diff --git a/libsolutil/BooleanLP.cpp b/libsolutil/BooleanLP.cpp
new file mode 100644
index 000000000..42320f99f
--- /dev/null
+++ b/libsolutil/BooleanLP.cpp
@@ -0,0 +1,610 @@
+/*
+ This file is part of solidity.
+
+ solidity is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ solidity is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with solidity. If not, see .
+*/
+// SPDX-License-Identifier: GPL-3.0
+
+#include
+
+#include
+#include
+#include
+
+#include
+#include
+#include
+
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+
+#include
+
+using namespace std;
+using namespace solidity;
+using namespace solidity::util;
+using namespace solidity::smtutil;
+
+using rational = boost::rational;
+
+namespace
+{
+template
+void resizeAndSet(vector& _vector, size_t _index, T _value)
+{
+ if (_vector.size() < _index + 1)
+ _vector.resize(_index + 1);
+ _vector[_index] = move(_value);
+}
+
+string toString(rational const& _x)
+{
+ if (_x.denominator() == 1)
+ return _x.numerator().str();
+ else
+ return _x.numerator().str() + "/" + _x.denominator().str();
+}
+
+}
+
+void BooleanLPSolver::reset()
+{
+ m_state = vector{{State{}}};
+ // TODO retain an instance of the LP solver, it should keep its cache!
+}
+
+void BooleanLPSolver::push()
+{
+ // TODO maybe find a way where we do not have to copy everything
+ State currentState = state();
+ m_state.emplace_back(move(currentState));
+}
+
+void BooleanLPSolver::pop()
+{
+ m_state.pop_back();
+ solAssert(!m_state.empty(), "");
+}
+
+void BooleanLPSolver::declareVariable(string const& _name, SortPointer const& _sort)
+{
+ // Internal variables are '$', or '$c' so escape `$` to `$$`.
+ string name = (_name.empty() || _name.at(0) != '$') ? _name : "$$" + _name;
+ // TODO This will not be an integer variable in our model.
+ // Introduce a new kind?
+ solAssert(_sort && (_sort->kind == Kind::Int || _sort->kind == Kind::Bool), "");
+ solAssert(!state().variables.count(name), "");
+ declareVariable(name, _sort->kind == Kind::Bool);
+}
+
+void BooleanLPSolver::addAssertion(Expression const& _expr)
+{
+ if (_expr.arguments.empty())
+ state().clauses.emplace_back(Clause{vector{*parseLiteral(_expr)}});
+ else if (_expr.name == "=")
+ {
+ // Try to see if both sides are linear.
+ optional left = parseLinearSum(_expr.arguments.at(0));
+ optional right = parseLinearSum(_expr.arguments.at(1));
+ if (left && right)
+ {
+ LinearExpression data = *left - *right;
+ data[0] *= -1;
+ Constraint c{move(data), _expr.name == "=", {}};
+ if (!tryAddDirectBounds(c))
+ state().fixedConstraints.emplace_back(move(c));
+ }
+ else if (_expr.arguments.at(0).arguments.empty() && isBooleanVariable(_expr.arguments.at(0).name))
+ addBooleanEquality(*parseLiteral(_expr.arguments.at(0)), _expr.arguments.at(1));
+ else if (_expr.arguments.at(1).arguments.empty() && isBooleanVariable(_expr.arguments.at(1).name))
+ addBooleanEquality(*parseLiteral(_expr.arguments.at(1)), _expr.arguments.at(0));
+ else
+ {
+ Literal newBoolean = *parseLiteral(declareInternalBoolean());
+ addBooleanEquality(newBoolean, _expr.arguments.at(0));
+ addBooleanEquality(newBoolean, _expr.arguments.at(1));
+ }
+ }
+ else if (_expr.name == "and")
+ {
+ addAssertion(_expr.arguments.at(0));
+ addAssertion(_expr.arguments.at(1));
+ }
+ else if (_expr.name == "or")
+ {
+ // We could try to parse a full clause here.
+ Literal left = parseLiteralOrReturnEqualBoolean(_expr.arguments.at(0));
+ Literal right = parseLiteralOrReturnEqualBoolean(_expr.arguments.at(1));
+ if (isConditionalConstraint(left.variable) && isConditionalConstraint(right.variable))
+ {
+ // We cannot have more than one constraint per clause.
+ // TODO Why?
+ right = *parseLiteral(declareInternalBoolean());
+ addBooleanEquality(right, _expr.arguments.at(1));
+ }
+ state().clauses.emplace_back(Clause{vector{left, right}});
+ }
+ else if (_expr.name == "not")
+ {
+ // TODO can we still try to add a fixed constraint?
