mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
Combined solver.
This commit is contained in:
parent
84c5c37c31
commit
3439776209
610
libsolutil/BooleanLP.cpp
Normal file
610
libsolutil/BooleanLP.cpp
Normal file
@ -0,0 +1,610 @@
|
||||
/*
|
||||
This file is part of solidity.
|
||||
|
||||
solidity is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
solidity is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
// SPDX-License-Identifier: GPL-3.0
|
||||
|
||||
#include <libsolutil/BooleanLP.h>
|
||||
|
||||
#include <libsolutil/CommonData.h>
|
||||
#include <libsolutil/StringUtils.h>
|
||||
#include <liblangutil/Exceptions.h>
|
||||
|
||||
#include <libsolutil/LinearExpression.h>
|
||||
#include <libsolutil/CDCL.h>
|
||||
#include <libsolutil/LP.h>
|
||||
|
||||
#include <range/v3/view/enumerate.hpp>
|
||||
#include <range/v3/view/transform.hpp>
|
||||
#include <range/v3/view/filter.hpp>
|
||||
#include <range/v3/view/tail.hpp>
|
||||
#include <range/v3/view/iota.hpp>
|
||||
#include <range/v3/algorithm/all_of.hpp>
|
||||
#include <range/v3/algorithm/any_of.hpp>
|
||||
#include <range/v3/algorithm/max.hpp>
|
||||
#include <range/v3/algorithm/count_if.hpp>
|
||||
#include <range/v3/iterator/operations.hpp>
|
||||
|
||||
#include <boost/range/algorithm_ext/erase.hpp>
|
||||
|
||||
using namespace std;
|
||||
using namespace solidity;
|
||||
using namespace solidity::util;
|
||||
using namespace solidity::smtutil;
|
||||
|
||||
using rational = boost::rational<bigint>;
|
||||
|
||||
namespace
|
||||
{
|
||||
template <class T>
|
||||
void resizeAndSet(vector<T>& _vector, size_t _index, T _value)
|
||||
{
|
||||
if (_vector.size() < _index + 1)
|
||||
_vector.resize(_index + 1);
|
||||
_vector[_index] = move(_value);
|
||||
}
|
||||
|
||||
string toString(rational const& _x)
|
||||
{
|
||||
if (_x.denominator() == 1)
|
||||
return _x.numerator().str();
|
||||
else
|
||||
return _x.numerator().str() + "/" + _x.denominator().str();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void BooleanLPSolver::reset()
|
||||
{
|
||||
m_state = vector<State>{{State{}}};
|
||||
// TODO retain an instance of the LP solver, it should keep its cache!
|
||||
}
|
||||
|
||||
void BooleanLPSolver::push()
|
||||
{
|
||||
// TODO maybe find a way where we do not have to copy everything
|
||||
State currentState = state();
|
||||
m_state.emplace_back(move(currentState));
|
||||
}
|
||||
|
||||
void BooleanLPSolver::pop()
|
||||
{
|
||||
m_state.pop_back();
|
||||
solAssert(!m_state.empty(), "");
|
||||
}
|
||||
|
||||
void BooleanLPSolver::declareVariable(string const& _name, SortPointer const& _sort)
|
||||
{
|
||||
// Internal variables are '$<number>', or '$c<numeber>' so escape `$` to `$$`.
|
||||
string name = (_name.empty() || _name.at(0) != '$') ? _name : "$$" + _name;
|
||||
// TODO This will not be an integer variable in our model.
|
||||
// Introduce a new kind?
|
||||
solAssert(_sort && (_sort->kind == Kind::Int || _sort->kind == Kind::Bool), "");
|
||||
solAssert(!state().variables.count(name), "");
|
||||
declareVariable(name, _sort->kind == Kind::Bool);
|
||||
}
|
||||
|
||||
void BooleanLPSolver::addAssertion(Expression const& _expr)
|
||||
{
|
||||
if (_expr.arguments.empty())
|
||||
state().clauses.emplace_back(Clause{vector<Literal>{*parseLiteral(_expr)}});
|
||||
else if (_expr.name == "=")
|
||||
{
|
||||
// Try to see if both sides are linear.
|
||||
optional<LinearExpression> left = parseLinearSum(_expr.arguments.at(0));
|
||||
optional<LinearExpression> right = parseLinearSum(_expr.arguments.at(1));
|
||||
if (left && right)
|
||||
{
|
||||
LinearExpression data = *left - *right;
|
||||
data[0] *= -1;
|
||||
Constraint c{move(data), _expr.name == "=", {}};
|
||||
if (!tryAddDirectBounds(c))
|
||||
state().fixedConstraints.emplace_back(move(c));
|
||||
}
|
||||
else if (_expr.arguments.at(0).arguments.empty() && isBooleanVariable(_expr.arguments.at(0).name))
|
||||
addBooleanEquality(*parseLiteral(_expr.arguments.at(0)), _expr.arguments.at(1));
|
||||
else if (_expr.arguments.at(1).arguments.empty() && isBooleanVariable(_expr.arguments.at(1).name))
|
||||
addBooleanEquality(*parseLiteral(_expr.arguments.at(1)), _expr.arguments.at(0));
|
||||
else
|
||||
{
|
||||
Literal newBoolean = *parseLiteral(declareInternalBoolean());
|
||||
addBooleanEquality(newBoolean, _expr.arguments.at(0));
|
||||
addBooleanEquality(newBoolean, _expr.arguments.at(1));
|
||||
}
|
||||
}
|
||||
else if (_expr.name == "and")
|
||||
{
|
||||
addAssertion(_expr.arguments.at(0));
|
||||
addAssertion(_expr.arguments.at(1));
|
||||
}
|
||||
else if (_expr.name == "or")
|
||||
{
|
||||
// We could try to parse a full clause here.
|
||||
Literal left = parseLiteralOrReturnEqualBoolean(_expr.arguments.at(0));
|
||||
Literal right = parseLiteralOrReturnEqualBoolean(_expr.arguments.at(1));
|
||||
if (isConditionalConstraint(left.variable) && isConditionalConstraint(right.variable))
|
||||
{
|
||||
// We cannot have more than one constraint per clause.
