metrics: refactor metrics (#28035)

This change includes a lot of things, listed below. 

### Split up interfaces, write vs read

The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_. 

Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part: 

```golang
type MeterSnapshot interface {
	Count() int64
	Rate1() float64
	Rate5() float64
	Rate15() float64
	RateMean() float64
}

// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
	Mark(int64)
	Snapshot() MeterSnapshot
	Stop()
}
```

### A note about concurrency

This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it. 

- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe. 
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe. 

TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe. 

For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots. 

Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.

Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it: 
```golang
		ms := metric.Snapshot()
                ...
		fields := map[string]interface{}{
			"count":    ms.Count(),
			"max":      ms.Max(),
			"mean":     ms.Mean(),
			"min":      ms.Min(),
			"stddev":   ms.StdDev(),
			"variance": ms.Variance(),
```

TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).

### Sample changes

I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once. 

The same thing has been done for runtimehistogram. 

### ResettingTimer API

Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`. 

1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`. 
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`. 

This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type. 

The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead. 

### Unexport types

A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
This commit is contained in:
Martin Holst Swende 2023-09-13 19:13:47 +02:00 committed by GitHub
parent 8d38b1fe62
commit 8b6cf128af
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
50 changed files with 1044 additions and 2041 deletions

View File

@ -1061,12 +1061,10 @@ func (s *StateDB) deleteStorage(addr common.Address, addrHash common.Hash, root
slotDeletionSkip.Inc(1)
}
n := int64(len(slots))
if n > slotDeletionMaxCount.Value() {
slotDeletionMaxCount.Update(n)
}
if int64(size) > slotDeletionMaxSize.Value() {
slotDeletionMaxSize.Update(int64(size))
}
slotDeletionMaxCount.UpdateIfGt(int64(len(slots)))
slotDeletionMaxSize.UpdateIfGt(int64(size))
slotDeletionTimer.UpdateSince(start)
slotDeletionCount.Mark(n)
slotDeletionSize.Mark(int64(size))

View File

@ -4,13 +4,16 @@ import (
"sync/atomic"
)
type CounterSnapshot interface {
Count() int64
}
// Counters hold an int64 value that can be incremented and decremented.
type Counter interface {
Clear()
Count() int64
Dec(int64)
Inc(int64)
Snapshot() Counter
Snapshot() CounterSnapshot
}
// GetOrRegisterCounter returns an existing Counter or constructs and registers
@ -38,13 +41,13 @@ func NewCounter() Counter {
if !Enabled {
return NilCounter{}
}
return &StandardCounter{}
return new(StandardCounter)
}
// NewCounterForced constructs a new StandardCounter and returns it no matter if
// the global switch is enabled or not.
func NewCounterForced() Counter {
return &StandardCounter{}
return new(StandardCounter)
}
// NewRegisteredCounter constructs and registers a new StandardCounter.
@ -70,75 +73,40 @@ func NewRegisteredCounterForced(name string, r Registry) Counter {
return c
}
// CounterSnapshot is a read-only copy of another Counter.
type CounterSnapshot int64
// Clear panics.
func (CounterSnapshot) Clear() {
panic("Clear called on a CounterSnapshot")
}
// counterSnapshot is a read-only copy of another Counter.
type counterSnapshot int64
// Count returns the count at the time the snapshot was taken.
func (c CounterSnapshot) Count() int64 { return int64(c) }
// Dec panics.
func (CounterSnapshot) Dec(int64) {
panic("Dec called on a CounterSnapshot")
}
// Inc panics.
func (CounterSnapshot) Inc(int64) {
panic("Inc called on a CounterSnapshot")
}
// Snapshot returns the snapshot.
func (c CounterSnapshot) Snapshot() Counter { return c }
func (c counterSnapshot) Count() int64 { return int64(c) }
// NilCounter is a no-op Counter.
type NilCounter struct{}
// Clear is a no-op.
func (NilCounter) Clear() {}
// Count is a no-op.
func (NilCounter) Count() int64 { return 0 }
// Dec is a no-op.
func (NilCounter) Dec(i int64) {}
// Inc is a no-op.
func (NilCounter) Inc(i int64) {}
// Snapshot is a no-op.
func (NilCounter) Snapshot() Counter { return NilCounter{} }
func (NilCounter) Clear() {}
func (NilCounter) Dec(i int64) {}
func (NilCounter) Inc(i int64) {}
func (NilCounter) Snapshot() CounterSnapshot { return (*emptySnapshot)(nil) }
// StandardCounter is the standard implementation of a Counter and uses the
// sync/atomic package to manage a single int64 value.
type StandardCounter struct {
count atomic.Int64
}
type StandardCounter atomic.Int64
// Clear sets the counter to zero.
func (c *StandardCounter) Clear() {
c.count.Store(0)
}
// Count returns the current count.
func (c *StandardCounter) Count() int64 {
return c.count.Load()
(*atomic.Int64)(c).Store(0)
}
// Dec decrements the counter by the given amount.
func (c *StandardCounter) Dec(i int64) {
c.count.Add(-i)
(*atomic.Int64)(c).Add(-i)
}
// Inc increments the counter by the given amount.
func (c *StandardCounter) Inc(i int64) {
c.count.Add(i)
(*atomic.Int64)(c).Add(i)
}
// Snapshot returns a read-only copy of the counter.
func (c *StandardCounter) Snapshot() Counter {
return CounterSnapshot(c.Count())
func (c *StandardCounter) Snapshot() CounterSnapshot {
return counterSnapshot((*atomic.Int64)(c).Load())
}

View File

@ -5,13 +5,16 @@ import (
"sync/atomic"
)
type CounterFloat64Snapshot interface {
Count() float64
}
// CounterFloat64 holds a float64 value that can be incremented and decremented.
type CounterFloat64 interface {
Clear()
Count() float64
Dec(float64)
Inc(float64)
Snapshot() CounterFloat64
Snapshot() CounterFloat64Snapshot
}
// GetOrRegisterCounterFloat64 returns an existing CounterFloat64 or constructs and registers
@ -71,47 +74,19 @@ func NewRegisteredCounterFloat64Forced(name string, r Registry) CounterFloat64 {
return c
}
// CounterFloat64Snapshot is a read-only copy of another CounterFloat64.
type CounterFloat64Snapshot float64
// Clear panics.
func (CounterFloat64Snapshot) Clear() {
panic("Clear called on a CounterFloat64Snapshot")
}
// counterFloat64Snapshot is a read-only copy of another CounterFloat64.
type counterFloat64Snapshot float64
// Count returns the value at the time the snapshot was taken.
func (c CounterFloat64Snapshot) Count() float64 { return float64(c) }
func (c counterFloat64Snapshot) Count() float64 { return float64(c) }
// Dec panics.
func (CounterFloat64Snapshot) Dec(float64) {
panic("Dec called on a CounterFloat64Snapshot")
}
// Inc panics.
func (CounterFloat64Snapshot) Inc(float64) {
panic("Inc called on a CounterFloat64Snapshot")
}
// Snapshot returns the snapshot.
func (c CounterFloat64Snapshot) Snapshot() CounterFloat64 { return c }
// NilCounterFloat64 is a no-op CounterFloat64.
type NilCounterFloat64 struct{}
// Clear is a no-op.
func (NilCounterFloat64) Clear() {}
// Count is a no-op.
func (NilCounterFloat64) Count() float64 { return 0.0 }
// Dec is a no-op.
func (NilCounterFloat64) Dec(i float64) {}
// Inc is a no-op.
func (NilCounterFloat64) Inc(i float64) {}
// Snapshot is a no-op.
func (NilCounterFloat64) Snapshot() CounterFloat64 { return NilCounterFloat64{} }
func (NilCounterFloat64) Clear() {}
func (NilCounterFloat64) Count() float64 { return 0.0 }
func (NilCounterFloat64) Dec(i float64) {}
func (NilCounterFloat64) Inc(i float64) {}
func (NilCounterFloat64) Snapshot() CounterFloat64Snapshot { return NilCounterFloat64{} }
// StandardCounterFloat64 is the standard implementation of a CounterFloat64 and uses the
// atomic to manage a single float64 value.
@ -124,11 +99,6 @@ func (c *StandardCounterFloat64) Clear() {
c.floatBits.Store(0)
}
// Count returns the current value.
func (c *StandardCounterFloat64) Count() float64 {
return math.Float64frombits(c.floatBits.Load())
}
// Dec decrements the counter by the given amount.
func (c *StandardCounterFloat64) Dec(v float64) {
atomicAddFloat(&c.floatBits, -v)
@ -140,8 +110,9 @@ func (c *StandardCounterFloat64) Inc(v float64) {
}
// Snapshot returns a read-only copy of the counter.
func (c *StandardCounterFloat64) Snapshot() CounterFloat64 {
return CounterFloat64Snapshot(c.Count())
func (c *StandardCounterFloat64) Snapshot() CounterFloat64Snapshot {
v := math.Float64frombits(c.floatBits.Load())
return counterFloat64Snapshot(v)
}
func atomicAddFloat(fbits *atomic.Uint64, v float64) {

View File

@ -27,7 +27,7 @@ func BenchmarkCounterFloat64Parallel(b *testing.B) {
}()
}
wg.Wait()
if have, want := c.Count(), 10.0*float64(b.N); have != want {
if have, want := c.Snapshot().Count(), 10.0*float64(b.N); have != want {
b.Fatalf("have %f want %f", have, want)
}
}
@ -36,7 +36,7 @@ func TestCounterFloat64Clear(t *testing.T) {
c := NewCounterFloat64()
c.Inc(1.0)
c.Clear()
if count := c.Count(); count != 0 {
if count := c.Snapshot().Count(); count != 0 {
t.Errorf("c.Count(): 0 != %v\n", count)
}
}
@ -44,7 +44,7 @@ func TestCounterFloat64Clear(t *testing.T) {
func TestCounterFloat64Dec1(t *testing.T) {
c := NewCounterFloat64()
c.Dec(1.0)
if count := c.Count(); count != -1.0 {
if count := c.Snapshot().Count(); count != -1.0 {
t.Errorf("c.Count(): -1.0 != %v\n", count)
}
}
@ -52,7 +52,7 @@ func TestCounterFloat64Dec1(t *testing.T) {
func TestCounterFloat64Dec2(t *testing.T) {
c := NewCounterFloat64()
c.Dec(2.0)
if count := c.Count(); count != -2.0 {
if count := c.Snapshot().Count(); count != -2.0 {
t.Errorf("c.Count(): -2.0 != %v\n", count)
}
}
@ -60,7 +60,7 @@ func TestCounterFloat64Dec2(t *testing.T) {
func TestCounterFloat64Inc1(t *testing.T) {
c := NewCounterFloat64()
c.Inc(1.0)
if count := c.Count(); count != 1.0 {
if count := c.Snapshot().Count(); count != 1.0 {
t.Errorf("c.Count(): 1.0 != %v\n", count)
}
}
@ -68,7 +68,7 @@ func TestCounterFloat64Inc1(t *testing.T) {
func TestCounterFloat64Inc2(t *testing.T) {
c := NewCounterFloat64()
c.Inc(2.0)
if count := c.Count(); count != 2.0 {
if count := c.Snapshot().Count(); count != 2.0 {
t.Errorf("c.Count(): 2.0 != %v\n", count)
}
}
@ -85,7 +85,7 @@ func TestCounterFloat64Snapshot(t *testing.T) {
func TestCounterFloat64Zero(t *testing.T) {
c := NewCounterFloat64()
if count := c.Count(); count != 0 {
if count := c.Snapshot().Count(); count != 0 {
t.Errorf("c.Count(): 0 != %v\n", count)
}
}
@ -93,7 +93,7 @@ func TestCounterFloat64Zero(t *testing.T) {
func TestGetOrRegisterCounterFloat64(t *testing.T) {
r := NewRegistry()
NewRegisteredCounterFloat64("foo", r).Inc(47.0)
if c := GetOrRegisterCounterFloat64("foo", r); c.Count() != 47.0 {
if c := GetOrRegisterCounterFloat64("foo", r).Snapshot(); c.Count() != 47.0 {
t.Fatal(c)
}
}

