diff --git a/trie/proof.go b/trie/proof.go index d4a1916be..6fc21fc1f 100644 --- a/trie/proof.go +++ b/trie/proof.go @@ -133,7 +133,7 @@ func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader) // The main purpose of this function is recovering a node // path from the merkle proof stream. All necessary nodes // will be resolved and leave the remaining as hashnode. -func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, error) { +func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, []byte, error) { // resolveNode retrieves and resolves trie node from merkle proof stream resolveNode := func(hash common.Hash) (node, error) { buf, _ := proofDb.Get(hash[:]) @@ -151,7 +151,7 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV if root == nil { n, err := resolveNode(rootHash) if err != nil { - return nil, err + return nil, nil, err } root = n } @@ -159,7 +159,7 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV err error child, parent node keyrest []byte - terminate bool + valnode []byte ) key, parent = keybytesToHex(key), root for { @@ -171,9 +171,9 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV // we can prove all resolved nodes are correct, it's // enough for us to prove range. if allowNonExistent { - return root, nil + return root, nil, nil } - return nil, errors.New("the node is not contained in trie") + return nil, nil, errors.New("the node is not contained in trie") case *shortNode: key, parent = keyrest, child // Already resolved continue @@ -183,10 +183,10 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV case hashNode: child, err = resolveNode(common.BytesToHash(cld)) if err != nil { - return nil, err + return nil, nil, err } case valueNode: - terminate = true + valnode = cld } // Link the parent and child. switch pnode := parent.(type) { @@ -197,8 +197,8 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV default: panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode)) } - if terminate { - return root, nil // The whole path is resolved + if len(valnode) > 0 { + return root, valnode, nil // The whole path is resolved } key, parent = keyrest, child } @@ -351,9 +351,38 @@ func unset(parent node, child node, key []byte, pos int, removeLeft bool) error } } +// hasRightElement returns the indicator whether there exists more elements +// in the right side of the given path. The given path can point to an existent +// key or a non-existent one. This function has the assumption that the whole +// path should already be resolved. +func hasRightElement(node node, key []byte) bool { + pos, key := 0, keybytesToHex(key) + for node != nil { + switch rn := node.(type) { + case *fullNode: + for i := key[pos] + 1; i < 16; i++ { + if rn.Children[i] != nil { + return true + } + } + node, pos = rn.Children[key[pos]], pos+1 + case *shortNode: + if len(key)-pos < len(rn.Key) || !bytes.Equal(rn.Key, key[pos:pos+len(rn.Key)]) { + return bytes.Compare(rn.Key, key[pos:]) > 0 + } + node, pos = rn.Val, pos+len(rn.Key) + case valueNode: + return false // We have resolved the whole path + default: + panic(fmt.Sprintf("%T: invalid node: %v", node, node)) // hashnode + } + } + return false +} + // VerifyRangeProof checks whether the given leaf nodes and edge proofs // can prove the given trie leaves range is matched with given root hash -// and the range is consecutive(no gap inside). +// and the range is consecutive(no gap inside) and monotonic increasing. // // Note the given first edge proof can be non-existing proof. For example // the first proof is for an non-existent values 0x03. The given batch @@ -364,102 +393,74 @@ func unset(parent node, child node, key []byte, pos int, removeLeft bool) error // (unless firstProof is an existent proof). // // Expect the normal case, this function can also be used to verify the following -// range proofs: +// range proofs(note this function doesn't accept zero element proof): // // - All elements proof. In this case the left and right proof can be nil, but the // range should be all the leaves in the trie. // -// - Zero element proof(left edge proof should be a non-existent proof). In this -// case if there are still some other leaves available on the right side, then -// an error will be returned. -// // - One element proof. In this case no matter the left edge proof is a non-existent // proof or not, we can always verify the correctness of the proof. -func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, values [][]byte, firstProof ethdb.KeyValueReader, lastProof ethdb.KeyValueReader) error { +// +// Except returning the error to indicate the proof is valid or not, the function will +// also return a flag to indicate whether there exists more accounts/slots in the trie. +func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, values [][]byte, firstProof ethdb.KeyValueReader, lastProof ethdb.KeyValueReader) (error, bool) { if len(keys) != len(values) { - return fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values)) + return fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values)), false + } + if len(keys) == 0 { + return errors.New("empty proof"), false + } + // Ensure the received batch is monotonic increasing. + for i := 0; i < len(keys)-1; i++ { + if bytes.Compare(keys[i], keys[i+1]) >= 0 { + return errors.New("range is not monotonically increasing"), false + } } // Special case, there is no edge proof at all. The given range is expected // to be the whole leaf-set in the trie. if firstProof == nil && lastProof == nil { emptytrie, err := New(common.Hash{}, NewDatabase(memorydb.New())) if err != nil { - return err + return err, false } for index, key := range keys { emptytrie.TryUpdate(key, values[index]) } if emptytrie.Hash() != rootHash { - return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, emptytrie.Hash()) + return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, emptytrie.Hash()), false } - return nil - } - // Special case, there is a provided non-existence proof and zero key/value - // pairs, meaning there are no more accounts / slots in the trie. - if len(keys) == 0 { - // Recover the non-existent proof to a path, ensure there is nothing left - root, err := proofToPath(rootHash, nil, firstKey, firstProof, true) - if err != nil { - return err - } - node, pos, firstKey := root, 0, keybytesToHex(firstKey) - for node != nil { - switch rn := node.(type) { - case *fullNode: - for i := firstKey[pos] + 1; i < 16; i++ { - if rn.Children[i] != nil { - return errors.New("more leaves available") - } - } - node, pos = rn.Children[firstKey[pos]], pos+1 - case *shortNode: - if len(firstKey)-pos < len(rn.Key) || !bytes.Equal(rn.Key, firstKey[pos:pos+len(rn.Key)]) { - if bytes.Compare(rn.Key, firstKey[pos:]) < 0 { - node = nil - continue - } else { - return errors.New("more leaves available") - } - } - node, pos = rn.Val, pos+len(rn.Key) - case valueNode, hashNode: - return errors.New("more leaves available") - } - } - // Yeah, although we receive nothing, but we can prove - // there is no more leaf in the trie, return nil. - return nil + return nil, false // no more element. } // Special case, there is only one element and left edge // proof is an existent one. if len(keys) == 1 && bytes.Equal(keys[0], firstKey) { - value, err := VerifyProof(rootHash, keys[0], firstProof) + root, val, err := proofToPath(rootHash, nil, firstKey, firstProof, false) if err != nil { - return err + return err, false } - if !bytes.Equal(value, values[0]) { - return fmt.Errorf("correct proof but invalid data") + if !bytes.Equal(val, values[0]) { + return fmt.Errorf("correct proof but invalid data"), false } - return nil + return nil, hasRightElement(root, keys[0]) } // Convert the edge proofs to edge trie paths. Then we can // have the same tree architecture with the original one. // For the first edge proof, non-existent proof is allowed. - root, err := proofToPath(rootHash, nil, firstKey, firstProof, true) + root, _, err := proofToPath(rootHash, nil, firstKey, firstProof, true) if err != nil { - return err + return err, false } // Pass the root node here, the second path will be merged // with the first one. For the last edge proof, non-existent // proof is not allowed. - root, err = proofToPath(rootHash, root, keys[len(keys)-1], lastProof, false) + root, _, err = proofToPath(rootHash, root, keys[len(keys)-1], lastProof, false) if err != nil { - return err + return err, false } // Remove all internal references. All the removed parts should // be re-filled(or re-constructed) by the given leaves range. if err := unsetInternal(root, firstKey, keys[len(keys)-1]); err != nil { - return err + return err, false } // Rebuild the trie with the leave stream, the shape of trie // should be same with the original one. @@ -468,9 +469,9 @@ func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, valu newtrie.TryUpdate(key, values[index]) } if newtrie.Hash() != rootHash { - return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, newtrie.Hash()) + return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, newtrie.Hash()), false } - return nil + return nil, hasRightElement(root, keys[len(keys)-1]) } // get returns the child of the given node. Return nil if the diff --git a/trie/proof_test.go b/trie/proof_test.go index 9c11d5bc5..55585e4da 100644 --- a/trie/proof_test.go +++ b/trie/proof_test.go @@ -183,7 +183,7 @@ func TestRangeProof(t *testing.T) { keys = append(keys, entries[i].k) vals = append(vals, entries[i].v) } - err := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof) + err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof) if err != nil { t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) } @@ -223,7 +223,7 @@ func TestRangeProofWithNonExistentProof(t *testing.T) { keys = append(keys, entries[i].k) vals = append(vals, entries[i].v) } - err := VerifyRangeProof(trie.Hash(), first, keys, vals, firstProof, lastProof) + err, _ := VerifyRangeProof(trie.Hash(), first, keys, vals, firstProof, lastProof) if err != nil { t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) } @@ -257,7 +257,7 @@ func TestRangeProofWithInvalidNonExistentProof(t *testing.T) { k = append(k, entries[i].k) v = append(v, entries[i].v) } - err := VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof) + err, _ := VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof) if err == nil { t.Fatalf("Expected to detect the error, got nil") } @@ -280,7 +280,7 @@ func TestRangeProofWithInvalidNonExistentProof(t *testing.T) { k = append(k, entries[i].k) v = append(v, entries[i].v) } - err = VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof) + err, _ = VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof) if err == nil { t.Fatalf("Expected to detect the error, got nil") } @@ -306,7 +306,7 @@ func TestOneElementRangeProof(t *testing.T) { if err := trie.Prove(entries[start].k, 0, lastProof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } - err := VerifyRangeProof(trie.Hash(), entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof) + err, _ := VerifyRangeProof(trie.Hash(), entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof) if err != nil { t.Fatalf("Expected no error, got %v", err) } @@ -321,45 +321,12 @@ func TestOneElementRangeProof(t *testing.T) { if err := trie.Prove(entries[start].k, 0, lastProof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } - err = VerifyRangeProof(trie.Hash(), first, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof) + err, _ = VerifyRangeProof(trie.Hash(), first, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof) if err != nil { t.Fatalf("Expected no error, got %v", err) } } -// TestEmptyRangeProof tests the range proof with "no" element. -// The first edge proof must be a non-existent proof. -func TestEmptyRangeProof(t *testing.T) { - trie, vals := randomTrie(4096) - var entries entrySlice - for _, kv := range vals { - entries = append(entries, kv) - } - sort.Sort(entries) - - var cases = []struct { - pos int - err bool - }{ - {len(entries) - 1, false}, - {500, true}, - } - for _, c := range cases { - firstProof := memorydb.New() - first := increseKey(common.CopyBytes(entries[c.pos].k)) - if err := trie.Prove(first, 0, firstProof); err != nil { - t.Fatalf("Failed to prove the first node %v", err) - } - err := VerifyRangeProof(trie.Hash(), first, nil, nil, firstProof, nil) - if c.err && err == nil { - t.Fatalf("Expected error, got nil") - } - if !c.err && err != nil { - t.Fatalf("Expected no error, got %v", err) - } - } -} - // TestAllElementsProof tests the range proof with all elements. // The edge proofs can be nil. func TestAllElementsProof(t *testing.T) { @@ -376,7 +343,7 @@ func TestAllElementsProof(t *testing.T) { k = append(k, entries[i].k) v = append(v, entries[i].v) } - err := VerifyRangeProof(trie.Hash(), k[0], k, v, nil, nil) + err, _ := VerifyRangeProof(trie.Hash(), k[0], k, v, nil, nil) if err != nil { t.Fatalf("Expected no error, got %v", err) } @@ -389,7 +356,7 @@ func TestAllElementsProof(t *testing.T) { if err := trie.Prove(entries[len(entries)-1].k, 0, lastProof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } - err = VerifyRangeProof(trie.Hash(), k[0], k, v, firstProof, lastProof) + err, _ = VerifyRangeProof(trie.Hash(), k[0], k, v, firstProof, lastProof) if err != nil { t.Fatalf("Expected no error, got %v", err) } @@ -422,7 +389,7 @@ func TestSingleSideRangeProof(t *testing.T) { k = append(k, entries[i].k) v = append(v, entries[i].v) } - err := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k, v, firstProof, lastProof) + err, _ := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k, v, firstProof, lastProof) if err != nil { t.Fatalf("Expected no error, got %v", err) } @@ -503,7 +470,7 @@ func TestBadRangeProof(t *testing.T) { index = mrand.Intn(end - start) vals[index] = nil } - err := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof) + err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof) if err == nil { t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1) } @@ -537,12 +504,73 @@ func TestGappedRangeProof(t *testing.T) { keys = append(keys, entries[i].k) vals = append(vals, entries[i].v) } - err := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof) + err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof) if err == nil { t.Fatal("expect error, got nil") } } +func TestHasRightElement(t *testing.T) { + trie := new(Trie) + var entries entrySlice + for i := 0; i < 4096; i++ { + value := &kv{randBytes(32), randBytes(20), false} + trie.Update(value.k, value.v) + entries = append(entries, value) + } + sort.Sort(entries) + + var cases = []struct { + start int + end int + hasMore bool + }{ + {-1, 1, true}, // single element with non-existent left proof + {0, 1, true}, // single element with existent left proof + {0, 10, true}, + {50, 100, true}, + {50, len(entries), false}, // No more element expected + {len(entries) - 1, len(entries), false}, // Single last element + {0, len(entries), false}, // The whole set with existent left proof + {-1, len(entries), false}, // The whole set with non-existent left proof + } + for _, c := range cases { + var ( + firstKey []byte + start = c.start + firstProof = memorydb.New() + lastProof = memorydb.New() + ) + if c.start == -1 { + firstKey, start = common.Hash{}.Bytes(), 0 + if err := trie.Prove(firstKey, 0, firstProof); err != nil { + t.Fatalf("Failed to prove the first node %v", err) + } + } else { + firstKey = entries[c.start].k + if err := trie.Prove(entries[c.start].k, 0, firstProof); err != nil { + t.Fatalf("Failed to prove the first node %v", err) + } + } + if err := trie.Prove(entries[c.end-1].k, 0, lastProof); err != nil { + t.Fatalf("Failed to prove the first node %v", err) + } + k := make([][]byte, 0) + v := make([][]byte, 0) + for i := start; i < c.end; i++ { + k = append(k, entries[i].k) + v = append(v, entries[i].v) + } + err, hasMore := VerifyRangeProof(trie.Hash(), firstKey, k, v, firstProof, lastProof) + if err != nil { + t.Fatalf("Expected no error, got %v", err) + } + if hasMore != c.hasMore { + t.Fatalf("Wrong hasMore indicator, want %t, got %t", c.hasMore, hasMore) + } + } +} + // mutateByte changes one byte in b. func mutateByte(b []byte) { for r := mrand.Intn(len(b)); ; { @@ -643,7 +671,7 @@ func benchmarkVerifyRangeProof(b *testing.B, size int) { b.ResetTimer() for i := 0; i < b.N; i++ { - err := VerifyRangeProof(trie.Hash(), keys[0], keys, values, firstProof, lastProof) + err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, values, firstProof, lastProof) if err != nil { b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) }