|
||||
// TODO Why?
|
||||
right = *parseLiteral(declareInternalBoolean());
|
||||
addBooleanEquality(right, _expr.arguments.at(1));
|
||||
}
|
||||
state().clauses.emplace_back(Clause{vector<Literal>{left, right}});
|
||||
}
|
||||
else if (_expr.name == "not")
|
||||
{
|
||||
// TODO can we still try to add a fixed constraint?
|
||||
Literal l = negate(parseLiteralOrReturnEqualBoolean(_expr.arguments.at(0)));
|
||||
state().clauses.emplace_back(Clause{vector<Literal>{l}});
|
||||
}
|
||||
else if (_expr.name == "<=")
|
||||
{
|
||||
optional<LinearExpression> left = parseLinearSum(_expr.arguments.at(0));
|
||||
optional<LinearExpression> right = parseLinearSum(_expr.arguments.at(1));
|
||||
if (!left || !right)
|
||||
{
|
||||
cout << "Unable to parse expression" << endl;
|
||||
// TODO fail in some way
|
||||
return;
|
||||
}
|
||||
|
||||
LinearExpression data = *left - *right;
|
||||
data[0] *= -1;
|
||||
Constraint c{move(data), _expr.name == "=", {}};
|
||||
if (!tryAddDirectBounds(c))
|
||||
state().fixedConstraints.emplace_back(move(c));
|
||||
}
|
||||
else if (_expr.name == ">=")
|
||||
addAssertion(_expr.arguments.at(1) <= _expr.arguments.at(0));
|
||||
else if (_expr.name == "<")
|
||||
addAssertion(_expr.arguments.at(0) <= _expr.arguments.at(1) - 1);
|
||||
else if (_expr.name == ">")
|
||||
addAssertion(_expr.arguments.at(1) < _expr.arguments.at(0));
|
||||
else
|
||||
cout << "Unknown operator " << _expr.name << endl;
|
||||
}
|
||||
|
||||
|
||||
pair<CheckResult, vector<string>> BooleanLPSolver::check(vector<Expression> const&)
|
||||
{
|
||||
cout << "Solving boolean constraint system" << endl;
|
||||
cout << toString() << endl;
|
||||
cout << "--------------" << endl;
|
||||
|
||||
if (state().infeasible)
|
||||
return make_pair(CheckResult::UNSATISFIABLE, vector<string>{});
|
||||
|
||||
std::vector<std::string> booleanVariables;
|
||||
std::vector<Clause> clauses = state().clauses;
|
||||
SolvingState lpState;
|
||||
for (auto&& [index, bound]: state().bounds)
|
||||
resizeAndSet(lpState.bounds, index, bound);
|
||||
lpState.constraints = state().fixedConstraints;
|
||||
// TODO this way, it will result in a lot of gaps in both sets of variables.
|
||||
// should we compress them and store a mapping?
|
||||
// Is it even a problem if the indices overlap?
|
||||
for (auto&& [name, index]: state().variables)
|
||||
if (state().isBooleanVariable.at(index))
|
||||
resizeAndSet(booleanVariables, index, name);
|
||||
else
|
||||
resizeAndSet(lpState.variableNames, index, name);
|
||||
|
||||
cout << "Running LP solver on fixed constraints." << endl;
|
||||
if (m_lpSolver.check(lpState).first == LPResult::Infeasible)
|
||||
return {CheckResult::UNSATISFIABLE, {}};
|
||||
|
||||
auto theorySolver = [&](map<size_t, bool> const& _booleanAssignment) -> optional<Clause>
|
||||
{
|
||||
SolvingState lpStateToCheck = lpState;
|
||||
for (auto&& [constraintIndex, value]: _booleanAssignment)
|
||||
{
|
||||
if (!state().conditionalConstraints.count(constraintIndex))
|
||||
continue;
|
||||
// assert that value is true?
|
||||
// "reason" is already stored for those constraints.
|
||||
Constraint const& constraint = state().conditionalConstraints.at(constraintIndex);
|
||||
solAssert(
|
||||
constraint.reasons.size() == 1 &&
|
||||
*constraint.reasons.begin() == constraintIndex
|
||||
);
|
||||
lpStateToCheck.constraints.emplace_back(constraint);
|
||||
}
|
||||
auto&& [result, modelOrReason] = m_lpSolver.check(move(lpStateToCheck));
|
||||
// We can only really use the result "infeasible". Everything else should be "sat".
|
||||
if (result == LPResult::Infeasible)
|
||||
{
|
||||
// TODO this could be the empty clause if the LP is already infeasible
|
||||
// with only the fixed constraints - run it beforehand!
|
||||
// TODO is it ok to ignore the non-constraint boolean variables here?
|
||||
Clause conflictClause;
|
||||
for (size_t constraintIndex: get<ReasonSet>(modelOrReason))
|
||||
conflictClause.emplace_back(Literal{false, constraintIndex});
|
||||
return conflictClause;
|
||||
}
|
||||
else
|
||||
return nullopt;
|
||||
};
|
||||
|
||||
auto optionalModel = CDCL{move(booleanVariables), clauses, theorySolver}.solve();
|
||||
if (!optionalModel)
|
||||
return {CheckResult::UNSATISFIABLE, {}};
|
||||
else
|
||||
return {CheckResult::UNKNOWN, {}};
|
||||
}
|
||||
|
||||
string BooleanLPSolver::toString() const
|
||||
{
|
||||
string result;
|
||||
|
||||
result += "-- Fixed Constraints:\n";
|
||||
for (Constraint const& c: state().fixedConstraints)
|
||||
result += toString(c) + "\n";
|
||||
result += "-- Fixed Bounds:\n";
|
||||
for (auto&& [index, bounds]: state().bounds)
|
||||
{
|
||||
if (!bounds.lower && !bounds.upper)
|
||||
continue;
|
||||
if (bounds.lower)
|
||||
result += ::toString(*bounds.lower) + " <= ";
|
||||
result += variableName(index);
|
||||
if (bounds.upper)
|
||||
result += " <= " + ::toString(*bounds.upper);
|
||||
result += "\n";
|
||||
}
|
||||
result += "-- Clauses:\n";
|
||||
for (Clause const& c: state().clauses)
|
||||
result += toString(c);
|
||||
return result;
|
||||
}
|
||||
|
||||
Expression BooleanLPSolver::declareInternalBoolean()
|
||||
{
|
||||
string name = "$" + to_string(state().variables.size() + 1);
|
||||
declareVariable(name, true);
|
||||
return smtutil::Expression(name, {}, SortProvider::boolSort);
|
||||
}
|
||||
|
||||
void BooleanLPSolver::declareVariable(string const& _name, bool _boolean)
|
||||
{
|
||||
size_t index = state().variables.size() + 1;
|
||||
state().variables[_name] = index;
|
||||
resizeAndSet(state().isBooleanVariable, index, _boolean);
|
||||
}
|
||||
|
||||
optional<Literal> BooleanLPSolver::parseLiteral(smtutil::Expression const& _expr)
|
||||
{
|
||||
// TODO constanst true/false?