+ Literal l = negate(parseLiteralOrReturnEqualBoolean(_expr.arguments.at(0)));
+ state().clauses.emplace_back(Clause{vector{l}});
+ }
+ else if (_expr.name == "<=")
+ {
+ optional left = parseLinearSum(_expr.arguments.at(0));
+ optional right = parseLinearSum(_expr.arguments.at(1));
+ if (!left || !right)
+ {
+ cout << "Unable to parse expression" << endl;
+ // TODO fail in some way
+ return;
+ }
+
+ LinearExpression data = *left - *right;
+ data[0] *= -1;
+ Constraint c{move(data), _expr.name == "=", {}};
+ if (!tryAddDirectBounds(c))
+ state().fixedConstraints.emplace_back(move(c));
+ }
+ else if (_expr.name == ">=")
+ addAssertion(_expr.arguments.at(1) <= _expr.arguments.at(0));
+ else if (_expr.name == "<")
+ addAssertion(_expr.arguments.at(0) <= _expr.arguments.at(1) - 1);
+ else if (_expr.name == ">")
+ addAssertion(_expr.arguments.at(1) < _expr.arguments.at(0));
+ else
+ cout << "Unknown operator " << _expr.name << endl;
+}
+
+
+pair> BooleanLPSolver::check(vector const&)
+{
+ cout << "Solving boolean constraint system" << endl;
+ cout << toString() << endl;
+ cout << "--------------" << endl;
+
+ if (state().infeasible)
+ return make_pair(CheckResult::UNSATISFIABLE, vector{});
+
+ std::vector booleanVariables;
+ std::vector clauses = state().clauses;
+ SolvingState lpState;
+ for (auto&& [index, bound]: state().bounds)
+ resizeAndSet(lpState.bounds, index, bound);
+ lpState.constraints = state().fixedConstraints;
+ // TODO this way, it will result in a lot of gaps in both sets of variables.
+ // should we compress them and store a mapping?
+ // Is it even a problem if the indices overlap?
+ for (auto&& [name, index]: state().variables)
+ if (state().isBooleanVariable.at(index))
+ resizeAndSet(booleanVariables, index, name);
+ else
+ resizeAndSet(lpState.variableNames, index, name);
+
+ cout << "Running LP solver on fixed constraints." << endl;
+ if (m_lpSolver.check(lpState).first == LPResult::Infeasible)
+ return {CheckResult::UNSATISFIABLE, {}};
+
+ auto theorySolver = [&](map const& _booleanAssignment) -> optional
+ {
+ SolvingState lpStateToCheck = lpState;
+ for (auto&& [constraintIndex, value]: _booleanAssignment)
+ {
+ if (!state().conditionalConstraints.count(constraintIndex))
+ continue;
+ // assert that value is true?
+ // "reason" is already stored for those constraints.
+ Constraint const& constraint = state().conditionalConstraints.at(constraintIndex);
+ solAssert(
+ constraint.reasons.size() == 1 &&
+ *constraint.reasons.begin() == constraintIndex
+ );
+ lpStateToCheck.constraints.emplace_back(constraint);
+ }
+ auto&& [result, modelOrReason] = m_lpSolver.check(move(lpStateToCheck));
+ // We can only really use the result "infeasible". Everything else should be "sat".
+ if (result == LPResult::Infeasible)
+ {
+ // TODO this could be the empty clause if the LP is already infeasible
+ // with only the fixed constraints - run it beforehand!
+ // TODO is it ok to ignore the non-constraint boolean variables here?
+ Clause conflictClause;
+ for (size_t constraintIndex: get(modelOrReason))
+ conflictClause.emplace_back(Literal{false, constraintIndex});
+ return conflictClause;
+ }
+ else
+ return nullopt;
+ };
+
+ auto optionalModel = CDCL{move(booleanVariables), clauses, theorySolver}.solve();
+ if (!optionalModel)
+ return {CheckResult::UNSATISFIABLE, {}};
+ else
+ return {CheckResult::UNKNOWN, {}};
+}
+
+string BooleanLPSolver::toString() const
+{
+ string result;
+
+ result += "-- Fixed Constraints:\n";
+ for (Constraint const& c: state().fixedConstraints)
+ result += toString(c) + "\n";
+ result += "-- Fixed Bounds:\n";
+ for (auto&& [index, bounds]: state().bounds)
+ {
+ if (!bounds.lower && !bounds.upper)
+ continue;
+ if (bounds.lower)
+ result += ::toString(*bounds.lower) + " <= ";
+ result += variableName(index);
+ if (bounds.upper)
+ result += " <= " + ::toString(*bounds.upper);
+ result += "\n";
+ }
+ result += "-- Clauses:\n";
+ for (Clause const& c: state().clauses)
+ result += toString(c);
+ return result;
+}
+
+Expression BooleanLPSolver::declareInternalBoolean()
+{
+ string name = "$" + to_string(state().variables.size() + 1);
+ declareVariable(name, true);
+ return smtutil::Expression(name, {}, SortProvider::boolSort);
+}
+
+void BooleanLPSolver::declareVariable(string const& _name, bool _boolean)
+{
+ size_t index = state().variables.size() + 1;
+ state().variables[_name] = index;
+ resizeAndSet(state().isBooleanVariable, index, _boolean);
+}
+
+optional BooleanLPSolver::parseLiteral(smtutil::Expression const& _expr)
+{
+ // TODO constanst true/false?
