos < len(rn.Key) || !bytes.Equal(rn.Key, firstKey[pos:pos+len(rn.Key)]) {
if bytes.Compare(rn.Key, firstKey[pos:]) < 0 {
node = nil
continue
} else {
return errors.New("more leaves available")
}
}
node, pos = rn.Val, pos+len(rn.Key)
case valueNode, hashNode:
return errors.New("more leaves available")
}
}
// Yeah, although we receive nothing, but we can prove
// there is no more leaf in the trie, return nil.
return nil
} }
// Special case, there is only one element and left edge // Special case, there is only one element and left edge
// proof is an existent one. // proof is an existent one.
if len(keys) == 1 && bytes.Equal(keys[0], firstKey) { if len(keys) == 1 && bytes.Equal(keys[0], firstKey) {
value, err := VerifyProof(rootHash, keys[0], firstProof) root, val, err := proofToPath(rootHash, nil, firstKey, firstProof, false)
if err != nil { if err != nil {
return err return err, false
} }
if !bytes.Equal(value, values[0]) { if !bytes.Equal(val, values[0]) {
return fmt.Errorf("correct proof but invalid data") return fmt.Errorf("correct proof but invalid data"), false
} }
return nil return nil, hasRightElement(root, keys[0])
} }
// Convert the edge proofs to edge trie paths. Then we can // Convert the edge proofs to edge trie paths. Then we can
// have the same tree architecture with the original one. // have the same tree architecture with the original one.
// For the first edge proof, non-existent proof is allowed. // For the first edge proof, non-existent proof is allowed.
root, err := proofToPath(rootHash, nil, firstKey, firstProof, true) root, _, err := proofToPath(rootHash, nil, firstKey, firstProof, true)
if err != nil { if err != nil {
return err return err, false
} }
// Pass the root node here, the second path will be merged // Pass the root node here, the second path will be merged
// with the first one. For the last edge proof, non-existent // with the first one. For the last edge proof, non-existent
// proof is not allowed. // proof is not allowed.
root, err = proofToPath(rootHash, root, keys[len(keys)-1], lastProof, false) root, _, err = proofToPath(rootHash, root, keys[len(keys)-1], lastProof, false)
if err != nil { if err != nil {
return err return err, false
} }
// Remove all internal references. All the removed parts should // Remove all internal references. All the removed parts should
// be re-filled(or re-constructed) by the given leaves range. // be re-filled(or re-constructed) by the given leaves range.
if err := unsetInternal(root, firstKey, keys[len(keys)-1]); err != nil { if err := unsetInternal(root, firstKey, keys[len(keys)-1]); err != nil {
return err return err, false
} }
// Rebuild the trie with the leave stream, the shape of trie // Rebuild the trie with the leave stream, the shape of trie
// should be same with the original one. // should be same with the original one.
