solidity/test/yulPhaser/GeneticAlgorithms.cpp

194 lines
7.3 KiB
C++
Raw Normal View History

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
#include <test/yulPhaser/TestHelpers.h>
#include <tools/yulPhaser/FitnessMetrics.h>
#include <tools/yulPhaser/GeneticAlgorithms.h>
#include <tools/yulPhaser/Population.h>
#include <libsolutil/CommonIO.h>
#include <boost/test/unit_test.hpp>
#include <algorithm>
#include <vector>
using namespace std;
using namespace boost::unit_test::framework;
using namespace boost::test_tools;
namespace solidity::phaser::test
{
class GeneticAlgorithmFixture
{
protected:
shared_ptr<FitnessMetric> m_fitnessMetric = make_shared<ChromosomeLengthMetric>();
};
BOOST_AUTO_TEST_SUITE(Phaser)
BOOST_AUTO_TEST_SUITE(GeneticAlgorithmsTest)
2020-02-05 13:58:48 +00:00
BOOST_AUTO_TEST_SUITE(RandomAlgorithmTest)
BOOST_FIXTURE_TEST_CASE(runNextRound_should_preserve_elite_and_randomise_rest_of_population, GeneticAlgorithmFixture)
{
auto population = Population::makeRandom(m_fitnessMetric, 4, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5);
assert((chromosomeLengths(population) == vector<size_t>{3, 3, 3, 3, 5, 5, 5, 5}));
RandomAlgorithm algorithm({0.5, 1, 1});
2020-02-05 13:58:48 +00:00
Population newPopulation = algorithm.runNextRound(population);
BOOST_TEST((chromosomeLengths(newPopulation) == vector<size_t>{1, 1, 1, 1, 3, 3, 3, 3}));
2020-02-05 13:58:48 +00:00
}
BOOST_FIXTURE_TEST_CASE(runNextRound_should_not_replace_elite_with_worse_individuals, GeneticAlgorithmFixture)
{
auto population = Population::makeRandom(m_fitnessMetric, 4, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5);
assert((chromosomeLengths(population) == vector<size_t>{3, 3, 3, 3, 5, 5, 5, 5}));
RandomAlgorithm algorithm({0.5, 7, 7});
2020-02-05 13:58:48 +00:00
Population newPopulation = algorithm.runNextRound(population);
BOOST_TEST((chromosomeLengths(newPopulation) == vector<size_t>{3, 3, 3, 3, 7, 7, 7, 7}));
2020-02-05 13:58:48 +00:00
}
BOOST_FIXTURE_TEST_CASE(runNextRound_should_replace_all_chromosomes_if_zero_size_elite, GeneticAlgorithmFixture)
{
auto population = Population::makeRandom(m_fitnessMetric, 4, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5);
assert((chromosomeLengths(population) == vector<size_t>{3, 3, 3, 3, 5, 5, 5, 5}));
RandomAlgorithm algorithm({0.0, 1, 1});
2020-02-05 13:58:48 +00:00
Population newPopulation = algorithm.runNextRound(population);
BOOST_TEST((chromosomeLengths(newPopulation) == vector<size_t>{1, 1, 1, 1, 1, 1, 1, 1}));
2020-02-05 13:58:48 +00:00
}
BOOST_FIXTURE_TEST_CASE(runNextRound_should_not_replace_any_chromosomes_if_whole_population_is_the_elite, GeneticAlgorithmFixture)
{
auto population = Population::makeRandom(m_fitnessMetric, 4, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5);
assert((chromosomeLengths(population) == vector<size_t>{3, 3, 3, 3, 5, 5, 5, 5}));
RandomAlgorithm algorithm({1.0, 1, 1});
2020-02-05 13:58:48 +00:00
Population newPopulation = algorithm.runNextRound(population);
BOOST_TEST((chromosomeLengths(newPopulation) == vector<size_t>{3, 3, 3, 3, 5, 5, 5, 5}));
2020-02-05 13:58:48 +00:00
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE(GenerationalElitistWithExclusivePoolsTest)
BOOST_FIXTURE_TEST_CASE(runNextRound_should_preserve_elite_and_regenerate_rest_of_population, GeneticAlgorithmFixture)
{
auto population = Population::makeRandom(m_fitnessMetric, 6, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5);
assert((chromosomeLengths(population) == vector<size_t>{3, 3, 3, 3, 3, 3, 5, 5, 5, 5}));
