[yul-phaser] Extract the code that controls execution of algorithm rounds from GeneticAlgorithm into AlgorithmRunner

This commit is contained in:
Kamil Śliwak 2020-02-21 16:10:07 +01:00
parent 0c1b88508e
commit b8244f6a43
10 changed files with 255 additions and 163 deletions

View File

@ -144,6 +144,7 @@ set(yul_phaser_sources
yulPhaser/CommonTest.cpp
yulPhaser/Chromosome.cpp
yulPhaser/FitnessMetrics.cpp
yulPhaser/AlgorithmRunner.cpp
yulPhaser/GeneticAlgorithms.cpp
yulPhaser/Mutations.cpp
yulPhaser/PairSelections.cpp
@ -155,6 +156,7 @@ set(yul_phaser_sources
# FIXME: yul-phaser is not a library so I can't just add it to target_link_libraries().
# My current workaround is just to include its source files here but this introduces
# unnecessary duplication. Create a library or find a way to reuse the list in both places.
../tools/yulPhaser/AlgorithmRunner.cpp
../tools/yulPhaser/Chromosome.cpp
../tools/yulPhaser/FitnessMetrics.cpp
../tools/yulPhaser/GeneticAlgorithms.cpp

View File

@ -0,0 +1,93 @@
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
#include <test/yulPhaser/Common.h>
#include <tools/yulPhaser/AlgorithmRunner.h>
#include <libsolutil/CommonIO.h>
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/output_test_stream.hpp>
using namespace std;
using namespace boost::unit_test::framework;
using namespace boost::test_tools;
using namespace solidity::util;
namespace solidity::phaser::test
{
class DummyAlgorithm: public GeneticAlgorithm
{
public:
using GeneticAlgorithm::GeneticAlgorithm;
Population runNextRound(Population _population) override
{
++m_currentRound;
return _population;
}
size_t m_currentRound = 0;
};
class AlgorithmRunnerFixture
{
protected:
shared_ptr<FitnessMetric> m_fitnessMetric = make_shared<ChromosomeLengthMetric>();
output_test_stream m_output;
};
BOOST_AUTO_TEST_SUITE(Phaser)
BOOST_AUTO_TEST_SUITE(AlgorithmRunnerTest)
BOOST_FIXTURE_TEST_CASE(run_should_call_runNextRound_once_per_round, AlgorithmRunnerFixture)
{
AlgorithmRunner runner(Population(m_fitnessMetric), m_output);
DummyAlgorithm algorithm;
BOOST_TEST(algorithm.m_currentRound == 0);
runner.run(algorithm, 10);
BOOST_TEST(algorithm.m_currentRound == 10);
runner.run(algorithm, 3);
BOOST_TEST(algorithm.m_currentRound == 13);
}
BOOST_FIXTURE_TEST_CASE(run_should_print_the_top_chromosome, AlgorithmRunnerFixture)
{
// run() is allowed to print more but should at least print the first one
AlgorithmRunner runner(
// NOTE: Chromosomes chosen so that they're not substrings of each other and are not
// words likely to appear in the output in normal circumstances.
Population(m_fitnessMetric, {Chromosome("fcCUnDve"), Chromosome("jsxIOo"), Chromosome("ighTLM")}),
m_output
);
DummyAlgorithm algorithm;
BOOST_TEST(m_output.is_empty());
runner.run(algorithm, 1);
BOOST_TEST(countSubstringOccurrences(m_output.str(), toString(runner.population().individuals()[0].chromosome)) == 1);
runner.run(algorithm, 3);
BOOST_TEST(countSubstringOccurrences(m_output.str(), toString(runner.population().individuals()[0].chromosome)) == 4);
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
}