View File

@ -14,7 +14,7 @@ func TestCounterClear(t *testing.T) {
c := NewCounter()
c.Inc(1)
c.Clear()
if count := c.Count(); count != 0 {
if count := c.Snapshot().Count(); count != 0 {
t.Errorf("c.Count(): 0 != %v\n", count)
}
}
@ -22,7 +22,7 @@ func TestCounterClear(t *testing.T) {
func TestCounterDec1(t *testing.T) {
c := NewCounter()
c.Dec(1)
if count := c.Count(); count != -1 {
if count := c.Snapshot().Count(); count != -1 {
t.Errorf("c.Count(): -1 != %v\n", count)
}
}
@ -30,7 +30,7 @@ func TestCounterDec1(t *testing.T) {
func TestCounterDec2(t *testing.T) {
c := NewCounter()
c.Dec(2)
if count := c.Count(); count != -2 {
if count := c.Snapshot().Count(); count != -2 {
t.Errorf("c.Count(): -2 != %v\n", count)
}
}
@ -38,7 +38,7 @@ func TestCounterDec2(t *testing.T) {
func TestCounterInc1(t *testing.T) {
c := NewCounter()
c.Inc(1)
if count := c.Count(); count != 1 {
if count := c.Snapshot().Count(); count != 1 {
t.Errorf("c.Count(): 1 != %v\n", count)
}
}
@ -46,7 +46,7 @@ func TestCounterInc1(t *testing.T) {
func TestCounterInc2(t *testing.T) {
c := NewCounter()
c.Inc(2)
if count := c.Count(); count != 2 {
if count := c.Snapshot().Count(); count != 2 {
t.Errorf("c.Count(): 2 != %v\n", count)
}
}
@ -63,7 +63,7 @@ func TestCounterSnapshot(t *testing.T) {
func TestCounterZero(t *testing.T) {
c := NewCounter()
if count := c.Count(); count != 0 {
if count := c.Snapshot().Count(); count != 0 {
t.Errorf("c.Count(): 0 != %v\n", count)
}
}
@ -71,7 +71,7 @@ func TestCounterZero(t *testing.T) {
func TestGetOrRegisterCounter(t *testing.T) {
r := NewRegistry()
NewRegisteredCounter("foo", r).Inc(47)
if c := GetOrRegisterCounter("foo", r); c.Count() != 47 {
if c := GetOrRegisterCounter("foo", r).Snapshot(); c.Count() != 47 {
t.Fatal(c)
}
}

View File

@ -1,4 +0,0 @@
package metrics
const epsilon = 0.0000000000000001
const epsilonPercentile = .00000000001

View File

@ -7,11 +7,14 @@ import (
"time"
)
type EWMASnapshot interface {
Rate() float64
}
// EWMAs continuously calculate an exponentially-weighted moving average
// based on an outside source of clock ticks.
type EWMA interface {
Rate() float64
Snapshot() EWMA
Snapshot() EWMASnapshot
Tick()
Update(int64)
}
@ -36,40 +39,19 @@ func NewEWMA15() EWMA {
return NewEWMA(1 - math.Exp(-5.0/60.0/15))
}
// EWMASnapshot is a read-only copy of another EWMA.
type EWMASnapshot float64
// ewmaSnapshot is a read-only copy of another EWMA.
type ewmaSnapshot float64
// Rate returns the rate of events per second at the time the snapshot was
// taken.
func (a EWMASnapshot) Rate() float64 { return float64(a) }
// Snapshot returns the snapshot.
func (a EWMASnapshot) Snapshot() EWMA { return a }
// Tick panics.
func (EWMASnapshot) Tick() {
panic("Tick called on an EWMASnapshot")
}
// Update panics.
func (EWMASnapshot) Update(int64) {
panic("Update called on an EWMASnapshot")
}
func (a ewmaSnapshot) Rate() float64 { return float64(a) }
// NilEWMA is a no-op EWMA.
type NilEWMA struct{}
// Rate is a no-op.
func (NilEWMA) Rate() float64 { return 0.0 }
// Snapshot is a no-op.
func (NilEWMA) Snapshot() EWMA { return NilEWMA{} }
// Tick is a no-op.
func (NilEWMA) Tick() {}
// Update is a no-op.
func (NilEWMA) Update(n int64) {}
func (NilEWMA) Snapshot() EWMASnapshot { return (*emptySnapshot)(nil) }
func (NilEWMA) Tick() {}
func (NilEWMA) Update(n int64) {}
// StandardEWMA is the standard implementation of an EWMA and tracks the number
// of uncounted events and processes them on each tick. It uses the
@ -77,37 +59,50 @@ func (NilEWMA) Update(n int64) {}
type StandardEWMA struct {
uncounted atomic.Int64
alpha float64
rate float64
init bool
rate atomic.Uint64
init atomic.Bool
mutex sync.Mutex
}
// Rate returns the moving average rate of events per second.
func (a *StandardEWMA) Rate() float64 {
a.mutex.Lock()
defer a.mutex.Unlock()
return a.rate * float64(time.Second)
}
// Snapshot returns a read-only copy of the EWMA.
func (a *StandardEWMA) Snapshot() EWMA {
return EWMASnapshot(a.Rate())
func (a *StandardEWMA) Snapshot() EWMASnapshot {
r := math.Float64frombits(a.rate.Load()) * float64(time.Second)
return ewmaSnapshot(r)
}
// Tick ticks the clock to update the moving average. It assumes it is called
// every five seconds.
func (a *StandardEWMA) Tick() {
count := a.uncounted.Load()
a.uncounted.Add(-count)
instantRate := float64(count) / float64(5*time.Second)
a.mutex.Lock()
defer a.mutex.Unlock()
if a.init {
a.rate += a.alpha * (instantRate - a.rate)
} else {
a.init = true
a.rate = instantRate
// Optimization to avoid mutex locking in the hot-path.
if a.init.Load() {
a.updateRate(a.fetchInstantRate())
return
}
// Slow-path: this is only needed on the first Tick() and preserves transactional updating
// of init and rate in the else block. The first conditional is needed below because
// a different thread could have set a.init = 1 between the time of the first atomic load and when
// the lock was acquired.
a.mutex.Lock()
if a.init.Load() {
// The fetchInstantRate() uses atomic loading, which is unnecessary in this critical section
// but again, this section is only invoked on the first successful Tick() operation.
a.updateRate(a.fetchInstantRate())
} else {
a.init.Store(true)
a.rate.Store(math.Float64bits(a.fetchInstantRate()))
}
a.mutex.Unlock()
}
func (a *StandardEWMA) fetchInstantRate() float64 {
count := a.uncounted.Swap(0)
return float64(count) / float64(5*time.Second)
}
func (a *StandardEWMA) updateRate(instantRate float64) {
currentRate := math.Float64frombits(a.rate.Load())
currentRate += a.alpha * (instantRate - currentRate)
a.rate.Store(math.Float64bits(currentRate))
}
// Update adds n uncounted events.