|
||||
|
||||
if (_expr.arguments.empty())
|
||||
{
|
||||
if (isBooleanVariable(_expr.name))
|
||||
return Literal{
|
||||
true,
|
||||
state().variables.at(_expr.name)
|
||||
};
|
||||
else
|
||||
cout << "cannot encode " << _expr.name << " - not a boolean literal variable." << endl;
|
||||
}
|
||||
else if (_expr.name == "not")
|
||||
return negate(parseLiteralOrReturnEqualBoolean(_expr.arguments.at(0)));
|
||||
else if (_expr.name == "<=")
|
||||
{
|
||||
optional<LinearExpression> left = parseLinearSum(_expr.arguments.at(0));
|
||||
optional<LinearExpression> right = parseLinearSum(_expr.arguments.at(1));
|
||||
if (!left || !right)
|
||||
return {};
|
||||
|
||||
LinearExpression data = *left - *right;
|
||||
data[0] *= -1;
|
||||
|
||||
return Literal{true, addConditionalConstraint(Constraint{move(data), false, {}})};
|
||||
}
|
||||
else if (_expr.name == ">=")
|
||||
return parseLiteral(_expr.arguments.at(1) <= _expr.arguments.at(0));
|
||||
else if (_expr.name == "<")
|
||||
return parseLiteral(_expr.arguments.at(0) <= _expr.arguments.at(1) - 1);
|
||||
else if (_expr.name == ">")
|
||||
return parseLiteral(_expr.arguments.at(1) < _expr.arguments.at(0));
|
||||
|
||||
return {};
|
||||
}
|
||||
|
||||
Literal BooleanLPSolver::negate(Literal const& _lit)
|
||||
{
|
||||
if (isConditionalConstraint(_lit.variable))
|
||||
{
|
||||
Constraint const& c = conditionalConstraint(_lit.variable);
|
||||
solAssert(!c.equality, "");
|
||||
|
||||
// X > b
|
||||
// -x < -b
|
||||
// -x <= -b - 1
|
||||
|
||||
Constraint negated = c;
|
||||
negated.data *= -1;
|
||||
negated.data[0] -= 1;
|
||||
return Literal{true, addConditionalConstraint(negated)};
|
||||
}
|
||||
else
|
||||
return ~_lit;
|
||||
}
|
||||
|
||||
Literal BooleanLPSolver::parseLiteralOrReturnEqualBoolean(Expression const& _expr)
|
||||
{
|
||||
// TODO hen can this fail?
|
||||
if (optional<Literal> literal = parseLiteral(_expr))
|
||||
return *literal;
|
||||
else
|
||||
{
|
||||
Literal newBoolean = *parseLiteral(declareInternalBoolean());
|
||||
addBooleanEquality(newBoolean, _expr);
|
||||
return newBoolean;
|
||||
}
|
||||
}
|
||||
|
||||
optional<LinearExpression> BooleanLPSolver::parseLinearSum(smtutil::Expression const& _expr) const
|
||||
{
|
||||
if (_expr.arguments.empty() || _expr.name == "*")
|
||||
return parseProduct(_expr);
|
||||
else if (_expr.name == "+" || _expr.name == "-")
|
||||
{
|
||||
optional<LinearExpression> left = parseLinearSum(_expr.arguments.at(0));
|
||||
optional<LinearExpression> right = parseLinearSum(_expr.arguments.at(1));
|
||||
if (!left || !right)
|
||||
return std::nullopt;
|
||||
return _expr.name == "+" ? *left + *right : *left - *right;
|
||||
}
|
||||
else
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
optional<LinearExpression> BooleanLPSolver::parseProduct(smtutil::Expression const& _expr) const
|
||||
{
|
||||
if (_expr.arguments.empty())
|
||||
return parseFactor(_expr);
|
||||
else if (_expr.name == "*")
|
||||
// The multiplication ensures that only one of them can be a variable.
|
||||
return parseFactor(_expr.arguments.at(0)) * parseFactor(_expr.arguments.at(1));
|
||||
else
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
optional<LinearExpression> BooleanLPSolver::parseFactor(smtutil::Expression const& _expr) const
|
||||
{
|
||||
solAssert(_expr.arguments.empty(), "");
|
||||
solAssert(!_expr.name.empty(), "");
|
||||
if ('0' <= _expr.name[0] && _expr.name[0] <= '9')
|
||||
return LinearExpression::constant(rational(bigint(_expr.name)));
|
||||
else if (_expr.name == "true")
|
||||
// TODO do we want to do this?
|
||||
return LinearExpression::constant(1);
|
||||
else if (_expr.name == "false")
|
||||
// TODO do we want to do this?
|
||||
return LinearExpression::constant(0);
|
||||
|
||||
size_t index = state().variables.at(_expr.name);
|
||||
solAssert(index > 0, "");
|
||||
if (isBooleanVariable(index))
|
||||
return nullopt;
|
||||
return LinearExpression::factorForVariable(index, rational(bigint(1)));
|
||||
}
|
||||
|
||||
bool BooleanLPSolver::tryAddDirectBounds(Constraint const& _constraint)
|
||||
{
|
||||
auto nonzero = _constraint.data | ranges::views::enumerate | ranges::views::tail | ranges::views::filter(
|
||||
[](std::pair<size_t, rational> const& _x) { return !!_x.second; }
|
||||
);
|
||||
// TODO we can exit early on in the loop above.