+
+ if (_expr.arguments.empty())
+ {
+ if (isBooleanVariable(_expr.name))
+ return Literal{
+ true,
+ state().variables.at(_expr.name)
+ };
+ else
+ cout << "cannot encode " << _expr.name << " - not a boolean literal variable." << endl;
+ }
+ else if (_expr.name == "not")
+ return negate(parseLiteralOrReturnEqualBoolean(_expr.arguments.at(0)));
+ else if (_expr.name == "<=")
+ {
+ optional left = parseLinearSum(_expr.arguments.at(0));
+ optional right = parseLinearSum(_expr.arguments.at(1));
+ if (!left || !right)
+ return {};
+
+ LinearExpression data = *left - *right;
+ data[0] *= -1;
+
+ return Literal{true, addConditionalConstraint(Constraint{move(data), false, {}})};
+ }
+ else if (_expr.name == ">=")
+ return parseLiteral(_expr.arguments.at(1) <= _expr.arguments.at(0));
+ else if (_expr.name == "<")
+ return parseLiteral(_expr.arguments.at(0) <= _expr.arguments.at(1) - 1);
+ else if (_expr.name == ">")
+ return parseLiteral(_expr.arguments.at(1) < _expr.arguments.at(0));
+
+ return {};
+}
+
+Literal BooleanLPSolver::negate(Literal const& _lit)
+{
+ if (isConditionalConstraint(_lit.variable))
+ {
+ Constraint const& c = conditionalConstraint(_lit.variable);
+ solAssert(!c.equality, "");
+
+ // X > b
+ // -x < -b
+ // -x <= -b - 1
+
+ Constraint negated = c;
+ negated.data *= -1;
+ negated.data[0] -= 1;
+ return Literal{true, addConditionalConstraint(negated)};
+ }
+ else
+ return ~_lit;
+}
+
+Literal BooleanLPSolver::parseLiteralOrReturnEqualBoolean(Expression const& _expr)
+{
+ // TODO hen can this fail?
+ if (optional literal = parseLiteral(_expr))
+ return *literal;
+ else
+ {
+ Literal newBoolean = *parseLiteral(declareInternalBoolean());
+ addBooleanEquality(newBoolean, _expr);
+ return newBoolean;
+ }
+}
+
+optional BooleanLPSolver::parseLinearSum(smtutil::Expression const& _expr) const
+{
+ if (_expr.arguments.empty() || _expr.name == "*")
+ return parseProduct(_expr);
+ else if (_expr.name == "+" || _expr.name == "-")
+ {
+ optional left = parseLinearSum(_expr.arguments.at(0));
+ optional right = parseLinearSum(_expr.arguments.at(1));
+ if (!left || !right)
+ return std::nullopt;
+ return _expr.name == "+" ? *left + *right : *left - *right;
+ }
+ else
+ return std::nullopt;
+}
+
+optional BooleanLPSolver::parseProduct(smtutil::Expression const& _expr) const
+{
+ if (_expr.arguments.empty())
+ return parseFactor(_expr);
+ else if (_expr.name == "*")
+ // The multiplication ensures that only one of them can be a variable.
+ return parseFactor(_expr.arguments.at(0)) * parseFactor(_expr.arguments.at(1));
+ else
+ return std::nullopt;
+}
+
+optional BooleanLPSolver::parseFactor(smtutil::Expression const& _expr) const
+{
+ solAssert(_expr.arguments.empty(), "");
+ solAssert(!_expr.name.empty(), "");
+ if ('0' <= _expr.name[0] && _expr.name[0] <= '9')
+ return LinearExpression::constant(rational(bigint(_expr.name)));
+ else if (_expr.name == "true")
+ // TODO do we want to do this?
+ return LinearExpression::constant(1);
+ else if (_expr.name == "false")
+ // TODO do we want to do this?
+ return LinearExpression::constant(0);
+
+ size_t index = state().variables.at(_expr.name);
+ solAssert(index > 0, "");
+ if (isBooleanVariable(index))
+ return nullopt;
+ return LinearExpression::factorForVariable(index, rational(bigint(1)));
+}
+
+bool BooleanLPSolver::tryAddDirectBounds(Constraint const& _constraint)
+{
+ auto nonzero = _constraint.data | ranges::views::enumerate | ranges::views::tail | ranges::views::filter(
+ [](std::pair const& _x) { return !!_x.second; }
+ );
+ // TODO we can exit early on in the loop above.
+ if (ranges::distance(nonzero) > 1)
+ return false;
+
+ //cout << "adding direct bound." << endl;
+ if (ranges::distance(nonzero) == 0)
+ {
+ // 0 <= b or 0 = b
+ if (
+ _constraint.data.front() < 0 ||
+ (_constraint.equality && _constraint.data.front() != 0)
+ )
+ {
+// cout << "SETTING INF" << endl;
+ state().infeasible = true;
+ }
+ }
+ else
+ {
+ auto&& [varIndex, factor] = nonzero.front();
+ // a * x <= b
+ rational bound = _constraint.data[0] / factor;
+ if (factor > 0 || _constraint.equality)
+ addUpperBound(varIndex, bound);
+ if (factor < 0 || _constraint.equality)
+ addLowerBound(varIndex, bound);
+ }
+ return true;
+}
+
+void BooleanLPSolver::addUpperBound(size_t _index, rational _value)
+{
+ //cout << "adding " << variableName(_index) << " <= " << toString(_value) << endl;
+ if (!state().bounds[_index].upper || _value < *state().bounds[_index].upper)
+ state().bounds[_index].upper = move(_value);
+}
+
+void BooleanLPSolver::addLowerBound(size_t _index, rational _value)
+{
+ // Lower bound must be at least zero.