View File

@ -5,6 +5,8 @@ import (
"testing"
)
const epsilon = 0.0000000000000001
func BenchmarkEWMA(b *testing.B) {
a := NewEWMA1()
b.ResetTimer()
@ -14,72 +16,33 @@ func BenchmarkEWMA(b *testing.B) {
}
}
func BenchmarkEWMAParallel(b *testing.B) {
a := NewEWMA1()
b.ResetTimer()
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
a.Update(1)
a.Tick()
}
})
}
func TestEWMA1(t *testing.T) {
a := NewEWMA1()
a.Update(3)
a.Tick()
if rate := a.Rate(); math.Abs(0.6-rate) > epsilon {
t.Errorf("initial a.Rate(): 0.6 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.22072766470286553-rate) > epsilon {
t.Errorf("1 minute a.Rate(): 0.22072766470286553 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.08120116994196772-rate) > epsilon {
t.Errorf("2 minute a.Rate(): 0.08120116994196772 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.029872241020718428-rate) > epsilon {
t.Errorf("3 minute a.Rate(): 0.029872241020718428 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.01098938333324054-rate) > epsilon {
t.Errorf("4 minute a.Rate(): 0.01098938333324054 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.004042768199451294-rate) > epsilon {
t.Errorf("5 minute a.Rate(): 0.004042768199451294 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.0014872513059998212-rate) > epsilon {
t.Errorf("6 minute a.Rate(): 0.0014872513059998212 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.0005471291793327122-rate) > epsilon {
t.Errorf("7 minute a.Rate(): 0.0005471291793327122 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.00020127757674150815-rate) > epsilon {
t.Errorf("8 minute a.Rate(): 0.00020127757674150815 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(7.404588245200814e-05-rate) > epsilon {
t.Errorf("9 minute a.Rate(): 7.404588245200814e-05 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(2.7239957857491083e-05-rate) > epsilon {
t.Errorf("10 minute a.Rate(): 2.7239957857491083e-05 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(1.0021020474147462e-05-rate) > epsilon {
t.Errorf("11 minute a.Rate(): 1.0021020474147462e-05 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(3.6865274119969525e-06-rate) > epsilon {
t.Errorf("12 minute a.Rate(): 3.6865274119969525e-06 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(1.3561976441886433e-06-rate) > epsilon {
t.Errorf("13 minute a.Rate(): 1.3561976441886433e-06 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(4.989172314621449e-07-rate) > epsilon {
t.Errorf("14 minute a.Rate(): 4.989172314621449e-07 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(1.8354139230109722e-07-rate) > epsilon {
t.Errorf("15 minute a.Rate(): 1.8354139230109722e-07 != %v\n", rate)
for i, want := range []float64{0.6,
0.22072766470286553, 0.08120116994196772, 0.029872241020718428,
0.01098938333324054, 0.004042768199451294, 0.0014872513059998212,
0.0005471291793327122, 0.00020127757674150815, 7.404588245200814e-05,
2.7239957857491083e-05, 1.0021020474147462e-05, 3.6865274119969525e-06,
1.3561976441886433e-06, 4.989172314621449e-07, 1.8354139230109722e-07,
} {
if rate := a.Snapshot().Rate(); math.Abs(want-rate) > epsilon {
t.Errorf("%d minute a.Snapshot().Rate(): %f != %v\n", i, want, rate)
}
elapseMinute(a)
}
}
@ -87,68 +50,17 @@ func TestEWMA5(t *testing.T) {
a := NewEWMA5()
a.Update(3)
a.Tick()
if rate := a.Rate(); math.Abs(0.6-rate) > epsilon {
t.Errorf("initial a.Rate(): 0.6 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.49123845184678905-rate) > epsilon {
t.Errorf("1 minute a.Rate(): 0.49123845184678905 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.4021920276213837-rate) > epsilon {
t.Errorf("2 minute a.Rate(): 0.4021920276213837 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.32928698165641596-rate) > epsilon {
t.Errorf("3 minute a.Rate(): 0.32928698165641596 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.269597378470333-rate) > epsilon {
t.Errorf("4 minute a.Rate(): 0.269597378470333 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.2207276647028654-rate) > epsilon {
t.Errorf("5 minute a.Rate(): 0.2207276647028654 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.18071652714732128-rate) > epsilon {
t.Errorf("6 minute a.Rate(): 0.18071652714732128 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.14795817836496392-rate) > epsilon {
t.Errorf("7 minute a.Rate(): 0.14795817836496392 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.12113791079679326-rate) > epsilon {
t.Errorf("8 minute a.Rate(): 0.12113791079679326 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.09917933293295193-rate) > epsilon {
t.Errorf("9 minute a.Rate(): 0.09917933293295193 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.08120116994196763-rate) > epsilon {
t.Errorf("10 minute a.Rate(): 0.08120116994196763 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.06648189501740036-rate) > epsilon {
t.Errorf("11 minute a.Rate(): 0.06648189501740036 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.05443077197364752-rate) > epsilon {
t.Errorf("12 minute a.Rate(): 0.05443077197364752 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.04456414692860035-rate) > epsilon {
t.Errorf("13 minute a.Rate(): 0.04456414692860035 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.03648603757513079-rate) > epsilon {
t.Errorf("14 minute a.Rate(): 0.03648603757513079 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.0298722410207183831020718428-rate) > epsilon {
t.Errorf("15 minute a.Rate(): 0.0298722410207183831020718428 != %v\n", rate)
for i, want := range []float64{
0.6, 0.49123845184678905, 0.4021920276213837, 0.32928698165641596,
0.269597378470333, 0.2207276647028654, 0.18071652714732128,
0.14795817836496392, 0.12113791079679326, 0.09917933293295193,
0.08120116994196763, 0.06648189501740036, 0.05443077197364752,
0.04456414692860035, 0.03648603757513079, 0.0298722410207183831020718428,
} {
if rate := a.Snapshot().Rate(); math.Abs(want-rate) > epsilon {
t.Errorf("%d minute a.Snapshot().Rate(): %f != %v\n", i, want, rate)
}
elapseMinute(a)
}
}
@ -156,68 +68,17 @@ func TestEWMA15(t *testing.T) {
a := NewEWMA15()
a.Update(3)
a.Tick()
if rate := a.Rate(); math.Abs(0.6-rate) > epsilon {
t.Errorf("initial a.Rate(): 0.6 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.5613041910189706-rate) > epsilon {
t.Errorf("1 minute a.Rate(): 0.5613041910189706 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.5251039914257684-rate) > epsilon {
t.Errorf("2 minute a.Rate(): 0.5251039914257684 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.4912384518467888184678905-rate) > epsilon {
t.Errorf("3 minute a.Rate(): 0.4912384518467888184678905 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.459557003018789-rate) > epsilon {
t.Errorf("4 minute a.Rate(): 0.459557003018789 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.4299187863442732-rate) > epsilon {
t.Errorf("5 minute a.Rate(): 0.4299187863442732 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.4021920276213831-rate) > epsilon {
t.Errorf("6 minute a.Rate(): 0.4021920276213831 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.37625345116383313-rate) > epsilon {
t.Errorf("7 minute a.Rate(): 0.37625345116383313 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.3519877317060185-rate) > epsilon {
t.Errorf("8 minute a.Rate(): 0.3519877317060185 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.3292869816564153165641596-rate) > epsilon {
t.Errorf("9 minute a.Rate(): 0.3292869816564153165641596 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.3080502714195546-rate) > epsilon {
t.Errorf("10 minute a.Rate(): 0.3080502714195546 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.2881831806538789-rate) > epsilon {
t.Errorf("11 minute a.Rate(): 0.2881831806538789 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.26959737847033216-rate) > epsilon {
t.Errorf("12 minute a.Rate(): 0.26959737847033216 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.2522102307052083-rate) > epsilon {
t.Errorf("13 minute a.Rate(): 0.2522102307052083 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.23594443252115815-rate) > epsilon {
t.Errorf("14 minute a.Rate(): 0.23594443252115815 != %v\n", rate)
}
elapseMinute(a)
if rate := a.Rate(); math.Abs(0.2207276647028646247028654470286553-rate) > epsilon {
t.Errorf("15 minute a.Rate(): 0.2207276647028646247028654470286553 != %v\n", rate)
for i, want := range []float64{
0.6, 0.5613041910189706, 0.5251039914257684, 0.4912384518467888184678905,
0.459557003018789, 0.4299187863442732, 0.4021920276213831,
0.37625345116383313, 0.3519877317060185, 0.3292869816564153165641596,
0.3080502714195546, 0.2881831806538789, 0.26959737847033216,
0.2522102307052083, 0.23594443252115815, 0.2207276647028646247028654470286553,
} {
if rate := a.Snapshot().Rate(); math.Abs(want-rate) > epsilon {
t.Errorf("%d minute a.Snapshot().Rate(): %f != %v\n", i, want, rate)
}
elapseMinute(a)
}
}

View File

@ -109,25 +109,25 @@ func (exp *exp) getInfo(name string) *expvar.String {
return v
}
func (exp *exp) publishCounter(name string, metric metrics.Counter) {
func (exp *exp) publishCounter(name string, metric metrics.CounterSnapshot) {
v := exp.getInt(name)
v.Set(metric.Count())
}
func (exp *exp) publishCounterFloat64(name string, metric metrics.CounterFloat64) {
func (exp *exp) publishCounterFloat64(name string, metric metrics.CounterFloat64Snapshot) {
v := exp.getFloat(name)
v.Set(metric.Count())
}
func (exp *exp) publishGauge(name string, metric metrics.Gauge) {
func (exp *exp) publishGauge(name string, metric metrics.GaugeSnapshot) {
v := exp.getInt(name)
v.Set(metric.Value())
}
func (exp *exp) publishGaugeFloat64(name string, metric metrics.GaugeFloat64) {
func (exp *exp) publishGaugeFloat64(name string, metric metrics.GaugeFloat64Snapshot) {
exp.getFloat(name).Set(metric.Value())
}
func (exp *exp) publishGaugeInfo(name string, metric metrics.GaugeInfo) {
func (exp *exp) publishGaugeInfo(name string, metric metrics.GaugeInfoSnapshot) {
exp.getInfo(name).Set(metric.Value().String())
}
@ -176,28 +176,28 @@ func (exp *exp) publishTimer(name string, metric metrics.Timer) {
func (exp *exp) publishResettingTimer(name string, metric metrics.ResettingTimer) {
t := metric.Snapshot()
ps := t.Percentiles([]float64{50, 75, 95, 99})
exp.getInt(name + ".count").Set(int64(len(t.Values())))
ps := t.Percentiles([]float64{0.50, 0.75, 0.95, 0.99})
exp.getInt(name + ".count").Set(int64(t.Count()))
exp.getFloat(name + ".mean").Set(t.Mean())
exp.getInt(name + ".50-percentile").Set(ps[0])
exp.getInt(name + ".75-percentile").Set(ps[1])
exp.getInt(name + ".95-percentile").Set(ps[2])
exp.getInt(name + ".99-percentile").Set(ps[3])
exp.getFloat(name + ".50-percentile").Set(ps[0])
exp.getFloat(name + ".75-percentile").Set(ps[1])
exp.getFloat(name + ".95-percentile").Set(ps[2])
exp.getFloat(name + ".99-percentile").Set(ps[3])
}
func (exp *exp) syncToExpvar() {
exp.registry.Each(func(name string, i interface{}) {
switch i := i.(type) {
case metrics.Counter:
exp.publishCounter(name, i)
exp.publishCounter(name, i.Snapshot())
case metrics.CounterFloat64:
exp.publishCounterFloat64(name, i)
exp.publishCounterFloat64(name, i.Snapshot())
case metrics.Gauge:
exp.publishGauge(name, i)
exp.publishGauge(name, i.Snapshot())
case metrics.GaugeFloat64:
exp.publishGaugeFloat64(name, i)
exp.publishGaugeFloat64(name, i.Snapshot())
case metrics.GaugeInfo:
exp.publishGaugeInfo(name, i)
exp.publishGaugeInfo(name, i.Snapshot())
case metrics.Histogram:
exp.publishHistogram(name, i)
case metrics.Meter:

View File

@ -2,13 +2,18 @@ package metrics
import "sync/atomic"
// gaugeSnapshot contains a readonly int64.
type GaugeSnapshot interface {
Value() int64
}
// Gauges hold an int64 value that can be set arbitrarily.
type Gauge interface {
Snapshot() Gauge
Snapshot() GaugeSnapshot
Update(int64)
UpdateIfGt(int64)
Dec(int64)
Inc(int64)
Value() int64
}
// GetOrRegisterGauge returns an existing Gauge or constructs and registers a
@ -38,65 +43,20 @@ func NewRegisteredGauge(name string, r Registry) Gauge {
return c
}
// NewFunctionalGauge constructs a new FunctionalGauge.
func NewFunctionalGauge(f func() int64) Gauge {
if !Enabled {
return NilGauge{}
}
return &FunctionalGauge{value: f}
}
// NewRegisteredFunctionalGauge constructs and registers a new StandardGauge.
func NewRegisteredFunctionalGauge(name string, r Registry, f func() int64) Gauge {
c := NewFunctionalGauge(f)
if nil == r {
r = DefaultRegistry
}
r.Register(name, c)
return c
}
// GaugeSnapshot is a read-only copy of another Gauge.
type GaugeSnapshot int64
// Snapshot returns the snapshot.
func (g GaugeSnapshot) Snapshot() Gauge { return g }
// Update panics.
func (GaugeSnapshot) Update(int64) {
panic("Update called on a GaugeSnapshot")
}
// Dec panics.
func (GaugeSnapshot) Dec(int64) {
panic("Dec called on a GaugeSnapshot")
}
// Inc panics.
func (GaugeSnapshot) Inc(int64) {
panic("Inc called on a GaugeSnapshot")
}
// gaugeSnapshot is a read-only copy of another Gauge.
type gaugeSnapshot int64
// Value returns the value at the time the snapshot was taken.
func (g GaugeSnapshot) Value() int64 { return int64(g) }
func (g gaugeSnapshot) Value() int64 { return int64(g) }
// NilGauge is a no-op Gauge.
type NilGauge struct{}
// Snapshot is a no-op.
func (NilGauge) Snapshot() Gauge { return NilGauge{} }
// Update is a no-op.
func (NilGauge) Update(v int64) {}
// Dec is a no-op.
func (NilGauge) Dec(i int64) {}
// Inc is a no-op.
func (NilGauge) Inc(i int64) {}
// Value is a no-op.
func (NilGauge) Value() int64 { return 0 }
func (NilGauge) Snapshot() GaugeSnapshot { return (*emptySnapshot)(nil) }
func (NilGauge) Update(v int64) {}
func (NilGauge) UpdateIfGt(v int64) {}
func (NilGauge) Dec(i int64) {}
func (NilGauge) Inc(i int64) {}
// StandardGauge is the standard implementation of a Gauge and uses the
// sync/atomic package to manage a single int64 value.
@ -105,8 +65,8 @@ type StandardGauge struct {
}
// Snapshot returns a read-only copy of the gauge.
func (g *StandardGauge) Snapshot() Gauge {
return GaugeSnapshot(g.Value())
func (g *StandardGauge) Snapshot() GaugeSnapshot {
return gaugeSnapshot(g.value.Load())
}
// Update updates the gauge's value.
@ -114,9 +74,17 @@ func (g *StandardGauge) Update(v int64) {
g.value.Store(v)
}
// Value returns the gauge's current value.
func (g *StandardGauge) Value() int64 {
return g.value.Load()
// Update updates the gauge's value if v is larger then the current valie.
func (g *StandardGauge) UpdateIfGt(v int64) {
for {
exist := g.value.Load()
if exist >= v {
break
}
if g.value.CompareAndSwap(exist, v) {
break
}
}
}
// Dec decrements the gauge's current value by the given amount.
@ -128,31 +96,3 @@ func (g *StandardGauge) Dec(i int64) {
func (g *StandardGauge) Inc(i int64) {
g.value.Add(i)
}
// FunctionalGauge returns value from given function
type FunctionalGauge struct {
value func() int64
}
// Value returns the gauge's current value.
func (g FunctionalGauge) Value() int64 {
return g.value()
}
// Snapshot returns the snapshot.
func (g FunctionalGauge) Snapshot() Gauge { return GaugeSnapshot(g.Value()) }
// Update panics.
func (FunctionalGauge) Update(int64) {
panic("Update called on a FunctionalGauge")
}
// Dec panics.
func (FunctionalGauge) Dec(int64) {
panic("Dec called on a FunctionalGauge")
}
// Inc panics.
func (FunctionalGauge) Inc(int64) {
panic("Inc called on a FunctionalGauge")
}

View File

@ -5,13 +5,16 @@ import (
"sync/atomic"
)
// GaugeFloat64s hold a float64 value that can be set arbitrarily.
type GaugeFloat64 interface {
Snapshot() GaugeFloat64
Update(float64)
type GaugeFloat64Snapshot interface {
Value() float64
}
// GaugeFloat64 hold a float64 value that can be set arbitrarily.
type GaugeFloat64 interface {
Snapshot() GaugeFloat64Snapshot
Update(float64)
}
// GetOrRegisterGaugeFloat64 returns an existing GaugeFloat64 or constructs and registers a
// new StandardGaugeFloat64.
func GetOrRegisterGaugeFloat64(name string, r Registry) GaugeFloat64 {
@ -39,49 +42,18 @@ func NewRegisteredGaugeFloat64(name string, r Registry) GaugeFloat64 {
return c
}
// NewFunctionalGauge constructs a new FunctionalGauge.
func NewFunctionalGaugeFloat64(f func() float64) GaugeFloat64 {
if !Enabled {
return NilGaugeFloat64{}
}
return &FunctionalGaugeFloat64{value: f}
}
// NewRegisteredFunctionalGauge constructs and registers a new StandardGauge.
func NewRegisteredFunctionalGaugeFloat64(name string, r Registry, f func() float64) GaugeFloat64 {
c := NewFunctionalGaugeFloat64(f)
if nil == r {
r = DefaultRegistry
}
r.Register(name, c)
return c
}
// GaugeFloat64Snapshot is a read-only copy of another GaugeFloat64.
type GaugeFloat64Snapshot float64
// Snapshot returns the snapshot.
func (g GaugeFloat64Snapshot) Snapshot() GaugeFloat64 { return g }
// Update panics.
func (GaugeFloat64Snapshot) Update(float64) {
panic("Update called on a GaugeFloat64Snapshot")
}
// gaugeFloat64Snapshot is a read-only copy of another GaugeFloat64.
type gaugeFloat64Snapshot float64
// Value returns the value at the time the snapshot was taken.
func (g GaugeFloat64Snapshot) Value() float64 { return float64(g) }
func (g gaugeFloat64Snapshot) Value() float64 { return float64(g) }
// NilGauge is a no-op Gauge.
type NilGaugeFloat64 struct{}
// Snapshot is a no-op.
func (NilGaugeFloat64) Snapshot() GaugeFloat64 { return NilGaugeFloat64{} }
// Update is a no-op.
func (NilGaugeFloat64) Update(v float64) {}
// Value is a no-op.
func (NilGaugeFloat64) Value() float64 { return 0.0 }
func (NilGaugeFloat64) Snapshot() GaugeFloat64Snapshot { return NilGaugeFloat64{} }
func (NilGaugeFloat64) Update(v float64) {}
func (NilGaugeFloat64) Value() float64 { return 0.0 }
// StandardGaugeFloat64 is the standard implementation of a GaugeFloat64 and uses
// atomic to manage a single float64 value.
@ -90,34 +62,12 @@ type StandardGaugeFloat64 struct {
}
// Snapshot returns a read-only copy of the gauge.
func (g *StandardGaugeFloat64) Snapshot() GaugeFloat64 {
return GaugeFloat64Snapshot(g.Value())
func (g *StandardGaugeFloat64) Snapshot() GaugeFloat64Snapshot {
v := math.Float64frombits(g.floatBits.Load())
return gaugeFloat64Snapshot(v)
}
// Update updates the gauge's value.
func (g *StandardGaugeFloat64) Update(v float64) {
g.floatBits.Store(math.Float64bits(v))
}
// Value returns the gauge's current value.
func (g *StandardGaugeFloat64) Value() float64 {
return math.Float64frombits(g.floatBits.Load())
}
// FunctionalGaugeFloat64 returns value from given function
type FunctionalGaugeFloat64 struct {
value func() float64
}
// Value returns the gauge's current value.
func (g FunctionalGaugeFloat64) Value() float64 {
return g.value()
}
// Snapshot returns the snapshot.
func (g FunctionalGaugeFloat64) Snapshot() GaugeFloat64 { return GaugeFloat64Snapshot(g.Value()) }
// Update panics.
func (FunctionalGaugeFloat64) Update(float64) {
panic("Update called on a FunctionalGaugeFloat64")
}

View File

@ -26,19 +26,11 @@ func BenchmarkGaugeFloat64Parallel(b *testing.B) {
}()
}
wg.Wait()
if have, want := c.Value(), float64(b.N-1); have != want {
if have, want := c.Snapshot().Value(), float64(b.N-1); have != want {
b.Fatalf("have %f want %f", have, want)
}
}
func TestGaugeFloat64(t *testing.T) {
g := NewGaugeFloat64()
g.Update(47.0)
if v := g.Value(); 47.0 != v {
t.Errorf("g.Value(): 47.0 != %v\n", v)
}
}
func TestGaugeFloat64Snapshot(t *testing.T) {
g := NewGaugeFloat64()
g.Update(47.0)
@ -53,28 +45,7 @@ func TestGetOrRegisterGaugeFloat64(t *testing.T) {
r := NewRegistry()
NewRegisteredGaugeFloat64("foo", r).Update(47.0)
t.Logf("registry: %v", r)
if g := GetOrRegisterGaugeFloat64("foo", r); 47.0 != g.Value() {
t.Fatal(g)
}
}
func TestFunctionalGaugeFloat64(t *testing.T) {
var counter float64
fg := NewFunctionalGaugeFloat64(func() float64 {
counter++
return counter
})
fg.Value()
fg.Value()
if counter != 2 {
t.Error("counter != 2")
}
}
func TestGetOrRegisterFunctionalGaugeFloat64(t *testing.T) {
r := NewRegistry()
NewRegisteredFunctionalGaugeFloat64("foo", r, func() float64 { return 47 })
if g := GetOrRegisterGaugeFloat64("foo", r); g.Value() != 47 {
if g := GetOrRegisterGaugeFloat64("foo", r).Snapshot(); 47.0 != g.Value() {
t.Fatal(g)
}
}