|
||||
if (ranges::distance(nonzero) > 1)
|
||||
return false;
|
||||
|
||||
//cout << "adding direct bound." << endl;
|
||||
if (ranges::distance(nonzero) == 0)
|
||||
{
|
||||
// 0 <= b or 0 = b
|
||||
if (
|
||||
_constraint.data.front() < 0 ||
|
||||
(_constraint.equality && _constraint.data.front() != 0)
|
||||
)
|
||||
{
|
||||
// cout << "SETTING INF" << endl;
|
||||
state().infeasible = true;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
auto&& [varIndex, factor] = nonzero.front();
|
||||
// a * x <= b
|
||||
rational bound = _constraint.data[0] / factor;
|
||||
if (factor > 0 || _constraint.equality)
|
||||
addUpperBound(varIndex, bound);
|
||||
if (factor < 0 || _constraint.equality)
|
||||
addLowerBound(varIndex, bound);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void BooleanLPSolver::addUpperBound(size_t _index, rational _value)
|
||||
{
|
||||
//cout << "adding " << variableName(_index) << " <= " << toString(_value) << endl;
|
||||
if (!state().bounds[_index].upper || _value < *state().bounds[_index].upper)
|
||||
state().bounds[_index].upper = move(_value);
|
||||
}
|
||||
|
||||
void BooleanLPSolver::addLowerBound(size_t _index, rational _value)
|
||||
{
|
||||
// Lower bound must be at least zero.
|
||||
_value = max(_value, rational{});
|
||||
//cout << "adding " << variableName(_index) << " >= " << toString(_value) << endl;
|
||||
if (!state().bounds[_index].lower || _value > *state().bounds[_index].lower)
|
||||
state().bounds[_index].lower = move(_value);
|
||||
}
|
||||
|
||||
size_t BooleanLPSolver::addConditionalConstraint(Constraint _constraint)
|
||||
{
|
||||
string name = "$c" + to_string(state().variables.size() + 1);
|
||||
// It's not a boolean variable
|
||||
// TODO we actually have there kinds of variables and we should split them:
|
||||
// - actual booleans (including internals)
|
||||
// - conditional constraints
|
||||
// - integers
|
||||
declareVariable(name, false);
|
||||
size_t index = state().variables.at(name);
|
||||
solAssert(_constraint.reasons.empty());
|
||||
_constraint.reasons.emplace(index);
|
||||
state().conditionalConstraints[index] = move(_constraint);
|
||||
return index;
|
||||
}
|
||||
|
||||
void BooleanLPSolver::addBooleanEquality(Literal const& _left, smtutil::Expression const& _right)
|
||||
{
|
||||
if (optional<Literal> right = parseLiteral(_right))
|
||||
{
|
||||
// includes: not, <=, <, >=, >, boolean variables.
|
||||
// a = b <=> (-a \/ b) /\ (a \/ -b)
|
||||
Literal negLeft = negate(_left);
|
||||
Literal negRight = negate(*right);
|
||||
state().clauses.emplace_back(Clause{vector<Literal>{negLeft, *right}});
|
||||
state().clauses.emplace_back(Clause{vector<Literal>{_left, negRight}});
|
||||
}
|
||||
else if (_right.name == "=" && parseLinearSum(_right.arguments.at(0)) && parseLinearSum(_right.arguments.at(1)))
|
||||
// a = (x = y) <=> a = (x <= y && x >= y)
|
||||
addBooleanEquality(
|
||||
_left,
|
||||
_right.arguments.at(0) <= _right.arguments.at(1) &&
|
||||
_right.arguments.at(1) <= _right.arguments.at(0)
|
||||
);
|
||||
else
|
||||
{
|
||||
Literal a = parseLiteralOrReturnEqualBoolean(_right.arguments.at(0));
|
||||
Literal b = parseLiteralOrReturnEqualBoolean(_right.arguments.at(1));
|
||||
if (isConditionalConstraint(a.variable) && isConditionalConstraint(b.variable))
|
||||
{
|
||||
// We cannot have more than one constraint per clause.
|
||||
// TODO Why?
|
||||
b = *parseLiteral(declareInternalBoolean());
|
||||
addBooleanEquality(b, _right.arguments.at(1));
|
||||
}
|
||||
|
||||
if (_right.name == "and")
|
||||
{
|
||||
// a = and(x, y) <=> (-a \/ x) /\ ( -a \/ y) /\ (a \/ -x \/ -y)
|
||||
state().clauses.emplace_back(Clause{vector<Literal>{negate(_left), a}});
|
||||
state().clauses.emplace_back(Clause{vector<Literal>{negate(_left), b}});
|
||||
state().clauses.emplace_back(Clause{vector<Literal>{_left, negate(a), negate(b)}});
|
||||
}
|
||||
else if (_right.name == "or")
|
||||
{
|
||||
// a = or(x, y) <=> (-a \/ x \/ y) /\ (a \/ -x) /\ (a \/ -y)
|
||||
state().clauses.emplace_back(Clause{vector<Literal>{negate(_left), a, b}});
|
||||
state().clauses.emplace_back(Clause{vector<Literal>{_left, negate(a)}});
|
||||
state().clauses.emplace_back(Clause{vector<Literal>{_left, negate(b)}});
|
||||
}
|
||||
else if (_right.name == "=")
|
||||
{
|
||||
// l = eq(a, b) <=> (-l or -a or b) and (-l or a or -b) and (l or -a or -b) and (l or a or b)
|
||||
state().clauses.emplace_back(Clause{vector<Literal>{negate(_left), negate(a), b}});
|
||||
state().clauses.emplace_back(Clause{vector<Literal>{negate(_left), a, negate(b)}});
|
||||
state().clauses.emplace_back(Clause{vector<Literal>{_left, negate(a), negate(b)}});
|
||||
state().clauses.emplace_back(Clause{vector<Literal>{_left, a, b}});
|
||||
}
|
||||
else
|
||||
solAssert(false, "Unsupported operation: " + _right.name);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
string BooleanLPSolver::toString(std::vector<SolvingState::Bounds> const& _bounds) const
|
||||
{
|
||||
string result;
|
||||
for (auto&& [index, bounds]: _bounds | ranges::views::enumerate)
|
||||
{
|
||||
if (!bounds.lower && !bounds[1])
|
||||
continue;
|
||||
if (bounds[0])
|
||||
result += ::toString(*bounds[0]) + " <= ";
|
||||
// TODO If the variables are compressed, this does no longer work.