View File

@ -20,14 +20,10 @@
#include <tools/yulPhaser/FitnessMetrics.h>
#include <tools/yulPhaser/GeneticAlgorithms.h>
#include <tools/yulPhaser/Population.h>
#include <tools/yulPhaser/Program.h>
#include <liblangutil/CharStream.h>
#include <libsolutil/CommonIO.h>
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/output_test_stream.hpp>
#include <algorithm>
#include <vector>
@ -35,102 +31,58 @@
using namespace std;
using namespace boost::unit_test::framework;
using namespace boost::test_tools;
using namespace solidity::langutil;
using namespace solidity::util;
namespace solidity::phaser::test
{
class DummyAlgorithm: public GeneticAlgorithm
{
public:
using GeneticAlgorithm::GeneticAlgorithm;
void runNextRound() override { ++m_currentRound; }
size_t m_currentRound = 0;
};
class GeneticAlgorithmFixture
{
protected:
shared_ptr<FitnessMetric> m_fitnessMetric = make_shared<ChromosomeLengthMetric>();
output_test_stream m_output;
};
BOOST_AUTO_TEST_SUITE(Phaser)
BOOST_AUTO_TEST_SUITE(GeneticAlgorithmsTest)
BOOST_AUTO_TEST_SUITE(GeneticAlgorithmTest)
BOOST_FIXTURE_TEST_CASE(run_should_call_runNextRound_once_per_round, GeneticAlgorithmFixture)
{
DummyAlgorithm algorithm(Population(m_fitnessMetric), m_output);
BOOST_TEST(algorithm.m_currentRound == 0);
algorithm.run(10);
BOOST_TEST(algorithm.m_currentRound == 10);
algorithm.run(3);
BOOST_TEST(algorithm.m_currentRound == 13);
}
BOOST_FIXTURE_TEST_CASE(run_should_print_the_top_chromosome, GeneticAlgorithmFixture)
{
// run() is allowed to print more but should at least print the first one
DummyAlgorithm algorithm(
// NOTE: Chromosomes chosen so that they're not substrings of each other and are not
// words likely to appear in the output in normal circumstances.
Population(m_fitnessMetric, {Chromosome("fcCUnDve"), Chromosome("jsxIOo"), Chromosome("ighTLM")}),
m_output
);
BOOST_TEST(m_output.is_empty());
algorithm.run(1);
BOOST_TEST(countSubstringOccurrences(m_output.str(), toString(algorithm.population().individuals()[0].chromosome)) == 1);
algorithm.run(3);
BOOST_TEST(countSubstringOccurrences(m_output.str(), toString(algorithm.population().individuals()[0].chromosome)) == 4);
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE(RandomAlgorithmTest)
BOOST_FIXTURE_TEST_CASE(runNextRound_should_preserve_elite_and_randomise_rest_of_population, GeneticAlgorithmFixture)
{
auto population = Population::makeRandom(m_fitnessMetric, 4, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5);
RandomAlgorithm algorithm(population, m_output, {0.5, 1, 1});
assert((chromosomeLengths(algorithm.population()) == vector<size_t>{3, 3, 3, 3, 5, 5, 5, 5}));
assert((chromosomeLengths(population) == vector<size_t>{3, 3, 3, 3, 5, 5, 5, 5}));
RandomAlgorithm algorithm({0.5, 1, 1});
algorithm.runNextRound();
BOOST_TEST((chromosomeLengths(algorithm.population()) == vector<size_t>{1, 1, 1, 1, 3, 3, 3, 3}));
Population newPopulation = algorithm.runNextRound(population);
BOOST_TEST((chromosomeLengths(newPopulation) == vector<size_t>{1, 1, 1, 1, 3, 3, 3, 3}));
}
BOOST_FIXTURE_TEST_CASE(runNextRound_should_not_replace_elite_with_worse_individuals, GeneticAlgorithmFixture)
{
auto population = Population::makeRandom(m_fitnessMetric, 4, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5);
RandomAlgorithm algorithm(population, m_output, {0.5, 7, 7});