@ -468,9 +469,9 @@ func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, valu
newtrie.TryUpdate(key, values[index]) newtrie.TryUpdate(key, values[index])
} }
if newtrie.Hash() != rootHash { if newtrie.Hash() != rootHash {
return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, newtrie.Hash()) return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, newtrie.Hash()), false
} }
return nil return nil, hasRightElement(root, keys[len(keys)-1])
} }
// get returns the child of the given node. Return nil if the // get returns the child of the given node. Return nil if the

View File

@ -183,7 +183,7 @@ func TestRangeProof(t *testing.T) {
keys = append(keys, entries[i].k) keys = append(keys, entries[i].k)
vals = append(vals, entries[i].v) vals = append(vals, entries[i].v)
} }
err := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof) err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
if err != nil { if err != nil {
t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
} }
@ -223,7 +223,7 @@ func TestRangeProofWithNonExistentProof(t *testing.T) {
keys = append(keys, entries[i].k) keys = append(keys, entries[i].k)
vals = append(vals, entries[i].v) vals = append(vals, entries[i].v)
} }
err := VerifyRangeProof(trie.Hash(), first, keys, vals, firstProof, lastProof) err, _ := VerifyRangeProof(trie.Hash(), first, keys, vals, firstProof, lastProof)
if err != nil { if err != nil {
t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
} }
@ -257,7 +257,7 @@ func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
k = append(k, entries[i].k) k = append(k, entries[i].k)
v = append(v, entries[i].v) v = append(v, entries[i].v)
} }
err := VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof) err, _ := VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof)
if err == nil { if err == nil {
t.Fatalf("Expected to detect the error, got nil") t.Fatalf("Expected to detect the error, got nil")
} }
@ -280,7 +280,7 @@ func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
k = append(k, entries[i].k) k = append(k, entries[i].k)
v = append(v, entries[i].v) v = append(v, entries[i].v)
} }
err = VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof) err, _ = VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof)
if err == nil { if err == nil {
t.Fatalf("Expected to detect the error, got nil") t.Fatalf("Expected to detect the error, got nil")
} }
@ -306,7 +306,7 @@ func TestOneElementRangeProof(t *testing.T) {
if err := trie.Prove(entries[start].k, 0, lastProof); err != nil { if err := trie.Prove(entries[start].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err) t.Fatalf("Failed to prove the last node %v", err)
} }
err := VerifyRangeProof(trie.Hash(), entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof) err, _ := VerifyRangeProof(trie.Hash(), entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof)
if err != nil { if err != nil {
t.Fatalf("Expected no error, got %v", err) t.Fatalf("Expected no error, got %v", err)
} }
@ -321,45 +321,12 @@ func TestOneElementRangeProof(t *testing.T) {
if err := trie.Prove(entries[start].k, 0, lastProof); err != nil { if err := trie.Prove(entries[start].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err) t.Fatalf("Failed to prove the last node %v", err)
} }
err = VerifyRangeProof(trie.Hash(), first, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof) err, _ = VerifyRangeProof(trie.Hash(), first, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof)
if err != nil { if err != nil {
t.Fatalf("Expected no error, got %v", err) t.Fatalf("Expected no error, got %v", err)
} }
} }
// TestEmptyRangeProof tests the range proof with "no" element.
// The first edge proof must be a non-existent proof.
func TestEmptyRangeProof(t *testing.T) {
trie, vals := randomTrie(4096)
var entries entrySlice
for _, kv := range vals {
entries = append(entries, kv)
}
sort.Sort(entries)
var cases = []struct {
pos int
err bool
}{
{len(entries) - 1, false},
{500, true},
}
for _, c := range cases {
firstProof := memorydb.New()
first := increseKey(common.CopyBytes(entries[c.pos].k))
if err := trie.Prove(first, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
err := VerifyRangeProof(trie.Hash(), first, nil, nil, firstProof, nil)
if c.err && err == nil {
t.Fatalf("Expected error, got nil")
}
if !c.err && err != nil {
t.Fatalf("Expected no error, got %v", err)
}
}
}
// TestAllElementsProof tests the range proof with all elements. // TestAllElementsProof tests the range proof with all elements.
// The edge proofs can be nil. // The edge proofs can be nil.