+ _value = max(_value, rational{});
+ //cout << "adding " << variableName(_index) << " >= " << toString(_value) << endl;
+ if (!state().bounds[_index].lower || _value > *state().bounds[_index].lower)
+ state().bounds[_index].lower = move(_value);
+}
+
+size_t BooleanLPSolver::addConditionalConstraint(Constraint _constraint)
+{
+ string name = "$c" + to_string(state().variables.size() + 1);
+ // It's not a boolean variable
+ // TODO we actually have there kinds of variables and we should split them:
+ // - actual booleans (including internals)
+ // - conditional constraints
+ // - integers
+ declareVariable(name, false);
+ size_t index = state().variables.at(name);
+ solAssert(_constraint.reasons.empty());
+ _constraint.reasons.emplace(index);
+ state().conditionalConstraints[index] = move(_constraint);
+ return index;
+}
+
+void BooleanLPSolver::addBooleanEquality(Literal const& _left, smtutil::Expression const& _right)
+{
+ if (optional right = parseLiteral(_right))
+ {
+ // includes: not, <=, <, >=, >, boolean variables.
+ // a = b <=> (-a \/ b) /\ (a \/ -b)
+ Literal negLeft = negate(_left);
+ Literal negRight = negate(*right);
+ state().clauses.emplace_back(Clause{vector{negLeft, *right}});
+ state().clauses.emplace_back(Clause{vector{_left, negRight}});
+ }
+ else if (_right.name == "=" && parseLinearSum(_right.arguments.at(0)) && parseLinearSum(_right.arguments.at(1)))
+ // a = (x = y) <=> a = (x <= y && x >= y)
+ addBooleanEquality(
+ _left,
+ _right.arguments.at(0) <= _right.arguments.at(1) &&
+ _right.arguments.at(1) <= _right.arguments.at(0)
+ );
+ else
+ {
+ Literal a = parseLiteralOrReturnEqualBoolean(_right.arguments.at(0));
+ Literal b = parseLiteralOrReturnEqualBoolean(_right.arguments.at(1));
+ if (isConditionalConstraint(a.variable) && isConditionalConstraint(b.variable))
+ {
+ // We cannot have more than one constraint per clause.
+ // TODO Why?
+ b = *parseLiteral(declareInternalBoolean());
+ addBooleanEquality(b, _right.arguments.at(1));
+ }
+
+ if (_right.name == "and")
+ {
+ // a = and(x, y) <=> (-a \/ x) /\ ( -a \/ y) /\ (a \/ -x \/ -y)
+ state().clauses.emplace_back(Clause{vector{negate(_left), a}});
+ state().clauses.emplace_back(Clause{vector{negate(_left), b}});
+ state().clauses.emplace_back(Clause{vector{_left, negate(a), negate(b)}});
+ }
+ else if (_right.name == "or")
+ {
+ // a = or(x, y) <=> (-a \/ x \/ y) /\ (a \/ -x) /\ (a \/ -y)
+ state().clauses.emplace_back(Clause{vector{negate(_left), a, b}});
+ state().clauses.emplace_back(Clause{vector{_left, negate(a)}});
+ state().clauses.emplace_back(Clause{vector{_left, negate(b)}});
+ }
+ else if (_right.name == "=")
+ {
+ // l = eq(a, b) <=> (-l or -a or b) and (-l or a or -b) and (l or -a or -b) and (l or a or b)
+ state().clauses.emplace_back(Clause{vector{negate(_left), negate(a), b}});
+ state().clauses.emplace_back(Clause{vector{negate(_left), a, negate(b)}});
+ state().clauses.emplace_back(Clause{vector{_left, negate(a), negate(b)}});
+ state().clauses.emplace_back(Clause{vector{_left, a, b}});
+ }
+ else
+ solAssert(false, "Unsupported operation: " + _right.name);
+ }
+}
+
+/*
+string BooleanLPSolver::toString(std::vector const& _bounds) const
+{
+ string result;
+ for (auto&& [index, bounds]: _bounds | ranges::views::enumerate)
+ {
+ if (!bounds.lower && !bounds[1])
+ continue;
+ if (bounds[0])
+ result += ::toString(*bounds[0]) + " <= ";
+ // TODO If the variables are compressed, this does no longer work.