assert((chromosomeLengths(algorithm.population()) == vector<size_t>{3, 3, 3, 3, 5, 5, 5, 5}));
assert((chromosomeLengths(population) == vector<size_t>{3, 3, 3, 3, 5, 5, 5, 5}));
RandomAlgorithm algorithm({0.5, 7, 7});
algorithm.runNextRound();
BOOST_TEST((chromosomeLengths(algorithm.population()) == vector<size_t>{3, 3, 3, 3, 7, 7, 7, 7}));
Population newPopulation = algorithm.runNextRound(population);
BOOST_TEST((chromosomeLengths(newPopulation) == vector<size_t>{3, 3, 3, 3, 7, 7, 7, 7}));
}
BOOST_FIXTURE_TEST_CASE(runNextRound_should_replace_all_chromosomes_if_zero_size_elite, GeneticAlgorithmFixture)
{
auto population = Population::makeRandom(m_fitnessMetric, 4, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5);
RandomAlgorithm algorithm(population, m_output, {0.0, 1, 1});
assert((chromosomeLengths(algorithm.population()) == vector<size_t>{3, 3, 3, 3, 5, 5, 5, 5}));
assert((chromosomeLengths(population) == vector<size_t>{3, 3, 3, 3, 5, 5, 5, 5}));
RandomAlgorithm algorithm({0.0, 1, 1});
algorithm.runNextRound();
BOOST_TEST((chromosomeLengths(algorithm.population()) == vector<size_t>{1, 1, 1, 1, 1, 1, 1, 1}));
Population newPopulation = algorithm.runNextRound(population);
BOOST_TEST((chromosomeLengths(newPopulation) == vector<size_t>{1, 1, 1, 1, 1, 1, 1, 1}));
}
BOOST_FIXTURE_TEST_CASE(runNextRound_should_not_replace_any_chromosomes_if_whole_population_is_the_elite, GeneticAlgorithmFixture)
{
auto population = Population::makeRandom(m_fitnessMetric, 4, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5);
RandomAlgorithm algorithm(population, m_output, {1.0, 1, 1});
assert((chromosomeLengths(algorithm.population()) == vector<size_t>{3, 3, 3, 3, 5, 5, 5, 5}));
assert((chromosomeLengths(population) == vector<size_t>{3, 3, 3, 3, 5, 5, 5, 5}));
RandomAlgorithm algorithm({1.0, 1, 1});
algorithm.runNextRound();
BOOST_TEST((chromosomeLengths(algorithm.population()) == vector<size_t>{3, 3, 3, 3, 5, 5, 5, 5}));
Population newPopulation = algorithm.runNextRound(population);
BOOST_TEST((chromosomeLengths(newPopulation) == vector<size_t>{3, 3, 3, 3, 5, 5, 5, 5}));
}
BOOST_AUTO_TEST_SUITE_END()
@ -139,6 +91,7 @@ BOOST_AUTO_TEST_SUITE(GenerationalElitistWithExclusivePoolsTest)
BOOST_FIXTURE_TEST_CASE(runNextRound_should_preserve_elite_and_regenerate_rest_of_population, GeneticAlgorithmFixture)
{
auto population = Population::makeRandom(m_fitnessMetric, 6, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5);
assert((chromosomeLengths(population) == vector<size_t>{3, 3, 3, 3, 3, 3, 5, 5, 5, 5}));
GenerationalElitistWithExclusivePools::Options options = {
/* mutationPoolSize = */ 0.2,
@ -148,17 +101,17 @@ BOOST_FIXTURE_TEST_CASE(runNextRound_should_preserve_elite_and_regenerate_rest_o
/* percentGenesToRandomise = */ 0.0,
/* percentGenesToAddOrDelete = */ 1.0,
};
GenerationalElitistWithExclusivePools algorithm(population, m_output, options);
assert((chromosomeLengths(algorithm.population()) == vector<size_t>{3, 3, 3, 3, 3, 3, 5, 5, 5, 5}));
GenerationalElitistWithExclusivePools algorithm(options);
algorithm.runNextRound();
Population newPopulation = algorithm.runNextRound(population);
BOOST_TEST((chromosomeLengths(algorithm.population()) == vector<size_t>{0, 0, 3, 3, 3, 3, 3, 3, 3, 3}));
BOOST_TEST((chromosomeLengths(newPopulation) == vector<size_t>{0, 0, 3, 3, 3, 3, 3, 3, 3, 3}));