View File

@ -5,14 +5,17 @@ import (
"sync"
)
// GaugeInfos hold a GaugeInfoValue value that can be set arbitrarily.
type GaugeInfo interface {
Snapshot() GaugeInfo
Update(GaugeInfoValue)
type GaugeInfoSnapshot interface {
Value() GaugeInfoValue
}
// GaugeInfoValue is a mappng of (string) keys to (string) values
// GaugeInfos hold a GaugeInfoValue value that can be set arbitrarily.
type GaugeInfo interface {
Update(GaugeInfoValue)
Snapshot() GaugeInfoSnapshot
}
// GaugeInfoValue is a mapping of keys to values
type GaugeInfoValue map[string]string
func (val GaugeInfoValue) String() string {
@ -49,49 +52,17 @@ func NewRegisteredGaugeInfo(name string, r Registry) GaugeInfo {
return c
}
// NewFunctionalGauge constructs a new FunctionalGauge.
func NewFunctionalGaugeInfo(f func() GaugeInfoValue) GaugeInfo {
if !Enabled {
return NilGaugeInfo{}
}
return &FunctionalGaugeInfo{value: f}
}
// NewRegisteredFunctionalGauge constructs and registers a new StandardGauge.
func NewRegisteredFunctionalGaugeInfo(name string, r Registry, f func() GaugeInfoValue) GaugeInfo {
c := NewFunctionalGaugeInfo(f)
if nil == r {
r = DefaultRegistry
}
r.Register(name, c)
return c
}
// GaugeInfoSnapshot is a read-only copy of another GaugeInfo.
type GaugeInfoSnapshot GaugeInfoValue
// Snapshot returns the snapshot.
func (g GaugeInfoSnapshot) Snapshot() GaugeInfo { return g }
// Update panics.
func (GaugeInfoSnapshot) Update(GaugeInfoValue) {
panic("Update called on a GaugeInfoSnapshot")
}
// gaugeInfoSnapshot is a read-only copy of another GaugeInfo.
type gaugeInfoSnapshot GaugeInfoValue
// Value returns the value at the time the snapshot was taken.
func (g GaugeInfoSnapshot) Value() GaugeInfoValue { return GaugeInfoValue(g) }
func (g gaugeInfoSnapshot) Value() GaugeInfoValue { return GaugeInfoValue(g) }
// NilGauge is a no-op Gauge.
type NilGaugeInfo struct{}
// Snapshot is a no-op.
func (NilGaugeInfo) Snapshot() GaugeInfo { return NilGaugeInfo{} }
// Update is a no-op.
func (NilGaugeInfo) Update(v GaugeInfoValue) {}
// Value is a no-op.
func (NilGaugeInfo) Value() GaugeInfoValue { return GaugeInfoValue{} }
func (NilGaugeInfo) Snapshot() GaugeInfoSnapshot { return NilGaugeInfo{} }
func (NilGaugeInfo) Update(v GaugeInfoValue) {}
func (NilGaugeInfo) Value() GaugeInfoValue { return GaugeInfoValue{} }
// StandardGaugeInfo is the standard implementation of a GaugeInfo and uses
// sync.Mutex to manage a single string value.
@ -101,8 +72,8 @@ type StandardGaugeInfo struct {
}
// Snapshot returns a read-only copy of the gauge.
func (g *StandardGaugeInfo) Snapshot() GaugeInfo {
return GaugeInfoSnapshot(g.Value())
func (g *StandardGaugeInfo) Snapshot() GaugeInfoSnapshot {
return gaugeInfoSnapshot(g.value)
}
// Update updates the gauge's value.
@ -111,34 +82,3 @@ func (g *StandardGaugeInfo) Update(v GaugeInfoValue) {
defer g.mutex.Unlock()
g.value = v
}
// Value returns the gauge's current value.
func (g *StandardGaugeInfo) Value() GaugeInfoValue {
g.mutex.Lock()
defer g.mutex.Unlock()
return g.value
}
// FunctionalGaugeInfo returns value from given function
type FunctionalGaugeInfo struct {
value func() GaugeInfoValue
}
// Value returns the gauge's current value.
func (g FunctionalGaugeInfo) Value() GaugeInfoValue {
return g.value()
}
// Value returns the gauge's current value in JSON string format
func (g FunctionalGaugeInfo) ValueJsonString() string {
data, _ := json.Marshal(g.value())
return string(data)
}
// Snapshot returns the snapshot.
func (g FunctionalGaugeInfo) Snapshot() GaugeInfo { return GaugeInfoSnapshot(g.Value()) }
// Update panics.
func (FunctionalGaugeInfo) Update(GaugeInfoValue) {
panic("Update called on a FunctionalGaugeInfo")
}

View File

@ -1,7 +1,6 @@
package metrics
import (
"strconv"
"testing"
)
@ -14,22 +13,14 @@ func TestGaugeInfoJsonString(t *testing.T) {
},
)
want := `{"anotherKey":"any_string_value","chain_id":"5","third_key":"anything"}`
if have := g.Value().String(); have != want {
t.Errorf("\nhave: %v\nwant: %v\n", have, want)
}
}
func TestGaugeInfoSnapshot(t *testing.T) {
g := NewGaugeInfo()
g.Update(GaugeInfoValue{"value": "original"})
snapshot := g.Snapshot() // Snapshot @chainid 5
original := g.Snapshot()
g.Update(GaugeInfoValue{"value": "updated"})
// The 'g' should be updated
if have, want := g.Value().String(), `{"value":"updated"}`; have != want {
if have := original.Value().String(); have != want {
t.Errorf("\nhave: %v\nwant: %v\n", have, want)
}
// Snapshot should be unupdated
if have, want := snapshot.Value().String(), `{"value":"original"}`; have != want {
if have, want := g.Snapshot().Value().String(), `{"value":"updated"}`; have != want {
t.Errorf("\nhave: %v\nwant: %v\n", have, want)
}
}
@ -38,38 +29,8 @@ func TestGetOrRegisterGaugeInfo(t *testing.T) {
r := NewRegistry()
NewRegisteredGaugeInfo("foo", r).Update(
GaugeInfoValue{"chain_id": "5"})
g := GetOrRegisterGaugeInfo("foo", r)
g := GetOrRegisterGaugeInfo("foo", r).Snapshot()
if have, want := g.Value().String(), `{"chain_id":"5"}`; have != want {
t.Errorf("have\n%v\nwant\n%v\n", have, want)
}
}
func TestFunctionalGaugeInfo(t *testing.T) {
info := GaugeInfoValue{"chain_id": "0"}
counter := 1
// A "functional" gauge invokes the method to obtain the value
fg := NewFunctionalGaugeInfo(func() GaugeInfoValue {
info["chain_id"] = strconv.Itoa(counter)
counter++
return info
})
fg.Value()
fg.Value()
if have, want := info["chain_id"], "2"; have != want {
t.Errorf("have %v want %v", have, want)
}
}
func TestGetOrRegisterFunctionalGaugeInfo(t *testing.T) {
r := NewRegistry()
NewRegisteredFunctionalGaugeInfo("foo", r, func() GaugeInfoValue {
return GaugeInfoValue{
"chain_id": "5",
}
})
want := `{"chain_id":"5"}`
have := GetOrRegisterGaugeInfo("foo", r).Value().String()
if have != want {
t.Errorf("have\n%v\nwant\n%v\n", have, want)
}
}

View File

@ -1,7 +1,6 @@
package metrics
import (
"fmt"
"testing"
)
@ -13,14 +12,6 @@ func BenchmarkGauge(b *testing.B) {
}
}
func TestGauge(t *testing.T) {
g := NewGauge()
g.Update(int64(47))
if v := g.Value(); v != 47 {
t.Errorf("g.Value(): 47 != %v\n", v)
}
}
func TestGaugeSnapshot(t *testing.T) {
g := NewGauge()
g.Update(int64(47))
@ -34,35 +25,7 @@ func TestGaugeSnapshot(t *testing.T) {
func TestGetOrRegisterGauge(t *testing.T) {
r := NewRegistry()
NewRegisteredGauge("foo", r).Update(47)
if g := GetOrRegisterGauge("foo", r); g.Value() != 47 {
if g := GetOrRegisterGauge("foo", r); g.Snapshot().Value() != 47 {
t.Fatal(g)
}
}
func TestFunctionalGauge(t *testing.T) {
var counter int64
fg := NewFunctionalGauge(func() int64 {
counter++
return counter
})
fg.Value()
fg.Value()
if counter != 2 {
t.Error("counter != 2")
}
}
func TestGetOrRegisterFunctionalGauge(t *testing.T) {
r := NewRegistry()
NewRegisteredFunctionalGauge("foo", r, func() int64 { return 47 })
if g := GetOrRegisterGauge("foo", r); g.Value() != 47 {
t.Fatal(g)
}
}
func ExampleGetOrRegisterGauge() {
m := "server.bytes_sent"
g := GetOrRegisterGauge(m, nil)
g.Update(47)
fmt.Println(g.Value()) // Output: 47
}

View File

@ -66,15 +66,15 @@ func graphite(c *GraphiteConfig) error {
c.Registry.Each(func(name string, i interface{}) {
switch metric := i.(type) {
case Counter:
fmt.Fprintf(w, "%s.%s.count %d %d\n", c.Prefix, name, metric.Count(), now)
fmt.Fprintf(w, "%s.%s.count %d %d\n", c.Prefix, name, metric.Snapshot().Count(), now)
case CounterFloat64:
fmt.Fprintf(w, "%s.%s.count %f %d\n", c.Prefix, name, metric.Count(), now)
fmt.Fprintf(w, "%s.%s.count %f %d\n", c.Prefix, name, metric.Snapshot().Count(), now)
case Gauge:
fmt.Fprintf(w, "%s.%s.value %d %d\n", c.Prefix, name, metric.Value(), now)
fmt.Fprintf(w, "%s.%s.value %d %d\n", c.Prefix, name, metric.Snapshot().Value(), now)
case GaugeFloat64:
fmt.Fprintf(w, "%s.%s.value %f %d\n", c.Prefix, name, metric.Value(), now)
fmt.Fprintf(w, "%s.%s.value %f %d\n", c.Prefix, name, metric.Snapshot().Value(), now)
case GaugeInfo:
fmt.Fprintf(w, "%s.%s.value %s %d\n", c.Prefix, name, metric.Value().String(), now)
fmt.Fprintf(w, "%s.%s.value %s %d\n", c.Prefix, name, metric.Snapshot().Value().String(), now)
case Histogram:
h := metric.Snapshot()
ps := h.Percentiles(c.Percentiles)