|
||||
result += variableName(index);
|
||||
if (bounds[1])
|
||||
result += " <= " + ::toString(*bounds[1]);
|
||||
result += "\n";
|
||||
}
|
||||
return result;
|
||||
}
|
||||
*/
|
||||
string BooleanLPSolver::toString(Clause const& _clause) const
|
||||
{
|
||||
vector<string> literals;
|
||||
for (Literal const& l: _clause)
|
||||
if (isBooleanVariable(l.variable))
|
||||
literals.emplace_back((l.positive ? "" : "!") + variableName(l.variable));
|
||||
else
|
||||
{
|
||||
solAssert(isConditionalConstraint(l.variable));
|
||||
solAssert(l.positive);
|
||||
literals.emplace_back(toString(conditionalConstraint(l.variable)));
|
||||
}
|
||||
return joinHumanReadable(literals, " \\/ ") + "\n";
|
||||
}
|
||||
|
||||
string BooleanLPSolver::toString(Constraint const& _constraint) const
|
||||
{
|
||||
vector<string> line;
|
||||
for (auto&& [index, multiplier]: _constraint.data | ranges::views::enumerate)
|
||||
if (index > 0 && multiplier != 0)
|
||||
{
|
||||
string mult =
|
||||
multiplier == -1 ?
|
||||
"-" :
|
||||
multiplier == 1 ?
|
||||
"" :
|
||||
::toString(multiplier) + " ";
|
||||
line.emplace_back(mult + variableName(index));
|
||||
}
|
||||
// TODO reasons?
|
||||
return
|
||||
joinHumanReadable(line, " + ") +
|
||||
(_constraint.equality ? " = " : " <= ") +
|
||||
::toString(_constraint.data.front());
|
||||
}
|
||||
|
||||
Constraint const& BooleanLPSolver::conditionalConstraint(size_t _index) const
|
||||
{
|
||||
return state().conditionalConstraints.at(_index);
|
||||
}
|
||||
|
||||
string BooleanLPSolver::variableName(size_t _index) const
|
||||
{
|
||||
for (auto const& v: state().variables)
|
||||
if (v.second == _index)
|
||||
return v.first;
|
||||
return {};
|
||||
}
|
||||
|
||||
bool BooleanLPSolver::isBooleanVariable(string const& _name) const
|
||||
{
|
||||
if (!state().variables.count(_name))
|
||||
return false;
|
||||
size_t index = state().variables.at(_name);
|
||||
solAssert(index > 0, "");
|
||||
return isBooleanVariable(index);
|
||||
}
|
||||
|
||||
bool BooleanLPSolver::isBooleanVariable(size_t _index) const
|
||||
{
|
||||
return
|
||||
_index < state().isBooleanVariable.size() &&
|
||||
state().isBooleanVariable.at(_index);
|
||||
}
|
130
libsolutil/BooleanLP.h
Normal file
130
libsolutil/BooleanLP.h
Normal file
@ -0,0 +1,130 @@
|
||||
/*
|
||||
This file is part of solidity.
|
||||
|
||||
solidity is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
solidity is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
// SPDX-License-Identifier: GPL-3.0
|
||||
#pragma once
|
||||
|
||||
#include <libsmtutil/SolverInterface.h>
|
||||
|
||||
#include <libsolutil/LP.h>
|
||||
#include <libsolutil/CDCL.h>
|
||||
|
||||
#include <boost/rational.hpp>
|
||||
|
||||
#include <vector>
|
||||
#include <variant>
|
||||
#include <stack>
|
||||
#include <compare>
|
||||
|
||||
namespace solidity::util
|
||||
{
|
||||
|
||||
struct State
|
||||
{
|
||||
bool infeasible = false;
|
||||
std::map<std::string, size_t> variables;
|
||||
std::vector<bool> isBooleanVariable;
|
||||
// Potential constraints, referenced through clauses
|
||||
std::map<size_t, Constraint> conditionalConstraints;
|
||||
std::vector<Clause> clauses;
|
||||
|
||||
// Unconditional bounds on variables
|
||||
std::map<size_t, SolvingState::Bounds> bounds;
|
||||
// Unconditional constraints
|
||||
std::vector<Constraint> fixedConstraints;
|
||||
};
|
||||
|
||||
/**
|
||||
* Component that satisfies the SMT SolverInterface and uses an LP solver plus the DPLL
|
||||
* algorithm internally.
|
||||
* It uses a rational relaxation of the integer program and thus will not be able to answer
|
||||
* "satisfiable", but its answers are still correct.
|
||||
*
|
||||
* TODO are integers always non-negative?
|
||||
*
|
||||
* Integers are unbounded.
|
||||
*/
|
||||
class BooleanLPSolver: public smtutil::SolverInterface
|
||||
{
|
||||
public:
|
||||
void reset() override;
|
||||
void push() override;
|
||||
void pop() override;
|
||||
|
||||
void declareVariable(std::string const& _name, smtutil::SortPointer const& _sort) override;
|
||||
|
||||
void addAssertion(smtutil::Expression const& _expr) override;
|
||||
|
||||
std::pair<smtutil::CheckResult, std::vector<std::string>>
|
||||
check(std::vector<smtutil::Expression> const& _expressionsToEvaluate) override;
|
||||
|
||||
std::pair<smtutil::CheckResult, std::map<std::string, boost::rational<bigint>>> check();
|
||||
|
||||
std::string toString() const;
|
||||
|
||||
private:
|
||||
using rational = boost::rational<bigint>;
|
||||
|
||||
smtutil::Expression declareInternalBoolean();
|
||||
void declareVariable(std::string const& _name, bool _boolean);
|
||||
|
||||
std::optional<Literal> parseLiteral(smtutil::Expression const& _expr);
|
||||
Literal negate(Literal const& _lit);
|
||||
|
||||
Literal parseLiteralOrReturnEqualBoolean(smtutil::Expression const& _expr);
|
||||
|
||||
/// Parses the expression and expects a linear sum of variables.