+ result += variableName(index);
+ if (bounds[1])
+ result += " <= " + ::toString(*bounds[1]);
+ result += "\n";
+ }
+ return result;
+}
+*/
+string BooleanLPSolver::toString(Clause const& _clause) const
+{
+ vector literals;
+ for (Literal const& l: _clause)
+ if (isBooleanVariable(l.variable))
+ literals.emplace_back((l.positive ? "" : "!") + variableName(l.variable));
+ else
+ {
+ solAssert(isConditionalConstraint(l.variable));
+ solAssert(l.positive);
+ literals.emplace_back(toString(conditionalConstraint(l.variable)));
+ }
+ return joinHumanReadable(literals, " \\/ ") + "\n";
+}
+
+string BooleanLPSolver::toString(Constraint const& _constraint) const
+{
+ vector line;
+ for (auto&& [index, multiplier]: _constraint.data | ranges::views::enumerate)
+ if (index > 0 && multiplier != 0)
+ {
+ string mult =
+ multiplier == -1 ?
+ "-" :
+ multiplier == 1 ?
+ "" :
+ ::toString(multiplier) + " ";
+ line.emplace_back(mult + variableName(index));
+ }
+ // TODO reasons?
+ return
+ joinHumanReadable(line, " + ") +
+ (_constraint.equality ? " = " : " <= ") +
+ ::toString(_constraint.data.front());
+}
+
+Constraint const& BooleanLPSolver::conditionalConstraint(size_t _index) const
+{
+ return state().conditionalConstraints.at(_index);
+}
+
+string BooleanLPSolver::variableName(size_t _index) const
+{
+ for (auto const& v: state().variables)
+ if (v.second == _index)
+ return v.first;
+ return {};
+}
+
+bool BooleanLPSolver::isBooleanVariable(string const& _name) const
+{
+ if (!state().variables.count(_name))
+ return false;
+ size_t index = state().variables.at(_name);
+ solAssert(index > 0, "");
+ return isBooleanVariable(index);
+}
+
+bool BooleanLPSolver::isBooleanVariable(size_t _index) const
+{
+ return
+ _index < state().isBooleanVariable.size() &&
+ state().isBooleanVariable.at(_index);
+}
diff --git a/libsolutil/BooleanLP.h b/libsolutil/BooleanLP.h
new file mode 100644
index 000000000..8e6a2911b
--- /dev/null
+++ b/libsolutil/BooleanLP.h
@@ -0,0 +1,130 @@
+/*
+ This file is part of solidity.
+
+ solidity is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ solidity is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with solidity. If not, see .
+*/
+// SPDX-License-Identifier: GPL-3.0
+#pragma once
+
+#include
+
+#include
+#include
+
+#include
+
+#include
+#include
+#include
+#include
+
+namespace solidity::util
+{
+
+struct State
+{
+ bool infeasible = false;
+ std::map variables;
+ std::vector isBooleanVariable;
+ // Potential constraints, referenced through clauses
+ std::map conditionalConstraints;
+ std::vector clauses;
+
+ // Unconditional bounds on variables
+ std::map bounds;
+ // Unconditional constraints
+ std::vector fixedConstraints;
+};
+
+/**
+ * Component that satisfies the SMT SolverInterface and uses an LP solver plus the DPLL
+ * algorithm internally.
+ * It uses a rational relaxation of the integer program and thus will not be able to answer
+ * "satisfiable", but its answers are still correct.
+ *
+ * TODO are integers always non-negative?
+ *
+ * Integers are unbounded.
+ */
+class BooleanLPSolver: public smtutil::SolverInterface
+{
+public:
+ void reset() override;
+ void push() override;
+ void pop() override;
+
+ void declareVariable(std::string const& _name, smtutil::SortPointer const& _sort) override;
+
+ void addAssertion(smtutil::Expression const& _expr) override;
+
+ std::pair>
+ check(std::vector const& _expressionsToEvaluate) override;
+
+ std::pair>> check();
+
+ std::string toString() const;
+
+private:
+ using rational = boost::rational;
+
+ smtutil::Expression declareInternalBoolean();
+ void declareVariable(std::string const& _name, bool _boolean);
+
+ std::optional parseLiteral(smtutil::Expression const& _expr);
+ Literal negate(Literal const& _lit);
+
+ Literal parseLiteralOrReturnEqualBoolean(smtutil::Expression const& _expr);
+
+ /// Parses the expression and expects a linear sum of variables.
+ /// Returns a vector with the first element being the constant and the
+ /// other elements the factors for the respective variables.
+ /// If the expression cannot be properly parsed or is not linear,
+ /// returns an empty vector.
+ std::optional parseLinearSum(smtutil::Expression const& _expression) const;
+ std::optional parseProduct(smtutil::Expression const& _expression) const;
+ std::optional parseFactor(smtutil::Expression const& _expression) const;
+
+ bool tryAddDirectBounds(Constraint const& _constraint);
+ void addUpperBound(size_t _index, rational _value);
+ void addLowerBound(size_t _index, rational _value);
+
+ size_t addConditionalConstraint(Constraint _constraint);
+
+ void addBooleanEquality(Literal const& _left, smtutil::Expression const& _right);
+
+ //std::string toString(std::vector const& _bounds) const;
+ std::string toString(Clause const& _clause) const;
+ std::string toString(Constraint const& _constraint) const;
+
+ Constraint const& conditionalConstraint(size_t _index) const;
+
+ std::string variableName(size_t _index) const;
+
+ bool isBooleanVariable(std::string const& _name) const;
+ bool isBooleanVariable(size_t _index) const;
+ bool isConditionalConstraint(size_t _index) const { return state().conditionalConstraints.count(_index); }
+
+ State& state() { return m_state.back(); }
+ State const& state() const { return m_state.back(); }
+
+ /// Stack of state, to allow for push()/pop().