}
BOOST_FIXTURE_TEST_CASE(runNextRound_should_not_replace_elite_with_worse_individuals, GeneticAlgorithmFixture)
{
auto population = Population::makeRandom(m_fitnessMetric, 6, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5);
assert(chromosomeLengths(population) == (vector<size_t>{3, 3, 3, 3, 3, 3, 5, 5, 5, 5}));
GenerationalElitistWithExclusivePools::Options options = {
/* mutationPoolSize = */ 0.2,
@ -168,12 +121,11 @@ BOOST_FIXTURE_TEST_CASE(runNextRound_should_not_replace_elite_with_worse_individ
/* percentGenesToRandomise = */ 0.0,
/* percentGenesToAddOrDelete = */ 1.0,
};
GenerationalElitistWithExclusivePools algorithm(population, m_output, options);
assert(chromosomeLengths(algorithm.population()) == (vector<size_t>{3, 3, 3, 3, 3, 3, 5, 5, 5, 5}));
GenerationalElitistWithExclusivePools algorithm(options);
algorithm.runNextRound();
Population newPopulation = algorithm.runNextRound(population);
BOOST_TEST((chromosomeLengths(algorithm.population()) == vector<size_t>{3, 3, 3, 3, 3, 3, 3, 3, 7, 7}));
BOOST_TEST((chromosomeLengths(newPopulation) == vector<size_t>{3, 3, 3, 3, 3, 3, 3, 3, 7, 7}));
}
BOOST_FIXTURE_TEST_CASE(runNextRound_should_generate_individuals_in_the_crossover_pool_by_mutating_the_elite, GeneticAlgorithmFixture)
@ -188,13 +140,13 @@ BOOST_FIXTURE_TEST_CASE(runNextRound_should_generate_individuals_in_the_crossove
/* percentGenesToRandomise = */ 1.0,
/* percentGenesToAddOrDelete = */ 1.0,
};
GenerationalElitistWithExclusivePools algorithm(population, m_output, options);
GenerationalElitistWithExclusivePools algorithm(options);
SimulationRNG::reset(1);
algorithm.runNextRound();
Population newPopulation = algorithm.runNextRound(population);
BOOST_TEST((
chromosomeLengths(algorithm.population()) ==
chromosomeLengths(newPopulation) ==
vector<size_t>{0, 0, 0, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 11, 11, 11}
));
}
@ -205,6 +157,7 @@ BOOST_FIXTURE_TEST_CASE(runNextRound_should_generate_individuals_in_the_crossove
Population(m_fitnessMetric, {Chromosome("aa"), Chromosome("ff")}) +
Population::makeRandom(m_fitnessMetric, 8, 6, 6)
);
assert((chromosomeLengths(population) == vector<size_t>{2, 2, 6, 6, 6, 6, 6, 6, 6, 6}));
GenerationalElitistWithExclusivePools::Options options = {
/* mutationPoolSize = */ 0.0,
@ -214,14 +167,13 @@ BOOST_FIXTURE_TEST_CASE(runNextRound_should_generate_individuals_in_the_crossove
/* percentGenesToRandomise = */ 0.0,
/* percentGenesToAddOrDelete = */ 0.0,
};
GenerationalElitistWithExclusivePools algorithm(population, m_output, options);
assert((chromosomeLengths(algorithm.population()) == vector<size_t>{2, 2, 6, 6, 6, 6, 6, 6, 6, 6}));
GenerationalElitistWithExclusivePools algorithm(options);
SimulationRNG::reset(1);
algorithm.runNextRound();
Population newPopulation = algorithm.runNextRound(population);
vector<Individual> const& newIndividuals = algorithm.population().individuals();
BOOST_TEST((chromosomeLengths(algorithm.population()) == vector<size_t>{2, 2, 2, 2, 2, 2, 2, 2, 2, 2}));
vector<Individual> const& newIndividuals = newPopulation.individuals();
BOOST_TEST((chromosomeLengths(newPopulation) == vector<size_t>{2, 2, 2, 2, 2, 2, 2, 2, 2, 2}));
for (auto& individual: newIndividuals)
BOOST_TEST((
individual.chromosome == Chromosome("aa") ||

