* rlp/rlpgen: remove build tag
This tag was supposed to prevent unstable output when types reference each other. Imagine
there are two struct types A and B, where a reference to type B is in A. If I run rlpgen
on type B first, and then on type A, the generator will see the B.EncodeRLP method and
call it. However, if I run rlpgen on type A first, it will inline the encoding of B.
The solution I chose for the initial release of rlpgen was to just ignore methods
generated by rlpgen using a build tag. But there is a problem with this: if any code in
the package calls EncodeRLP explicitly, the package can't be loaded without errors anymore
in rlpgen, because the loader ignores it. Would be nice if there was a way to just make it
ignore invalid functions during type checking (they're not necessary for rlpgen), but
golang.org/x/tools/go/packages does not provide a way of ignoring them.
Luckily, the types we use rlpgen with do not reference each other right now, so we can
just remove the build tags for now.
This adds block and receipt fields for EIP-4844.
---------
Signed-off-by: jsvisa <delweng@gmail.com>
Co-authored-by: Sina Mahmoodi <itz.s1na@gmail.com>
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
In order to keep our utils interfaces as generic as possible across chains I added a "dummySeals" []bool to the engine wrapper. Up until now the slice was
a fixed size. From this point it has the same length as the []*headers argument also passed into the same function.
This updates minisign to the latest version. One new thing is that minisign (not go-minisign) has started to prehash the file, and in order to make geth pass the version-check, we need to sign the file in legacy-mode.
On ACD 163, it was agreed to bump the target and max blob values from `2/4` to `3/6` for future devnets until we could decide on final mainnet number. This change contains said update, making master pass all the hive tests. The final decision for mainnet cancun is still to be made.
---------
Co-authored-by: Felix Lange <fjl@twurst.com>