+ std::vector m_state{{State{}}};
+ // TODO this is only here so that it can keep its cache.
+ // It might be better to just have the cache here.
+ // Although its stote is only the cache in the end...
+ LPSolver m_lpSolver{false};
+};
+
+
+}
diff --git a/libsolutil/CDCL.h b/libsolutil/CDCL.h
index 0bbf2cde9..bc0118c58 100644
--- a/libsolutil/CDCL.h
+++ b/libsolutil/CDCL.h
@@ -33,9 +33,10 @@ namespace solidity::util
*/
struct Literal
{
+ // TODO do we need to init them?
bool positive;
// Either points to a boolean variable or to a constraint.
- size_t variable{0};
+ size_t variable;
Literal operator~() const { return Literal{!positive, variable}; }
bool operator==(Literal const& _other) const
diff --git a/libsolutil/CMakeLists.txt b/libsolutil/CMakeLists.txt
index 9a9d97c8c..077d9f1e6 100644
--- a/libsolutil/CMakeLists.txt
+++ b/libsolutil/CMakeLists.txt
@@ -2,6 +2,8 @@ set(sources
Algorithms.h
AnsiColorized.h
Assertions.h
+ BooleanLP.cpp
+ BooleanLP.h
CDCL.h
CDCL.cpp
Common.h
diff --git a/libsolutil/LP.h b/libsolutil/LP.h
index cc222df2c..a586ef0e3 100644
--- a/libsolutil/LP.h
+++ b/libsolutil/LP.h
@@ -63,6 +63,8 @@ struct SolvingState
bool operator<(Bounds const& _other) const { return make_pair(lower, upper) < make_pair(_other.lower, _other.upper); }
bool operator==(Bounds const& _other) const { return make_pair(lower, upper) == make_pair(_other.lower, _other.upper); }
+ // TOOD this is currently not used
+
/// Set of literals the conjunction of which implies the lower bonud.
std::set lowerReasons;
/// Set of literals the conjunction of which implies the upper bonud.
diff --git a/libsolutil/LinearExpression.h b/libsolutil/LinearExpression.h
index 66b3a827d..bdfdae642 100644
--- a/libsolutil/LinearExpression.h
+++ b/libsolutil/LinearExpression.h
@@ -55,6 +55,14 @@ public:
return result;
}
+ static LinearExpression constant(rational _factor)
+ {
+ LinearExpression result;
+ result.resize(1);
+ result[0] = std::move(_factor);
+ return result;
+ }
+
rational const& get(size_t _index) const
{
static rational const zero;
diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt
index a35cfb772..f6a58acd8 100644
--- a/test/CMakeLists.txt
+++ b/test/CMakeLists.txt
@@ -31,6 +31,7 @@ set(contracts_sources
detect_stray_source_files("${contracts_sources}" "contracts/")
set(libsolutil_sources
+ libsolutil/BooleanLP.cpp
libsolutil/CDCL.cpp
libsolutil/Checksum.cpp
libsolutil/CommonData.cpp
diff --git a/test/libsolutil/BooleanLP.cpp b/test/libsolutil/BooleanLP.cpp
new file mode 100644
index 000000000..7f810347b
--- /dev/null
+++ b/test/libsolutil/BooleanLP.cpp
@@ -0,0 +1,348 @@
+/*
+ This file is part of solidity.
+
+ solidity is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ solidity is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with solidity. If not, see .
+*/
+// SPDX-License-Identifier: GPL-3.0
+
+#include
+#include
+#include
+#include
+#include
+
+#include
+
+using namespace std;
+using namespace solidity::smtutil;
+using namespace solidity::util;
+
+
+namespace solidity::util::test
+{
+
+
+class BooleanLPTestFramework
+{
+protected:
+ BooleanLPSolver solver;
+
+ Expression variable(string const& _name)
+ {
+ return solver.newVariable(_name, smtutil::SortProvider::sintSort);
+ }
+
+ Expression booleanVariable(string const& _name)
+ {
+ return solver.newVariable(_name, smtutil::SortProvider::boolSort);
+ }
+
+ void addAssertion(Expression const& _expr) { solver.addAssertion(_expr); }
+
+ void feasible(vector> const& _solution)
+ {
+ vector variables;
+ vector values;
+ for (auto const& [var, val]: _solution)
+ {
+ variables.emplace_back(var);
+ values.emplace_back(val);
+ }
+ auto [result, model] = solver.check(variables);
+ // TODO it actually never returns "satisfiable".