func TestAllElementsProof(t *testing.T) { func TestAllElementsProof(t *testing.T) {
@ -376,7 +343,7 @@ func TestAllElementsProof(t *testing.T) {
k = append(k, entries[i].k) k = append(k, entries[i].k)
v = append(v, entries[i].v) v = append(v, entries[i].v)
} }
err := VerifyRangeProof(trie.Hash(), k[0], k, v, nil, nil) err, _ := VerifyRangeProof(trie.Hash(), k[0], k, v, nil, nil)
if err != nil { if err != nil {
t.Fatalf("Expected no error, got %v", err) t.Fatalf("Expected no error, got %v", err)
} }
@ -389,7 +356,7 @@ func TestAllElementsProof(t *testing.T) {
if err := trie.Prove(entries[len(entries)-1].k, 0, lastProof); err != nil { if err := trie.Prove(entries[len(entries)-1].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err) t.Fatalf("Failed to prove the last node %v", err)
} }
err = VerifyRangeProof(trie.Hash(), k[0], k, v, firstProof, lastProof) err, _ = VerifyRangeProof(trie.Hash(), k[0], k, v, firstProof, lastProof)
if err != nil { if err != nil {
t.Fatalf("Expected no error, got %v", err) t.Fatalf("Expected no error, got %v", err)
} }
@ -422,7 +389,7 @@ func TestSingleSideRangeProof(t *testing.T) {
k = append(k, entries[i].k) k = append(k, entries[i].k)
v = append(v, entries[i].v) v = append(v, entries[i].v)
} }
err := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k, v, firstProof, lastProof) err, _ := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k, v, firstProof, lastProof)
if err != nil { if err != nil {
t.Fatalf("Expected no error, got %v", err) t.Fatalf("Expected no error, got %v", err)
} }
@ -503,7 +470,7 @@ func TestBadRangeProof(t *testing.T) {
index = mrand.Intn(end - start) index = mrand.Intn(end - start)
vals[index] = nil vals[index] = nil
} }
err := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof) err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
if err == nil { if err == nil {
t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1) t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1)
} }
@ -537,12 +504,73 @@ func TestGappedRangeProof(t *testing.T) {
keys = append(keys, entries[i].k) keys = append(keys, entries[i].k)
vals = append(vals, entries[i].v) vals = append(vals, entries[i].v)
} }
err := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof) err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
if err == nil { if err == nil {
t.Fatal("expect error, got nil") t.Fatal("expect error, got nil")
} }
} }
func TestHasRightElement(t *testing.T) {
trie := new(Trie)
var entries entrySlice
for i := 0; i < 4096; i++ {
value := &kv{randBytes(32), randBytes(20), false}
trie.Update(value.k, value.v)
entries = append(entries, value)
}
sort.Sort(entries)
var cases = []struct {
start int
end int
hasMore bool
}{
{-1, 1, true}, // single element with non-existent left proof
{0, 1, true}, // single element with existent left proof
{0, 10, true},
{50, 100, true},
{50, len(entries), false}, // No more element expected
{len(entries) - 1, len(entries), false}, // Single last element
{0, len(entries), false}, // The whole set with existent left proof
{-1, len(entries), false}, // The whole set with non-existent left proof
}
for _, c := range cases {
var (
firstKey []byte
start = c.start
firstProof = memorydb.New()
lastProof = memorydb.New()
)
if c.start == -1 {
firstKey, start = common.Hash{}.Bytes(), 0
if err := trie.Prove(firstKey, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
} else {
firstKey = entries[c.start].k
if err := trie.Prove(entries[c.start].k, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
}
if err := trie.Prove(entries[c.end-1].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
k := make([][]byte, 0)
v := make([][]byte, 0)
for i := start; i < c.end; i++ {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
err, hasMore := VerifyRangeProof(trie.Hash(), firstKey, k, v, firstProof, lastProof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
if hasMore != c.hasMore {
t.Fatalf("Wrong hasMore indicator, want %t, got %t", c.hasMore, hasMore)
}
}
}
// mutateByte changes one byte in b. // mutateByte changes one byte in b.
func mutateByte(b []byte) { func mutateByte(b []byte) {
for r := mrand.Intn(len(b)); ; { for r := mrand.Intn(len(b)); ; {
@ -643,7 +671,7 @@ func benchmarkVerifyRangeProof(b *testing.B, size int) {
b.ResetTimer() b.ResetTimer()
for i := 0; i < b.N; i++ { for i := 0; i < b.N; i++ {
err := VerifyRangeProof(trie.Hash(), keys[0], keys, values, firstProof, lastProof) err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, values, firstProof, lastProof)
if err != nil { if err != nil {
b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
} }