View File

@ -1,20 +1,14 @@
package metrics
type HistogramSnapshot interface {
SampleSnapshot
}
// Histograms calculate distribution statistics from a series of int64 values.
type Histogram interface {
Clear()
Count() int64
Max() int64
Mean() float64
Min() int64
Percentile(float64) float64
Percentiles([]float64) []float64
Sample() Sample
Snapshot() Histogram
StdDev() float64
Sum() int64
Update(int64)
Variance() float64
Snapshot() HistogramSnapshot
}
// GetOrRegisterHistogram returns an existing Histogram or constructs and
@ -54,108 +48,12 @@ func NewRegisteredHistogram(name string, r Registry, s Sample) Histogram {
return c
}
// HistogramSnapshot is a read-only copy of another Histogram.
type HistogramSnapshot struct {
sample *SampleSnapshot
}
// Clear panics.
func (*HistogramSnapshot) Clear() {
panic("Clear called on a HistogramSnapshot")
}
// Count returns the number of samples recorded at the time the snapshot was
// taken.
func (h *HistogramSnapshot) Count() int64 { return h.sample.Count() }
// Max returns the maximum value in the sample at the time the snapshot was
// taken.
func (h *HistogramSnapshot) Max() int64 { return h.sample.Max() }
// Mean returns the mean of the values in the sample at the time the snapshot
// was taken.
func (h *HistogramSnapshot) Mean() float64 { return h.sample.Mean() }
// Min returns the minimum value in the sample at the time the snapshot was
// taken.
func (h *HistogramSnapshot) Min() int64 { return h.sample.Min() }
// Percentile returns an arbitrary percentile of values in the sample at the
// time the snapshot was taken.
func (h *HistogramSnapshot) Percentile(p float64) float64 {
return h.sample.Percentile(p)
}
// Percentiles returns a slice of arbitrary percentiles of values in the sample
// at the time the snapshot was taken.
func (h *HistogramSnapshot) Percentiles(ps []float64) []float64 {
return h.sample.Percentiles(ps)
}
// Sample returns the Sample underlying the histogram.
func (h *HistogramSnapshot) Sample() Sample { return h.sample }
// Snapshot returns the snapshot.
func (h *HistogramSnapshot) Snapshot() Histogram { return h }
// StdDev returns the standard deviation of the values in the sample at the
// time the snapshot was taken.
func (h *HistogramSnapshot) StdDev() float64 { return h.sample.StdDev() }
// Sum returns the sum in the sample at the time the snapshot was taken.
func (h *HistogramSnapshot) Sum() int64 { return h.sample.Sum() }
// Update panics.
func (*HistogramSnapshot) Update(int64) {
panic("Update called on a HistogramSnapshot")
}
// Variance returns the variance of inputs at the time the snapshot was taken.
func (h *HistogramSnapshot) Variance() float64 { return h.sample.Variance() }
// NilHistogram is a no-op Histogram.
type NilHistogram struct{}
// Clear is a no-op.
func (NilHistogram) Clear() {}
// Count is a no-op.
func (NilHistogram) Count() int64 { return 0 }
// Max is a no-op.
func (NilHistogram) Max() int64 { return 0 }
// Mean is a no-op.
func (NilHistogram) Mean() float64 { return 0.0 }
// Min is a no-op.
func (NilHistogram) Min() int64 { return 0 }
// Percentile is a no-op.
func (NilHistogram) Percentile(p float64) float64 { return 0.0 }
// Percentiles is a no-op.
func (NilHistogram) Percentiles(ps []float64) []float64 {
return make([]float64, len(ps))
}
// Sample is a no-op.
func (NilHistogram) Sample() Sample { return NilSample{} }
// Snapshot is a no-op.
func (NilHistogram) Snapshot() Histogram { return NilHistogram{} }
// StdDev is a no-op.
func (NilHistogram) StdDev() float64 { return 0.0 }
// Sum is a no-op.
func (NilHistogram) Sum() int64 { return 0 }
// Update is a no-op.
func (NilHistogram) Update(v int64) {}
// Variance is a no-op.
func (NilHistogram) Variance() float64 { return 0.0 }
func (NilHistogram) Clear() {}
func (NilHistogram) Snapshot() HistogramSnapshot { return (*emptySnapshot)(nil) }
func (NilHistogram) Update(v int64) {}
// StandardHistogram is the standard implementation of a Histogram and uses a
// Sample to bound its memory use.
@ -166,46 +64,10 @@ type StandardHistogram struct {
// Clear clears the histogram and its sample.
func (h *StandardHistogram) Clear() { h.sample.Clear() }
// Count returns the number of samples recorded since the histogram was last
// cleared.
func (h *StandardHistogram) Count() int64 { return h.sample.Count() }
// Max returns the maximum value in the sample.
func (h *StandardHistogram) Max() int64 { return h.sample.Max() }
// Mean returns the mean of the values in the sample.
func (h *StandardHistogram) Mean() float64 { return h.sample.Mean() }
// Min returns the minimum value in the sample.
func (h *StandardHistogram) Min() int64 { return h.sample.Min() }
// Percentile returns an arbitrary percentile of the values in the sample.
func (h *StandardHistogram) Percentile(p float64) float64 {
return h.sample.Percentile(p)
}
// Percentiles returns a slice of arbitrary percentiles of the values in the
// sample.
func (h *StandardHistogram) Percentiles(ps []float64) []float64 {
return h.sample.Percentiles(ps)
}
// Sample returns the Sample underlying the histogram.
func (h *StandardHistogram) Sample() Sample { return h.sample }
// Snapshot returns a read-only copy of the histogram.
func (h *StandardHistogram) Snapshot() Histogram {
return &HistogramSnapshot{sample: h.sample.Snapshot().(*SampleSnapshot)}
func (h *StandardHistogram) Snapshot() HistogramSnapshot {
return h.sample.Snapshot()
}
// StdDev returns the standard deviation of the values in the sample.
func (h *StandardHistogram) StdDev() float64 { return h.sample.StdDev() }
// Sum returns the sum in the sample.
func (h *StandardHistogram) Sum() int64 { return h.sample.Sum() }
// Update samples a new value.
func (h *StandardHistogram) Update(v int64) { h.sample.Update(v) }
// Variance returns the variance of the values in the sample.
func (h *StandardHistogram) Variance() float64 { return h.sample.Variance() }

View File

@ -14,7 +14,7 @@ func TestGetOrRegisterHistogram(t *testing.T) {
r := NewRegistry()
s := NewUniformSample(100)
NewRegisteredHistogram("foo", r, s).Update(47)
if h := GetOrRegisterHistogram("foo", r, s); h.Count() != 1 {
if h := GetOrRegisterHistogram("foo", r, s).Snapshot(); h.Count() != 1 {
t.Fatal(h)
}
}
@ -24,11 +24,11 @@ func TestHistogram10000(t *testing.T) {
for i := 1; i <= 10000; i++ {
h.Update(int64(i))
}
testHistogram10000(t, h)
testHistogram10000(t, h.Snapshot())
}
func TestHistogramEmpty(t *testing.T) {
h := NewHistogram(NewUniformSample(100))
h := NewHistogram(NewUniformSample(100)).Snapshot()
if count := h.Count(); count != 0 {
t.Errorf("h.Count(): 0 != %v\n", count)
}
@ -66,7 +66,7 @@ func TestHistogramSnapshot(t *testing.T) {
testHistogram10000(t, snapshot)
}
func testHistogram10000(t *testing.T, h Histogram) {
func testHistogram10000(t *testing.T, h HistogramSnapshot) {
if count := h.Count(); count != 10000 {
t.Errorf("h.Count(): 10000 != %v\n", count)
}

48
metrics/inactive.go Normal file
View File

@ -0,0 +1,48 @@
// Copyright 2023 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package metrics
// compile-time checks that interfaces are implemented.
var (
_ SampleSnapshot = (*emptySnapshot)(nil)
_ HistogramSnapshot = (*emptySnapshot)(nil)
_ CounterSnapshot = (*emptySnapshot)(nil)
_ GaugeSnapshot = (*emptySnapshot)(nil)
_ MeterSnapshot = (*emptySnapshot)(nil)
_ EWMASnapshot = (*emptySnapshot)(nil)
_ TimerSnapshot = (*emptySnapshot)(nil)
)
type emptySnapshot struct{}
func (*emptySnapshot) Count() int64 { return 0 }
func (*emptySnapshot) Max() int64 { return 0 }
func (*emptySnapshot) Mean() float64 { return 0.0 }
func (*emptySnapshot) Min() int64 { return 0 }
func (*emptySnapshot) Percentile(p float64) float64 { return 0.0 }
func (*emptySnapshot) Percentiles(ps []float64) []float64 { return make([]float64, len(ps)) }
func (*emptySnapshot) Size() int { return 0 }
func (*emptySnapshot) StdDev() float64 { return 0.0 }
func (*emptySnapshot) Sum() int64 { return 0 }
func (*emptySnapshot) Values() []int64 { return []int64{} }
func (*emptySnapshot) Variance() float64 { return 0.0 }
func (*emptySnapshot) Value() int64 { return 0 }
func (*emptySnapshot) Rate() float64 { return 0.0 }
func (*emptySnapshot) Rate1() float64 { return 0.0 }
func (*emptySnapshot) Rate5() float64 { return 0.0 }
func (*emptySnapshot) Rate15() float64 { return 0.0 }
func (*emptySnapshot) RateMean() float64 { return 0.0 }

View File

@ -11,13 +11,13 @@ func readMeter(namespace, name string, i interface{}) (string, map[string]interf
case metrics.Counter:
measurement := fmt.Sprintf("%s%s.count", namespace, name)
fields := map[string]interface{}{
"value": metric.Count(),
"value": metric.Snapshot().Count(),
}
return measurement, fields
case metrics.CounterFloat64:
measurement := fmt.Sprintf("%s%s.count", namespace, name)
fields := map[string]interface{}{
"value": metric.Count(),
"value": metric.Snapshot().Count(),
}
return measurement, fields
case metrics.Gauge:
@ -99,20 +99,19 @@ func readMeter(namespace, name string, i interface{}) (string, map[string]interf
return measurement, fields
case metrics.ResettingTimer:
t := metric.Snapshot()
if len(t.Values()) == 0 {
if t.Count() == 0 {
break
}
ps := t.Percentiles([]float64{50, 95, 99})
val := t.Values()
ps := t.Percentiles([]float64{0.50, 0.95, 0.99})
measurement := fmt.Sprintf("%s%s.span", namespace, name)
fields := map[string]interface{}{
"count": len(val),
"max": val[len(val)-1],
"count": t.Count(),
"max": t.Max(),
"mean": t.Mean(),
"min": val[0],
"p50": ps[0],
"p95": ps[1],
"p99": ps[2],
"min": t.Min(),
"p50": int(ps[0]),
"p95": int(ps[1]),
"p99": int(ps[2]),
}
return measurement, fields
}

View File

@ -96,7 +96,7 @@ func TestExampleV2(t *testing.T) {
}
if have != want {
t.Errorf("\nhave:\n%v\nwant:\n%v\n", have, want)
t.Logf("have vs want:\n %v", findFirstDiffPos(have, want))
t.Logf("have vs want:\n%v", findFirstDiffPos(have, want))
}
}

View File

@ -1,3 +1,5 @@
goth.system/cpu/schedlatency.histogram count=5645i,max=41943040i,mean=1819544.0410983171,min=0i,p25=0,p50=0,p75=7168,p95=16777216,p99=29360128,p999=33554432,p9999=33554432,stddev=6393570.217198883,variance=40877740122252.57 978307200000000000
goth.system/memory/pauses.histogram count=14i,max=229376i,mean=50066.28571428572,min=5120i,p25=10240,p50=32768,p75=57344,p95=196608,p99=196608,p999=196608,p9999=196608,stddev=54726.062410783874,variance=2994941906.9890113 978307200000000000
goth.test/counter.count value=12345 978307200000000000
goth.test/counter_float64.count value=54321.98 978307200000000000
goth.test/gauge.gauge value=23456i 978307200000000000
@ -5,5 +7,5 @@ goth.test/gauge_float64.gauge value=34567.89 978307200000000000
goth.test/gauge_info.gauge value="{\"arch\":\"amd64\",\"commit\":\"7caa2d8163ae3132c1c2d6978c76610caee2d949\",\"os\":\"linux\",\"protocol_versions\":\"64 65 66\",\"version\":\"1.10.18-unstable\"}" 978307200000000000
goth.test/histogram.histogram count=3i,max=3i,mean=2,min=1i,p25=1,p50=2,p75=3,p95=3,p99=3,p999=3,p9999=3,stddev=0.816496580927726,variance=0.6666666666666666 978307200000000000
goth.test/meter.meter count=0i,m1=0,m15=0,m5=0,mean=0 978307200000000000
goth.test/resetting_timer.span count=6i,max=120000000i,mean=30000000,min=10000000i,p50=12000000i,p95=120000000i,p99=120000000i 978307200000000000
goth.test/resetting_timer.span count=6i,max=120000000i,mean=30000000,min=10000000i,p50=12500000i,p95=120000000i,p99=120000000i 978307200000000000
goth.test/timer.timer count=6i,m1=0,m15=0,m5=0,max=120000000i,mean=38333333.333333336,meanrate=0,min=20000000i,p50=22500000,p75=48000000,p95=120000000,p99=120000000,p999=120000000,p9999=120000000,stddev=36545253.529775314,variance=1335555555555555.2 978307200000000000