+ BOOST_CHECK(result == smtutil::CheckResult::SATISFIABLE);
+ BOOST_CHECK_EQUAL(joinHumanReadable(model), joinHumanReadable(values));
+ }
+
+ void infeasible()
+ {
+ auto [result, model] = solver.check({});
+ BOOST_CHECK(result == smtutil::CheckResult::UNSATISFIABLE);
+ }
+};
+
+
+
+BOOST_FIXTURE_TEST_SUITE(BooleanLP, BooleanLPTestFramework, *boost::unit_test::label("nooptions"))
+
+BOOST_AUTO_TEST_CASE(lower_bound)
+{
+ Expression x = variable("x");
+ Expression y = variable("y");
+ addAssertion(y >= 1);
+ addAssertion(x <= 10);
+ addAssertion(2 * x + y <= 2);
+ feasible({{x, "0"}, {y, "2"}});
+}
+
+BOOST_AUTO_TEST_CASE(check_infeasible)
+{
+ Expression x = variable("x");
+ addAssertion(x <= 3 && x >= 5);
+ infeasible();
+}
+
+BOOST_AUTO_TEST_CASE(unbounded)
+{
+ Expression x = variable("x");
+ addAssertion(x >= 2);
+ feasible({{x, "2"}});
+}
+
+BOOST_AUTO_TEST_CASE(unbounded_two)
+{
+ Expression x = variable("x");
+ Expression y = variable("y");
+ addAssertion(x + y >= 2);
+ addAssertion(x <= 10);
+ feasible({{x, "10"}, {y, "0"}});
+}
+
+BOOST_AUTO_TEST_CASE(equal)
+{
+ Expression x = variable("x");
+ Expression y = variable("y");
+ solver.addAssertion(x == y + 10);
+ solver.addAssertion(x <= 20);
+ feasible({{x, "20"}, {y, "10"}});
+}
+
+BOOST_AUTO_TEST_CASE(push_pop)
+{
+ Expression x = variable("x");
+ Expression y = variable("y");
+ solver.addAssertion(x + y <= 20);
+ feasible({{x, "20"}, {y, "0"}});
+
+ solver.push();
+ solver.addAssertion(x <= 5);
+ solver.addAssertion(y <= 5);
+ feasible({{x, "5"}, {y, "5"}});
+
+ solver.push();
+ solver.addAssertion(x >= 7);
+ infeasible();
+ solver.pop();
+
+ feasible({{x, "5"}, {y, "5"}});
+ solver.pop();
+
+ feasible({{x, "20"}, {y, "0"}});
+}
+
+BOOST_AUTO_TEST_CASE(less_than)
+{
+ Expression x = variable("x");
+ Expression y = variable("y");
+ solver.addAssertion(x == y + 1);
+ solver.push();
+ solver.addAssertion(y < x);
+ feasible({{x, "1"}, {y, "0"}});
+ solver.pop();
+ solver.push();
+ solver.addAssertion(y > x);
+ infeasible();
+ solver.pop();
+}
+
+BOOST_AUTO_TEST_CASE(equal_constant)
+{
+ Expression x = variable("x");
+ Expression y = variable("y");
+ solver.addAssertion(x < y);
+ solver.addAssertion(y == 5);
+ feasible({{x, "4"}, {y, "5"}});
+}
+
+BOOST_AUTO_TEST_CASE(chained_less_than)
+{
+ Expression x = variable("x");
+ Expression y = variable("y");
+ Expression z = variable("z");
+ solver.addAssertion(x < y && y < z);
+
+ solver.push();
+ solver.addAssertion(z == 0);
+ infeasible();
+ solver.pop();
+
+ solver.push();
+ solver.addAssertion(z == 1);
+ infeasible();
+ solver.pop();
+
+ solver.push();
+ solver.addAssertion(z == 2);
+ feasible({{x, "0"}, {y, "1"}, {z, "2"}});
+ solver.pop();
+}
+
+BOOST_AUTO_TEST_CASE(splittable)
+{
+ Expression x = variable("x");
+ Expression y = variable("y");
+ Expression z = variable("z");
+ Expression w = variable("w");
+ solver.addAssertion(x < y);
+ solver.addAssertion(x < y - 2);
+ solver.addAssertion(z + w == 28);
+
+ solver.push();
+ solver.addAssertion(z >= 30);
+ infeasible();
+ solver.pop();
+
+ solver.addAssertion(z >= 2);
+ feasible({{x, "0"}, {y, "3"}, {z, "2"}, {w, "26"}});
+ solver.push();
+ solver.addAssertion(z >= 4);
+ feasible({{x, "0"}, {y, "3"}, {z, "4"}, {w, "24"}});
+
+ solver.push();
+ solver.addAssertion(z < 4);
+ infeasible();
+ solver.pop();
+
+ // z >= 4 is still active
+ solver.addAssertion(z >= 3);
+ feasible({{x, "0"}, {y, "3"}, {z, "4"}, {w, "24"}});
+}
+
+
+BOOST_AUTO_TEST_CASE(boolean)
+{
+ Expression x = variable("x");
+ Expression y = variable("y");
+ Expression z = variable("z");
+ solver.addAssertion(x <= 5);
+ solver.addAssertion(y <= 2);
+ solver.push();
+ solver.addAssertion(x < y && x > y);
+ infeasible();