GenerationalElitistWithExclusivePools::Options options = {
/* mutationPoolSize = */ 0.2,
/* crossoverPoolSize = */ 0.2,
/* randomisationChance = */ 0.0,
/* deletionVsAdditionChance = */ 1.0,
/* percentGenesToRandomise = */ 0.0,
/* percentGenesToAddOrDelete = */ 1.0,
};
GenerationalElitistWithExclusivePools algorithm(options);
Population newPopulation = algorithm.runNextRound(population);
BOOST_TEST((chromosomeLengths(newPopulation) == vector<size_t>{0, 0, 3, 3, 3, 3, 3, 3, 3, 3}));
}
BOOST_FIXTURE_TEST_CASE(runNextRound_should_not_replace_elite_with_worse_individuals, GeneticAlgorithmFixture)
{
auto population = Population::makeRandom(m_fitnessMetric, 6, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5);
assert(chromosomeLengths(population) == (vector<size_t>{3, 3, 3, 3, 3, 3, 5, 5, 5, 5}));
GenerationalElitistWithExclusivePools::Options options = {
/* mutationPoolSize = */ 0.2,
/* crossoverPoolSize = */ 0.2,
/* randomisationChance = */ 0.0,
/* deletionVsAdditionChance = */ 0.0,
/* percentGenesToRandomise = */ 0.0,
/* percentGenesToAddOrDelete = */ 1.0,
};
GenerationalElitistWithExclusivePools algorithm(options);
Population newPopulation = algorithm.runNextRound(population);
BOOST_TEST((chromosomeLengths(newPopulation) == vector<size_t>{3, 3, 3, 3, 3, 3, 3, 3, 7, 7}));
}
BOOST_FIXTURE_TEST_CASE(runNextRound_should_generate_individuals_in_the_crossover_pool_by_mutating_the_elite, GeneticAlgorithmFixture)
{
auto population = Population::makeRandom(m_fitnessMetric, 20, 5, 5);
GenerationalElitistWithExclusivePools::Options options = {
/* mutationPoolSize = */ 0.8,
/* crossoverPoolSize = */ 0.0,
/* randomisationChance = */ 0.5,
/* deletionVsAdditionChance = */ 0.5,
/* percentGenesToRandomise = */ 1.0,
/* percentGenesToAddOrDelete = */ 1.0,
};
GenerationalElitistWithExclusivePools algorithm(options);
SimulationRNG::reset(1);
Population newPopulation = algorithm.runNextRound(population);
BOOST_TEST((
chromosomeLengths(newPopulation) ==
vector<size_t>{0, 0, 0, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 11, 11, 11}
));
}
BOOST_FIXTURE_TEST_CASE(runNextRound_should_generate_individuals_in_the_crossover_pool_by_crossing_over_the_elite, GeneticAlgorithmFixture)
{
auto population = (
Population(m_fitnessMetric, {Chromosome("aa"), Chromosome("ff")}) +
Population::makeRandom(m_fitnessMetric, 8, 6, 6)
);
assert((chromosomeLengths(population) == vector<size_t>{2, 2, 6, 6, 6, 6, 6, 6, 6, 6}));
GenerationalElitistWithExclusivePools::Options options = {
/* mutationPoolSize = */ 0.0,
/* crossoverPoolSize = */ 0.8,
/* randomisationChance = */ 0.0,
/* deletionVsAdditionChance = */ 0.0,
/* percentGenesToRandomise = */ 0.0,
/* percentGenesToAddOrDelete = */ 0.0,
};
GenerationalElitistWithExclusivePools algorithm(options);
SimulationRNG::reset(1);
Population newPopulation = algorithm.runNextRound(population);
vector<Individual> const& newIndividuals = newPopulation.individuals();
BOOST_TEST((chromosomeLengths(newPopulation) == vector<size_t>{2, 2, 2, 2, 2, 2, 2, 2, 2, 2}));
for (auto& individual: newIndividuals)
BOOST_TEST((
individual.chromosome == Chromosome("aa") ||
individual.chromosome == Chromosome("af") ||
individual.chromosome == Chromosome("fa") ||
individual.chromosome == Chromosome("ff")
));
BOOST_TEST(any_of(newIndividuals.begin() + 2, newIndividuals.end(), [](auto& individual){
return individual.chromosome != Chromosome("aa") && individual.chromosome != Chromosome("ff");
}));
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
}