View File

@ -1,3 +1,5 @@
goth.system/cpu/schedlatency.histogram count=5645i,max=41943040i,mean=1819544.0410983171,min=0i,p25=0,p50=0,p75=7168,p95=16777216,p99=29360128,p999=33554432,p9999=33554432,stddev=6393570.217198883,variance=40877740122252.57 978307200000000000
goth.system/memory/pauses.histogram count=14i,max=229376i,mean=50066.28571428572,min=5120i,p25=10240,p50=32768,p75=57344,p95=196608,p99=196608,p999=196608,p9999=196608,stddev=54726.062410783874,variance=2994941906.9890113 978307200000000000
goth.test/counter.count value=12345 978307200000000000
goth.test/counter_float64.count value=54321.98 978307200000000000
goth.test/gauge.gauge value=23456i 978307200000000000
@ -5,5 +7,5 @@ goth.test/gauge_float64.gauge value=34567.89 978307200000000000
goth.test/gauge_info.gauge value="{\"arch\":\"amd64\",\"commit\":\"7caa2d8163ae3132c1c2d6978c76610caee2d949\",\"os\":\"linux\",\"protocol_versions\":\"64 65 66\",\"version\":\"1.10.18-unstable\"}" 978307200000000000
goth.test/histogram.histogram count=3i,max=3i,mean=2,min=1i,p25=1,p50=2,p75=3,p95=3,p99=3,p999=3,p9999=3,stddev=0.816496580927726,variance=0.6666666666666666 978307200000000000
goth.test/meter.meter count=0i,m1=0,m15=0,m5=0,mean=0 978307200000000000
goth.test/resetting_timer.span count=6i,max=120000000i,mean=30000000,min=10000000i,p50=12000000i,p95=120000000i,p99=120000000i 978307200000000000
goth.test/resetting_timer.span count=6i,max=120000000i,mean=30000000,min=10000000i,p50=12500000i,p95=120000000i,p99=120000000i 978307200000000000
goth.test/timer.timer count=6i,m1=0,m15=0,m5=0,max=120000000i,mean=38333333.333333336,meanrate=0,min=20000000i,p50=22500000,p75=48000000,p95=120000000,p99=120000000,p999=120000000,p9999=120000000,stddev=36545253.529775314,variance=1335555555555555.2 978307200000000000