+ solver.pop();
+ Expression w = booleanVariable("w");
+ solver.addAssertion(w == (x < y));
+ solver.addAssertion(w || x > y);
+ feasible({{x, "0"}, {y, "3"}, {z, "2"}, {w, "26"}});
+}
+
+BOOST_AUTO_TEST_CASE(boolean_complex)
+{
+ Expression x = variable("x");
+ Expression y = variable("y");
+ Expression a = booleanVariable("a");
+ Expression b = booleanVariable("b");
+ solver.addAssertion(x <= 5);
+ solver.addAssertion(y <= 2);
+ solver.addAssertion(a == (x >= 2));
+ solver.addAssertion(a || b);
+ solver.addAssertion(b == !a);
+ solver.addAssertion(b == (x < 2));
+ feasible({{a, "1"}, {b, "0"}, {x, "5"}, {y, "2"}});
+ solver.addAssertion(a && b);
+ infeasible();
+}
+
+BOOST_AUTO_TEST_CASE(magic_square_3)
+{
+ vector vars;
+ for (size_t i = 0; i < 9; i++)
+ vars.push_back(variable(string{static_cast('a' + i)}));
+ Expression sum = variable("sum");
+ for (Expression const& var: vars)
+ solver.addAssertion(1 <= var && var <= 9);
+ for (size_t i = 0; i < 9; i++)
+ for (size_t j = i + 1; j < 9; j++)
+ solver.addAssertion(vars[i] != vars[j]);
+ for (size_t i = 0; i < 3; i++)
+ solver.addAssertion(vars[i] + vars[i + 3] + vars[i + 6] == sum);
+ for (size_t i = 0; i < 9; i += 3)
+ solver.addAssertion(vars[i] + vars[i + 1] + vars[i + 2] == sum);
+ solver.addAssertion(vars[0] + vars[4] + vars[8] == sum);
+ solver.addAssertion(vars[2] + vars[4] + vars[6] == sum);
+ feasible({
+ {sum, "15"},
+ {vars[0], "8"}, {vars[1], "3"}, {vars[2], "4"},
+ {vars[3], "1"}, {vars[4], "5"}, {vars[5], "9"},
+ {vars[6], "6"}, {vars[7], "7"}, {vars[8], "2"}
+ });
+}
+
+// This still takes too long.
+//
+//BOOST_AUTO_TEST_CASE(magic_square_4)
+//{
+// vector vars;
+// for (size_t i = 0; i < 16; i++)
+// vars.push_back(variable(string{static_cast('a' + i)}));
+// for (Expression const& var: vars)
+// solver.addAssertion(1 <= var && var <= 16);
+// for (size_t i = 0; i < 16; i++)
+// for (size_t j = i + 1; j < 16; j++)
+// solver.addAssertion(vars[i] != vars[j]);
+// for (size_t i = 0; i < 4; i++)
+// solver.addAssertion(vars[i] + vars[i + 4] + vars[i + 8] + vars[i + 12] == 34);
+// for (size_t i = 0; i < 16; i += 4)
+// solver.addAssertion(vars[i] + vars[i + 1] + vars[i + 2] + vars[i + 3] == 34);
+// solver.addAssertion(vars[0] + vars[5] + vars[10] + vars[15] == 34);
+// solver.addAssertion(vars[3] + vars[6] + vars[9] + vars[12] == 34);
+// feasible({
+// {vars[0], "9"}, {vars[1], "5"}, {vars[2], "1"},
+// {vars[3], "4"}, {vars[4], "3"}, {vars[5], "8"},
+// {vars[6], "2"}, {vars[7], "7"}, {vars[8], "6"}
+// });
+//}
+
+BOOST_AUTO_TEST_CASE(boolean_complex_2)
+{
+ Expression x = variable("x");
+ Expression y = variable("y");
+ Expression a = booleanVariable("a");
+ Expression b = booleanVariable("b");
+ solver.addAssertion(x != 20);
+ feasible({{x, "21"}});
+ solver.addAssertion(x <= 5 || (x > 7 && x != 8));
+ solver.addAssertion(a == (x == 9));
+ feasible({{a, "0"}, {b, "unknown"}, {x, "21"}});
+ solver.addAssertion(!a || (x == 10));
+ solver.addAssertion(b == !a);
+ solver.addAssertion(b == (x < 200));
+ feasible({{a, "0"}, {b, "1"}, {x, "199"}});
+ solver.addAssertion(a && b);
+ infeasible();
+}
+
+
+BOOST_AUTO_TEST_CASE(pure_boolean)
+{
+ Expression a = booleanVariable("a");
+ Expression b = booleanVariable("b");
+ Expression c = booleanVariable("c");
+ Expression d = booleanVariable("d");
+ Expression e = booleanVariable("e");
+ Expression f = booleanVariable("f");
+ solver.addAssertion(a && !b);
+ solver.addAssertion(b || c);
+ solver.addAssertion(c == (d || c));
+ solver.addAssertion(f == (b && !c));
+ solver.addAssertion(!f || e);
+ solver.addAssertion(c || d);
+ feasible({});
+ solver.addAssertion(a && b);
+ infeasible();
+}
+
+BOOST_AUTO_TEST_SUITE_END()
+
+}