|
||||
/// Returns a vector with the first element being the constant and the
|
||||
/// other elements the factors for the respective variables.
|
||||
/// If the expression cannot be properly parsed or is not linear,
|
||||
/// returns an empty vector.
|
||||
std::optional<LinearExpression> parseLinearSum(smtutil::Expression const& _expression) const;
|
||||
std::optional<LinearExpression> parseProduct(smtutil::Expression const& _expression) const;
|
||||
std::optional<LinearExpression> parseFactor(smtutil::Expression const& _expression) const;
|
||||
|
||||
bool tryAddDirectBounds(Constraint const& _constraint);
|
||||
void addUpperBound(size_t _index, rational _value);
|
||||
void addLowerBound(size_t _index, rational _value);
|
||||
|
||||
size_t addConditionalConstraint(Constraint _constraint);
|
||||
|
||||
void addBooleanEquality(Literal const& _left, smtutil::Expression const& _right);
|
||||
|
||||
//std::string toString(std::vector<SolvingState::Bounds> const& _bounds) const;
|
||||
std::string toString(Clause const& _clause) const;
|
||||
std::string toString(Constraint const& _constraint) const;
|
||||
|
||||
Constraint const& conditionalConstraint(size_t _index) const;
|
||||
|
||||
std::string variableName(size_t _index) const;
|
||||
|
||||
bool isBooleanVariable(std::string const& _name) const;
|
||||
bool isBooleanVariable(size_t _index) const;
|
||||
bool isConditionalConstraint(size_t _index) const { return state().conditionalConstraints.count(_index); }
|
||||
|
||||
State& state() { return m_state.back(); }
|
||||
State const& state() const { return m_state.back(); }
|
||||
|
||||
/// Stack of state, to allow for push()/pop().
|
||||
std::vector<State> m_state{{State{}}};
|
||||
// TODO this is only here so that it can keep its cache.
|
||||
// It might be better to just have the cache here.
|
||||
// Although its stote is only the cache in the end...
|
||||
LPSolver m_lpSolver{false};
|
||||
};
|
||||
|
||||
|
||||
}
|
@ -33,9 +33,10 @@ namespace solidity::util
|
||||
*/
|
||||
struct Literal
|
||||
{
|
||||
// TODO do we need to init them?
|
||||
bool positive;
|
||||
// Either points to a boolean variable or to a constraint.
|
||||
size_t variable{0};
|
||||
size_t variable;
|
||||
|
||||
Literal operator~() const { return Literal{!positive, variable}; }
|
||||
bool operator==(Literal const& _other) const
|
||||
|
@ -2,6 +2,8 @@ set(sources
|
||||
Algorithms.h
|
||||
AnsiColorized.h
|
||||
Assertions.h
|
||||
BooleanLP.cpp
|
||||
BooleanLP.h
|
||||
CDCL.h
|
||||
CDCL.cpp
|
||||
Common.h
|
||||
|
@ -63,6 +63,8 @@ struct SolvingState
|
||||
bool operator<(Bounds const& _other) const { return make_pair(lower, upper) < make_pair(_other.lower, _other.upper); }
|
||||
bool operator==(Bounds const& _other) const { return make_pair(lower, upper) == make_pair(_other.lower, _other.upper); }
|
||||
|
||||
// TOOD this is currently not used
|
||||
|
||||
/// Set of literals the conjunction of which implies the lower bonud.
|
||||
std::set<size_t> lowerReasons;
|
||||
/// Set of literals the conjunction of which implies the upper bonud.
|
||||
|
@ -55,6 +55,14 @@ public:
|
||||
return result;
|
||||
}
|
||||
|
||||
static LinearExpression constant(rational _factor)
|
||||
{
|
||||
LinearExpression result;
|
||||
result.resize(1);
|
||||
result[0] = std::move(_factor);
|
||||
return result;
|
||||
}
|
||||
|
||||
rational const& get(size_t _index) const
|
||||
{
|
||||
static rational const zero;
|
||||
|
@ -31,6 +31,7 @@ set(contracts_sources
|
||||
detect_stray_source_files("${contracts_sources}" "contracts/")
|
||||
|
||||
set(libsolutil_sources
|
||||
libsolutil/BooleanLP.cpp
|
||||
libsolutil/CDCL.cpp
|
||||
libsolutil/Checksum.cpp
|
||||
libsolutil/CommonData.cpp
|
||||
|
348
test/libsolutil/BooleanLP.cpp
Normal file
348
test/libsolutil/BooleanLP.cpp
Normal file
@ -0,0 +1,348 @@
|
||||
/*
|
||||
This file is part of solidity.
|
||||
|
||||
solidity is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
solidity is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
// SPDX-License-Identifier: GPL-3.0
|
||||
|
||||
#include <libsolutil/BooleanLP.h>
|
||||
#include <libsolutil/LinearExpression.h>
|
||||
#include <libsmtutil/Sorts.h>
|
||||
#include <libsolutil/StringUtils.h>
|
||||
#include <test/Common.h>
|
||||
|
||||
#include <boost/test/unit_test.hpp>
|
||||
|
||||
using namespace std;
|
||||
using namespace solidity::smtutil;
|
||||
using namespace solidity::util;
|
||||
|
||||
|
||||
namespace solidity::util::test
|
||||
{
|
||||
|
||||
|
||||
class BooleanLPTestFramework
|
||||
{
|
||||
protected:
|
||||
BooleanLPSolver solver;
|
||||
|
||||
Expression variable(string const& _name)
|
||||
{
|
||||
return solver.newVariable(_name, smtutil::SortProvider::sintSort);
|
||||
}
|
||||
|
||||
Expression booleanVariable(string const& _name)
|
||||
{
|
||||
return solver.newVariable(_name, smtutil::SortProvider::boolSort);
|
||||
}
|
||||
|
||||
void addAssertion(Expression const& _expr) { solver.addAssertion(_expr); }
|
||||
|
||||
void feasible(vector<pair<Expression, string>> const& _solution)
|
||||
{
|
||||
vector<Expression> variables;
|
||||
vector<string> values;
|
||||
for (auto const& [var, val]: _solution)
|
||||
{
|
||||
variables.emplace_back(var);
|
||||
values.emplace_back(val);
|
||||
}
|
||||
auto [result, model] = solver.check(variables);
|
||||
// TODO it actually never returns "satisfiable".