View File

@ -15,6 +15,8 @@ install(TARGETS solidity-upgrade DESTINATION "${CMAKE_INSTALL_BINDIR}")
add_executable(yul-phaser
yulPhaser/main.cpp
yulPhaser/AlgorithmRunner.h
yulPhaser/AlgorithmRunner.cpp
yulPhaser/Phaser.h
yulPhaser/Phaser.cpp
yulPhaser/GeneticAlgorithms.h

View File

@ -0,0 +1,32 @@
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
#include <tools/yulPhaser/AlgorithmRunner.h>
using namespace std;
using namespace solidity::phaser;
void AlgorithmRunner::run(GeneticAlgorithm& _algorithm, optional<size_t> _numRounds)
{
for (size_t round = 0; !_numRounds.has_value() || round < _numRounds.value(); ++round)
{
m_population = _algorithm.runNextRound(m_population);
m_outputStream << "---------- ROUND " << round << " ----------" << endl;
m_outputStream << m_population;
}
}

View File

@ -0,0 +1,58 @@
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Contains the implementation of a class that manages the execution of a genetic algorithm.
*/
#pragma once
#include <tools/yulPhaser/GeneticAlgorithms.h>
#include <tools/yulPhaser/Population.h>
#include <optional>
#include <ostream>
namespace solidity::phaser
{
/**
* Manages a population and executes a genetic algorithm on it. It's independent of the
* implementation details of a specific algorithm which is pluggable via @a GeneticAlgorithm class.
*
* The class is also responsible for providing text feedback on the execution of the algorithm
* to the associated output stream.
*/
class AlgorithmRunner
{
public:
AlgorithmRunner(
Population _initialPopulation,
std::ostream& _outputStream
):
m_population(std::move(_initialPopulation)),
m_outputStream(_outputStream) {}
void run(GeneticAlgorithm& _algorithm, std::optional<size_t> _numRounds = std::nullopt);
Population const& population() const { return m_population; }
private:
Population m_population;
std::ostream& m_outputStream;
};
}

View File

@ -23,42 +23,31 @@
using namespace std;
using namespace solidity::phaser;
void GeneticAlgorithm::run(optional<size_t> _numRounds)
{
for (size_t round = 0; !_numRounds.has_value() || round < _numRounds.value(); ++round)
{
runNextRound();
m_outputStream << "---------- ROUND " << round << " ----------" << endl;
m_outputStream << m_population;
}
}
void RandomAlgorithm::runNextRound()
Population RandomAlgorithm::runNextRound(Population _population)
{
RangeSelection elite(0.0, m_options.elitePoolSize);
Population elitePopulation = m_population.select(elite);
size_t replacementCount = m_population.individuals().size() - elitePopulation.individuals().size();
Population elitePopulation = _population.select(elite);
size_t replacementCount = _population.individuals().size() - elitePopulation.individuals().size();
m_population =
return
move(elitePopulation) +
Population::makeRandom(
m_population.fitnessMetric(),
_population.fitnessMetric(),
replacementCount,
m_options.minChromosomeLength,
m_options.maxChromosomeLength
);
}
void GenerationalElitistWithExclusivePools::runNextRound()
Population GenerationalElitistWithExclusivePools::runNextRound(Population _population)
{
double elitePoolSize = 1.0 - (m_options.mutationPoolSize + m_options.crossoverPoolSize);
RangeSelection elite(0.0, elitePoolSize);
m_population =
m_population.select(elite) +
m_population.select(elite).mutate(
return
_population.select(elite) +
_population.select(elite).mutate(
RandomSelection(m_options.mutationPoolSize / elitePoolSize),
alternativeMutations(
m_options.randomisationChance,
@ -70,7 +59,7 @@ void GenerationalElitistWithExclusivePools::runNextRound()
)
)
) +
m_population.select(elite).crossover(
_population.select(elite).crossover(
RandomPairSelection(m_options.crossoverPoolSize / elitePoolSize),
randomPointCrossover()
);