|
||||
BOOST_CHECK(result == smtutil::CheckResult::SATISFIABLE);
|
||||
BOOST_CHECK_EQUAL(joinHumanReadable(model), joinHumanReadable(values));
|
||||
}
|
||||
|
||||
void infeasible()
|
||||
{
|
||||
auto [result, model] = solver.check({});
|
||||
BOOST_CHECK(result == smtutil::CheckResult::UNSATISFIABLE);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
BOOST_FIXTURE_TEST_SUITE(BooleanLP, BooleanLPTestFramework, *boost::unit_test::label("nooptions"))
|
||||
|
||||
BOOST_AUTO_TEST_CASE(lower_bound)
|
||||
{
|
||||
Expression x = variable("x");
|
||||
Expression y = variable("y");
|
||||
addAssertion(y >= 1);
|
||||
addAssertion(x <= 10);
|
||||
addAssertion(2 * x + y <= 2);
|
||||
feasible({{x, "0"}, {y, "2"}});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(check_infeasible)
|
||||
{
|
||||
Expression x = variable("x");
|
||||
addAssertion(x <= 3 && x >= 5);
|
||||
infeasible();
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(unbounded)
|
||||
{
|
||||
Expression x = variable("x");
|
||||
addAssertion(x >= 2);
|
||||
feasible({{x, "2"}});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(unbounded_two)
|
||||
{
|
||||
Expression x = variable("x");
|
||||
Expression y = variable("y");
|
||||
addAssertion(x + y >= 2);
|
||||
addAssertion(x <= 10);
|
||||
feasible({{x, "10"}, {y, "0"}});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(equal)
|
||||
{
|
||||
Expression x = variable("x");
|
||||
Expression y = variable("y");
|
||||
solver.addAssertion(x == y + 10);
|
||||
solver.addAssertion(x <= 20);
|
||||
feasible({{x, "20"}, {y, "10"}});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(push_pop)
|
||||
{
|
||||
Expression x = variable("x");
|
||||
Expression y = variable("y");
|
||||
solver.addAssertion(x + y <= 20);
|
||||
feasible({{x, "20"}, {y, "0"}});
|
||||
|
||||
solver.push();
|
||||
solver.addAssertion(x <= 5);
|
||||
solver.addAssertion(y <= 5);
|
||||
feasible({{x, "5"}, {y, "5"}});
|
||||
|
||||
solver.push();
|
||||
solver.addAssertion(x >= 7);
|
||||
infeasible();
|
||||
solver.pop();
|
||||
|
||||
feasible({{x, "5"}, {y, "5"}});
|
||||
solver.pop();
|
||||
|
||||
feasible({{x, "20"}, {y, "0"}});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(less_than)
|
||||
{
|
||||
Expression x = variable("x");
|
||||
Expression y = variable("y");
|
||||
solver.addAssertion(x == y + 1);
|
||||
solver.push();
|
||||
solver.addAssertion(y < x);
|
||||
feasible({{x, "1"}, {y, "0"}});
|
||||
solver.pop();
|
||||
solver.push();
|
||||
solver.addAssertion(y > x);
|
||||
infeasible();
|
||||
solver.pop();
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(equal_constant)
|
||||
{
|
||||
Expression x = variable("x");
|
||||
Expression y = variable("y");
|
||||
solver.addAssertion(x < y);
|
||||
solver.addAssertion(y == 5);
|
||||
feasible({{x, "4"}, {y, "5"}});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(chained_less_than)
|
||||
{
|
||||
Expression x = variable("x");
|
||||
Expression y = variable("y");
|
||||
Expression z = variable("z");
|
||||
solver.addAssertion(x < y && y < z);
|
||||
|
||||
solver.push();
|
||||
solver.addAssertion(z == 0);
|
||||
infeasible();
|
||||
solver.pop();
|
||||
|
||||
solver.push();
|
||||
solver.addAssertion(z == 1);
|
||||
infeasible();
|
||||
solver.pop();
|
||||
|
||||
solver.push();
|
||||
solver.addAssertion(z == 2);
|
||||
feasible({{x, "0"}, {y, "1"}, {z, "2"}});
|
||||
solver.pop();
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(splittable)
|
||||
{
|
||||
Expression x = variable("x");
|
||||
Expression y = variable("y");
|
||||
Expression z = variable("z");
|
||||
Expression w = variable("w");
|
||||
solver.addAssertion(x < y);
|
||||
solver.addAssertion(x < y - 2);
|
||||
solver.addAssertion(z + w == 28);
|
||||
|
||||
solver.push();
|
||||
solver.addAssertion(z >= 30);
|
||||
infeasible();
|
||||
solver.pop();
|
||||
|
||||
solver.addAssertion(z >= 2);
|
||||
feasible({{x, "0"}, {y, "3"}, {z, "2"}, {w, "26"}});
|
||||
solver.push();
|
||||
solver.addAssertion(z >= 4);
|
||||
feasible({{x, "0"}, {y, "3"}, {z, "4"}, {w, "24"}});
|
||||
|
||||
solver.push();
|
||||
solver.addAssertion(z < 4);
|
||||
infeasible();
|
||||
solver.pop();
|
||||
|
||||
// z >= 4 is still active
|
||||
solver.addAssertion(z >= 3);
|
||||
feasible({{x, "0"}, {y, "3"}, {z, "4"}, {w, "24"}});
|
||||
}
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(boolean)
|
||||
{
|
||||
Expression x = variable("x");
|
||||
Expression y = variable("y");
|
||||
Expression z = variable("z");
|
||||
solver.addAssertion(x <= 5);
|
||||