View File

@ -22,45 +22,25 @@
#include <tools/yulPhaser/Population.h>
#include <optional>
#include <ostream>
namespace solidity::phaser
{
/**
* Abstract base class for genetic algorithms.
*
* The main feature is the @a run() method that executes the algorithm, updating the internal
* population during each round and printing the results to the stream provided to the constructor.
*
* Derived classes can provide specific methods for updating the population by implementing
* the @a runNextRound() method.
* The main feature is the @a runNextRound() method that executes one round of the algorithm,
* on the supplied population.
*/
class GeneticAlgorithm
{
public:
GeneticAlgorithm(Population _initialPopulation, std::ostream& _outputStream):
m_population(std::move(_initialPopulation)),
m_outputStream(_outputStream) {}
GeneticAlgorithm() {}
GeneticAlgorithm(GeneticAlgorithm const&) = delete;
GeneticAlgorithm& operator=(GeneticAlgorithm const&) = delete;
virtual ~GeneticAlgorithm() = default;
Population const& population() const { return m_population; }
void run(std::optional<size_t> _numRounds = std::nullopt);
/// The method that actually implements the algorithm. Should use @a m_population as input and
/// replace it with the updated state after the round.
virtual void runNextRound() = 0;
protected:
Population m_population;
private:
std::ostream& m_outputStream;
virtual Population runNextRound(Population _population) = 0;
};
/**
@ -95,18 +75,13 @@ public:
}
};
explicit RandomAlgorithm(
Population _initialPopulation,
std::ostream& _outputStream,
Options const& _options
):
GeneticAlgorithm(_initialPopulation, _outputStream),
explicit RandomAlgorithm(Options const& _options):
m_options(_options)
{
assert(_options.isValid());
}
void runNextRound() override;
Population runNextRound(Population _population) override;
private:
Options m_options;
@ -148,18 +123,13 @@ public:
}
};
GenerationalElitistWithExclusivePools(
Population _initialPopulation,
std::ostream& _outputStream,
Options const& _options
):
GeneticAlgorithm(_initialPopulation, _outputStream),
GenerationalElitistWithExclusivePools(Options const& _options):
m_options(_options)
{
assert(_options.isValid());
}
void runNextRound() override;
Population runNextRound(Population _population) override;
private:
Options m_options;

View File

@ -17,6 +17,7 @@
#include <tools/yulPhaser/Phaser.h>
#include <tools/yulPhaser/AlgorithmRunner.h>
#include <tools/yulPhaser/Exceptions.h>
#include <tools/yulPhaser/FitnessMetrics.h>
#include <tools/yulPhaser/GeneticAlgorithms.h>
@ -181,37 +182,30 @@ void Phaser::runAlgorithm(string const& _sourcePath, Algorithm _algorithm)
maxChromosomeLength
);
AlgorithmRunner algorithmRunner(population, cout);
switch (_algorithm)
{
case Algorithm::Random:
{
RandomAlgorithm(
population,
cout,
{
/* elitePoolSize = */ 1.0 / populationSize,
/* minChromosomeLength = */ minChromosomeLength,
/* maxChromosomeLength = */ maxChromosomeLength,
}
).run();
RandomAlgorithm algorithm({
/* elitePoolSize = */ 1.0 / populationSize,
/* minChromosomeLength = */ minChromosomeLength,
/* maxChromosomeLength = */ maxChromosomeLength,
});
algorithmRunner.run(algorithm);
break;
}
case Algorithm::GEWEP:
{
GenerationalElitistWithExclusivePools(
population,
cout,
{
/* mutationPoolSize = */ 0.25,
/* crossoverPoolSize = */ 0.25,
/* randomisationChance = */ 0.9,
/* deletionVsAdditionChance = */ 0.5,
/* percentGenesToRandomise = */ 1.0 / maxChromosomeLength,
/* percentGenesToAddOrDelete = */ 1.0 / maxChromosomeLength,
}
).run();
GenerationalElitistWithExclusivePools algorithm({
/* mutationPoolSize = */ 0.25,
/* crossoverPoolSize = */ 0.25,
/* randomisationChance = */ 0.9,
/* deletionVsAdditionChance = */ 0.5,
/* percentGenesToRandomise = */ 1.0 / maxChromosomeLength,
/* percentGenesToAddOrDelete = */ 1.0 / maxChromosomeLength,
});
algorithmRunner.run(algorithm);
break;
}
}

View File

@ -41,7 +41,7 @@ std::ostream& operator<<(std::ostream& _outputStream, solidity::phaser::Algorith
/**
* Main class that controls yul-phaser based on command-line parameters. The class is responsible
* for command-line parsing, initialisation of global objects (like the random number generator),
* creating instances of main components and running the genetic algorithm.
* creating instances of main components and feeding them into @a AlgorithmRunner.
*/
class Phaser
{