solver.addAssertion(y <= 2);
|
||||
solver.push();
|
||||
solver.addAssertion(x < y && x > y);
|
||||
infeasible();
|
||||
solver.pop();
|
||||
Expression w = booleanVariable("w");
|
||||
solver.addAssertion(w == (x < y));
|
||||
solver.addAssertion(w || x > y);
|
||||
feasible({{x, "0"}, {y, "3"}, {z, "2"}, {w, "26"}});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(boolean_complex)
|
||||
{
|
||||
Expression x = variable("x");
|
||||
Expression y = variable("y");
|
||||
Expression a = booleanVariable("a");
|
||||
Expression b = booleanVariable("b");
|
||||
solver.addAssertion(x <= 5);
|
||||
solver.addAssertion(y <= 2);
|
||||
solver.addAssertion(a == (x >= 2));
|
||||
solver.addAssertion(a || b);
|
||||
solver.addAssertion(b == !a);
|
||||
solver.addAssertion(b == (x < 2));
|
||||
feasible({{a, "1"}, {b, "0"}, {x, "5"}, {y, "2"}});
|
||||
solver.addAssertion(a && b);
|
||||
infeasible();
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(magic_square_3)
|
||||
{
|
||||
vector<Expression> vars;
|
||||
for (size_t i = 0; i < 9; i++)
|
||||
vars.push_back(variable(string{static_cast<char>('a' + i)}));
|
||||
Expression sum = variable("sum");
|
||||
for (Expression const& var: vars)
|
||||
solver.addAssertion(1 <= var && var <= 9);
|
||||
for (size_t i = 0; i < 9; i++)
|
||||
for (size_t j = i + 1; j < 9; j++)
|
||||
solver.addAssertion(vars[i] != vars[j]);
|
||||
for (size_t i = 0; i < 3; i++)
|
||||
solver.addAssertion(vars[i] + vars[i + 3] + vars[i + 6] == sum);
|
||||
for (size_t i = 0; i < 9; i += 3)
|
||||
solver.addAssertion(vars[i] + vars[i + 1] + vars[i + 2] == sum);
|
||||
solver.addAssertion(vars[0] + vars[4] + vars[8] == sum);
|
||||
solver.addAssertion(vars[2] + vars[4] + vars[6] == sum);
|
||||
feasible({
|
||||
{sum, "15"},
|
||||
{vars[0], "8"}, {vars[1], "3"}, {vars[2], "4"},
|
||||
{vars[3], "1"}, {vars[4], "5"}, {vars[5], "9"},
|
||||
{vars[6], "6"}, {vars[7], "7"}, {vars[8], "2"}
|
||||
});
|
||||
}
|
||||
|
||||
// This still takes too long.
|
||||
//
|
||||
//BOOST_AUTO_TEST_CASE(magic_square_4)
|
||||
//{
|
||||
// vector<Expression> vars;
|
||||
// for (size_t i = 0; i < 16; i++)
|
||||
// vars.push_back(variable(string{static_cast<char>('a' + i)}));
|
||||
// for (Expression const& var: vars)
|
||||
// solver.addAssertion(1 <= var && var <= 16);
|
||||
// for (size_t i = 0; i < 16; i++)
|
||||
// for (size_t j = i + 1; j < 16; j++)
|
||||
// solver.addAssertion(vars[i] != vars[j]);
|
||||
// for (size_t i = 0; i < 4; i++)
|
||||
// solver.addAssertion(vars[i] + vars[i + 4] + vars[i + 8] + vars[i + 12] == 34);
|
||||
// for (size_t i = 0; i < 16; i += 4)
|
||||
// solver.addAssertion(vars[i] + vars[i + 1] + vars[i + 2] + vars[i + 3] == 34);
|
||||
// solver.addAssertion(vars[0] + vars[5] + vars[10] + vars[15] == 34);
|
||||
// solver.addAssertion(vars[3] + vars[6] + vars[9] + vars[12] == 34);
|
||||
// feasible({
|
||||
// {vars[0], "9"}, {vars[1], "5"}, {vars[2], "1"},
|
||||
// {vars[3], "4"}, {vars[4], "3"}, {vars[5], "8"},
|
||||
// {vars[6], "2"}, {vars[7], "7"}, {vars[8], "6"}
|
||||
// });
|
||||
//}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(boolean_complex_2)
|
||||
{
|
||||
Expression x = variable("x");
|
||||
Expression y = variable("y");
|
||||
Expression a = booleanVariable("a");
|
||||
Expression b = booleanVariable("b");
|
||||
solver.addAssertion(x != 20);
|
||||
feasible({{x, "21"}});
|
||||
solver.addAssertion(x <= 5 || (x > 7 && x != 8));
|
||||
solver.addAssertion(a == (x == 9));
|
||||
feasible({{a, "0"}, {b, "unknown"}, {x, "21"}});
|
||||
solver.addAssertion(!a || (x == 10));
|
||||
solver.addAssertion(b == !a);
|
||||
solver.addAssertion(b == (x < 200));
|
||||
feasible({{a, "0"}, {b, "1"}, {x, "199"}});
|
||||
solver.addAssertion(a && b);
|
||||
infeasible();
|
||||
}
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(pure_boolean)
|
||||
{
|
||||
Expression a = booleanVariable("a");
|
||||
Expression b = booleanVariable("b");
|
||||
Expression c = booleanVariable("c");
|
||||
Expression d = booleanVariable("d");
|
||||
Expression e = booleanVariable("e");
|
||||
Expression f = booleanVariable("f");
|
||||
solver.addAssertion(a && !b);
|
||||
solver.addAssertion(b || c);
|
||||
solver.addAssertion(c == (d || c));
|
||||
solver.addAssertion(f == (b && !c));
|
||||
solver.addAssertion(!f || e);
|
||||
solver.addAssertion(c || d);
|
||||
feasible({});
|
||||
solver.addAssertion(a && b);
|
||||
infeasible();
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_SUITE_END()
|
||||
|
||||
}
|
Loading…
Reference in New Issue
Block a user