View File

@ -17,6 +17,9 @@
package internal
import (
"bytes"
"encoding/gob"
metrics2 "runtime/metrics"
"time"
"github.com/ethereum/go-ethereum/metrics"
@ -38,7 +41,15 @@ func ExampleMetrics() metrics.Registry {
"commit": "7caa2d8163ae3132c1c2d6978c76610caee2d949",
"protocol_versions": "64 65 66",
})
metrics.NewRegisteredHistogram("test/histogram", registry, metrics.NewSampleSnapshot(3, []int64{1, 2, 3}))
{
s := metrics.NewUniformSample(3)
s.Update(1)
s.Update(2)
s.Update(3)
//metrics.NewRegisteredHistogram("test/histogram", registry, metrics.NewSampleSnapshot(3, []int64{1, 2, 3}))
metrics.NewRegisteredHistogram("test/histogram", registry, s)
}
registry.Register("test/meter", metrics.NewInactiveMeter())
{
timer := metrics.NewRegisteredResettingTimer("test/resetting_timer", registry)
@ -60,5 +71,25 @@ func ExampleMetrics() metrics.Registry {
timer.Stop()
}
registry.Register("test/empty_resetting_timer", metrics.NewResettingTimer().Snapshot())
{ // go runtime metrics
var sLatency = "7\xff\x81\x03\x01\x01\x10Float64Histogram\x01\xff\x82\x00\x01\x02\x01\x06Counts\x01\xff\x84\x00\x01\aBuckets\x01\xff\x86\x00\x00\x00\x16\xff\x83\x02\x01\x01\b[]uint64\x01\xff\x84\x00\x01\x06\x00\x00\x17\xff\x85\x02\x01\x01\t[]float64\x01\xff\x86\x00\x01\b\x00\x00\xfe\x06T\xff\x82\x01\xff\xa2\x00\xfe\r\xef\x00\x01\x02\x02\x04\x05\x04\b\x15\x17 B?6.L;$!2) \x1a? \x190aH7FY6#\x190\x1d\x14\x10\x1b\r\t\x04\x03\x01\x01\x00\x03\x02\x00\x03\x05\x05\x02\x02\x06\x04\v\x06\n\x15\x18\x13'&.\x12=H/L&\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\xff\xa3\xfe\xf0\xff\x00\xf8\x95\xd6&\xe8\v.q>\xf8\x95\xd6&\xe8\v.\x81>\xf8\xdfA:\xdc\x11ʼn>\xf8\x95\xd6&\xe8\v.\x91>\xf8:\x8c0\xe2\x8ey\x95>\xf8\xdfA:\xdc\x11ř>\xf8\x84\xf7C֔\x10\x9e>\xf8\x95\xd6&\xe8\v.\xa1>\xf8:\x8c0\xe2\x8ey\xa5>\xf8\xdfA:\xdc\x11ũ>\xf8\x84\xf7C֔\x10\xae>\xf8\x95\xd6&\xe8\v.\xb1>\xf8:\x8c0\xe2\x8ey\xb5>\xf8\xdfA:\xdc\x11Ź>\xf8\x84\xf7C֔\x10\xbe>\xf8\x95\xd6&\xe8\v.\xc1>\xf8:\x8c0\xe2\x8ey\xc5>\xf8\xdfA:\xdc\x11\xc5\xc9>\xf8\x84\xf7C֔\x10\xce>\xf8\x95\xd6&\xe8\v.\xd1>\xf8:\x8c0\xe2\x8ey\xd5>\xf8\xdfA:\xdc\x11\xc5\xd9>\xf8\x84\xf7C֔\x10\xde>\xf8\x95\xd6&\xe8\v.\xe1>\xf8:\x8c0\xe2\x8ey\xe5>\xf8\xdfA:\xdc\x11\xc5\xe9>\xf8\x84\xf7C֔\x10\xee>\xf8\x95\xd6&\xe8\v.\xf1>\xf8:\x8c0\xe2\x8ey\xf5>\xf8\xdfA:\xdc\x11\xc5\xf9>\xf8\x84\xf7C֔\x10\xfe>\xf8\x95\xd6&\xe8\v.\x01?\xf8:\x8c0\xe2\x8ey\x05?\xf8\xdfA:\xdc\x11\xc5\t?\xf8\x84\xf7C֔\x10\x0e?\xf8\x95\xd6&\xe8\v.\x11?\xf8:\x8c0\xe2\x8ey\x15?\xf8\xdfA:\xdc\x11\xc5\x19?\xf8\x84\xf7C֔\x10\x1e?\xf8\x95\xd6&\xe8\v.!?\xf8:\x8c0\xe2\x8ey%?\xf8\xdfA:\xdc\x11\xc5)?\xf8\x84\xf7C֔\x10.?\xf8\x95\xd6&\xe8\v.1?\xf8:\x8c0\xe2\x8ey5?\xf8\xdfA:\xdc\x11\xc59?\xf8\x84\xf7C֔\x10>?\xf8\x95\xd6&\xe8\v.A?\xf8:\x8c0\xe2\x8eyE?\xf8\xdfA:\xdc\x11\xc5I?\xf8\x84\xf7C֔\x10N?\xf8\x95\xd6&\xe8\v.Q?\xf8:\x8c0\xe2\x8eyU?\xf8\xdfA:\xdc\x11\xc5Y?\xf8\x84\xf7C֔\x10^?\xf8\x95\xd6&\xe8\v.a?\xf8:\x8c0\xe2\x8eye?\xf8\xdfA:\xdc\x11\xc5i?\xf8\x84\xf7C֔\x10n?\xf8\x95\xd6&\xe8\v.q?\xf8:\x8c0\xe2\x8eyu?\xf8\xdfA:\xdc\x11\xc5y?\xf8\x84\xf7C֔\x10~?\xf8\x95\xd6&\xe8\v.\x81?\xf8:\x8c0\xe2\x8ey\x85?\xf8\xdfA:\xdc\x11ʼn?\xf8\x84\xf7C֔\x10\x8e?\xf8\x95\xd6&\xe8\v.\x91?\xf8:\x8c0\xe2\x8ey\x95?\xf8\xdfA:\xdc\x11ř?\xf8\x84\xf7C֔\x10\x9e?\xf8\x95\xd6&\xe8\v.\xa1?\xf8:\x8c0\xe2\x8ey\xa5?\xf8\xdfA:\xdc\x11ũ?\xf8\x84\xf7C֔\x10\xae?\xf8\x95\xd6&\xe8\v.\xb1?\xf8:\x8c0\xe2\x8ey\xb5?\xf8\xdfA:\xdc\x11Ź?\xf8\x84\xf7C֔\x10\xbe?\xf8\x95\xd6&\xe8\v.\xc1?\xf8:\x8c0\xe2\x8ey\xc5?\xf8\xdfA:\xdc\x11\xc5\xc9?\xf8\x84\xf7C֔\x10\xce?\xf8\x95\xd6&\xe8\v.\xd1?\xf8:\x8c0\xe2\x8ey\xd5?\xf8\xdfA:\xdc\x11\xc5\xd9?\xf8\x84\xf7C֔\x10\xde?\xf8\x95\xd6&\xe8\v.\xe1?\xf8:\x8c0\xe2\x8ey\xe5?\xf8\xdfA:\xdc\x11\xc5\xe9?\xf8\x84\xf7C֔\x10\xee?\xf8\x95\xd6&\xe8\v.\xf1?\xf8:\x8c0\xe2\x8ey\xf5?\xf8\xdfA:\xdc\x11\xc5\xf9?\xf8\x84\xf7C֔\x10\xfe?\xf8\x95\xd6&\xe8\v.\x01@\xf8:\x8c0\xe2\x8ey\x05@\xf8\xdfA:\xdc\x11\xc5\t@\xf8\x84\xf7C֔\x10\x0e@\xf8\x95\xd6&\xe8\v.\x11@\xf8:\x8c0\xe2\x8ey\x15@\xf8\xdfA:\xdc\x11\xc5\x19@\xf8\x84\xf7C֔\x10\x1e@\xf8\x95\xd6&\xe8\v.!@\xf8:\x8c0\xe2\x8ey%@\xf8\xdfA:\xdc\x11\xc5)@\xf8\x84\xf7C֔\x10.@\xf8\x95\xd6&\xe8\v.1@\xf8:\x8c0\xe2\x8ey5@\xf8\xdfA:\xdc\x11\xc59@\xf8\x84\xf7C֔\x10>@\xf8\x95\xd6&\xe8\v.A@\xf8:\x8c0\xe2\x8eyE@\xf8\xdfA:\xdc\x11\xc5I@\xf8\x84\xf7C֔\x10N@\xf8\x95\xd6&\xe8\v.Q@\xf8:\x8c0\xe2\x8eyU@\xf8\xdfA:\xdc\x11\xc5Y@\xf8\x84\xf7C֔\x10^@\xf8\x95\xd6&\xe8\v.a@\xf8:\x8c0\xe2\x8eye@\xf8\xdfA:\xdc\x11\xc5i@\xf8\x84\xf7C֔\x10n@\xf8\x95\xd6&\xe8\v.q@\xf8:\x8c0\xe2\x8eyu@\xf8\xdfA:\xdc\x11\xc5y@\xf8\x84\xf7C֔\x10~@\xf8\x95\xd6&\xe8\v.\x81@\xf8:\x8c0\xe2\x8ey\x85@\xf8\xdfA:\xdc\x11ʼn@\xf8\x84\xf7C֔\x10\x8e@\xf8\x95\xd6&\xe8\v.\x91@\xf8:\x8c0\xe2\x8ey\x95@\xf8\xdfA:\xdc\x11ř@\xf8\x84\xf7C֔\x10\x9e@\xf8\x95\xd6&\xe8\v.\xa1@\xf8:\x8c0\xe2\x8ey\xa5@\xf8\xdfA:\xdc\x11ũ@\xf8\x84\xf7C֔\x10\xae@\xf8\x95\xd6&\xe8\v.\xb1@\xf8:\x8c0\xe2\x8ey\xb5@\xf8\xdfA:\xdc\x11Ź@\xf8\x84\xf7C֔\x10\xbe@\xf8\x95\xd6&\xe8\v.\xc1@\xf8:\x8c0\xe2\x8ey\xc5@\xf8\xdfA:\xdc\x11\xc5\xc9@\xf8\x84\xf7C֔\x10\xce@\xf8\x95\xd6&\xe8\v.\xd1@\xf8:\x8c0\xe2\x8ey\xd5@\xf8\xdfA:\xdc\x11\xc5\xd9@\xf8\x84\xf7C֔\x10\xde@\xf8\x95\xd6&\xe8\v.\xe1@\xf8:\x8c0\xe2\x8ey\xe5@\xf8\xdfA:\xdc\x11\xc5\xe9@\xf8\x84\xf7C֔\x10\xee@\xf8\x95\xd6&\xe8\v.\xf1@\xf8:\x8c0\xe2\x8ey\xf5@\xf8\xdfA:\xdc\x11\xc5\xf9@\xf8\x84\xf7C֔\x10\xfe@\xf8\x95\xd6&\xe8\v.\x01A\xfe\xf0\x7f\x00"
var gcPauses = "7\xff\x81\x03\x01\x01\x10Float64Histogram\x01\xff\x82\x00\x01\x02\x01\x06Counts\x01\xff\x84\x00\x01\aBuckets\x01\xff\x86\x00\x00\x00\x16\xff\x83\x02\x01\x01\b[]uint64\x01\xff\x84\x00\x01\x06\x00\x00\x17\xff\x85\x02\x01\x01\t[]float64\x01\xff\x86\x00\x01\b\x00\x00\xfe\x06R\xff\x82\x01\xff\xa2\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x01\x01\x00\x01\x00\x00\x00\x01\x01\x01\x01\x01\x01\x01\x00\x02\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\xff\xa3\xfe\xf0\xff\x00\xf8\x95\xd6&\xe8\v.q>\xf8\x95\xd6&\xe8\v.\x81>\xf8\xdfA:\xdc\x11ʼn>\xf8\x95\xd6&\xe8\v.\x91>\xf8:\x8c0\xe2\x8ey\x95>\xf8\xdfA:\xdc\x11ř>\xf8\x84\xf7C֔\x10\x9e>\xf8\x95\xd6&\xe8\v.\xa1>\xf8:\x8c0\xe2\x8ey\xa5>\xf8\xdfA:\xdc\x11ũ>\xf8\x84\xf7C֔\x10\xae>\xf8\x95\xd6&\xe8\v.\xb1>\xf8:\x8c0\xe2\x8ey\xb5>\xf8\xdfA:\xdc\x11Ź>\xf8\x84\xf7C֔\x10\xbe>\xf8\x95\xd6&\xe8\v.\xc1>\xf8:\x8c0\xe2\x8ey\xc5>\xf8\xdfA:\xdc\x11\xc5\xc9>\xf8\x84\xf7C֔\x10\xce>\xf8\x95\xd6&\xe8\v.\xd1>\xf8:\x8c0\xe2\x8ey\xd5>\xf8\xdfA:\xdc\x11\xc5\xd9>\xf8\x84\xf7C֔\x10\xde>\xf8\x95\xd6&\xe8\v.\xe1>\xf8:\x8c0\xe2\x8ey\xe5>\xf8\xdfA:\xdc\x11\xc5\xe9>\xf8\x84\xf7C֔\x10\xee>\xf8\x95\xd6&\xe8\v.\xf1>\xf8:\x8c0\xe2\x8ey\xf5>\xf8\xdfA:\xdc\x11\xc5\xf9>\xf8\x84\xf7C֔\x10\xfe>\xf8\x95\xd6&\xe8\v.\x01?\xf8:\x8c0\xe2\x8ey\x05?\xf8\xdfA:\xdc\x11\xc5\t?\xf8\x84\xf7C֔\x10\x0e?\xf8\x95\xd6&\xe8\v.\x11?\xf8:\x8c0\xe2\x8ey\x15?\xf8\xdfA:\xdc\x11\xc5\x19?\xf8\x84\xf7C֔\x10\x1e?\xf8\x95\xd6&\xe8\v.!?\xf8:\x8c0\xe2\x8ey%?\xf8\xdfA:\xdc\x11\xc5)?\xf8\x84\xf7C֔\x10.?\xf8\x95\xd6&\xe8\v.1?\xf8:\x8c0\xe2\x8ey5?\xf8\xdfA:\xdc\x11\xc59?\xf8\x84\xf7C֔\x10>?\xf8\x95\xd6&\xe8\v.A?\xf8:\x8c0\xe2\x8eyE?\xf8\xdfA:\xdc\x11\xc5I?\xf8\x84\xf7C֔\x10N?\xf8\x95\xd6&\xe8\v.Q?\xf8:\x8c0\xe2\x8eyU?\xf8\xdfA:\xdc\x11\xc5Y?\xf8\x84\xf7C֔\x10^?\xf8\x95\xd6&\xe8\v.a?\xf8:\x8c0\xe2\x8eye?\xf8\xdfA:\xdc\x11\xc5i?\xf8\x84\xf7C֔\x10n?\xf8\x95\xd6&\xe8\v.q?\xf8:\x8c0\xe2\x8eyu?\xf8\xdfA:\xdc\x11\xc5y?\xf8\x84\xf7C֔\x10~?\xf8\x95\xd6&\xe8\v.\x81?\xf8:\x8c0\xe2\x8ey\x85?\xf8\xdfA:\xdc\x11ʼn?\xf8\x84\xf7C֔\x10\x8e?\xf8\x95\xd6&\xe8\v.\x91?\xf8:\x8c0\xe2\x8ey\x95?\xf8\xdfA:\xdc\x11ř?\xf8\x84\xf7C֔\x10\x9e?\xf8\x95\xd6&\xe8\v.\xa1?\xf8:\x8c0\xe2\x8ey\xa5?\xf8\xdfA:\xdc\x11ũ?\xf8\x84\xf7C֔\x10\xae?\xf8\x95\xd6&\xe8\v.\xb1?\xf8:\x8c0\xe2\x8ey\xb5?\xf8\xdfA:\xdc\x11Ź?\xf8\x84\xf7C֔\x10\xbe?\xf8\x95\xd6&\xe8\v.\xc1?\xf8:\x8c0\xe2\x8ey\xc5?\xf8\xdfA:\xdc\x11\xc5\xc9?\xf8\x84\xf7C֔\x10\xce?\xf8\x95\xd6&\xe8\v.\xd1?\xf8:\x8c0\xe2\x8ey\xd5?\xf8\xdfA:\xdc\x11\xc5\xd9?\xf8\x84\xf7C֔\x10\xde?\xf8\x95\xd6&\xe8\v.\xe1?\xf8:\x8c0\xe2\x8ey\xe5?\xf8\xdfA:\xdc\x11\xc5\xe9?\xf8\x84\xf7C֔\x10\xee?\xf8\x95\xd6&\xe8\v.\xf1?\xf8:\x8c0\xe2\x8ey\xf5?\xf8\xdfA:\xdc\x11\xc5\xf9?\xf8\x84\xf7C֔\x10\xfe?\xf8\x95\xd6&\xe8\v.\x01@\xf8:\x8c0\xe2\x8ey\x05@\xf8\xdfA:\xdc\x11\xc5\t@\xf8\x84\xf7C֔\x10\x0e@\xf8\x95\xd6&\xe8\v.\x11@\xf8:\x8c0\xe2\x8ey\x15@\xf8\xdfA:\xdc\x11\xc5\x19@\xf8\x84\xf7C֔\x10\x1e@\xf8\x95\xd6&\xe8\v.!@\xf8:\x8c0\xe2\x8ey%@\xf8\xdfA:\xdc\x11\xc5)@\xf8\x84\xf7C֔\x10.@\xf8\x95\xd6&\xe8\v.1@\xf8:\x8c0\xe2\x8ey5@\xf8\xdfA:\xdc\x11\xc59@\xf8\x84\xf7C֔\x10>@\xf8\x95\xd6&\xe8\v.A@\xf8:\x8c0\xe2\x8eyE@\xf8\xdfA:\xdc\x11\xc5I@\xf8\x84\xf7C֔\x10N@\xf8\x95\xd6&\xe8\v.Q@\xf8:\x8c0\xe2\x8eyU@\xf8\xdfA:\xdc\x11\xc5Y@\xf8\x84\xf7C֔\x10^@\xf8\x95\xd6&\xe8\v.a@\xf8:\x8c0\xe2\x8eye@\xf8\xdfA:\xdc\x11\xc5i@\xf8\x84\xf7C֔\x10n@\xf8\x95\xd6&\xe8\v.q@\xf8:\x8c0\xe2\x8eyu@\xf8\xdfA:\xdc\x11\xc5y@\xf8\x84\xf7C֔\x10~@\xf8\x95\xd6&\xe8\v.\x81@\xf8:\x8c0\xe2\x8ey\x85@\xf8\xdfA:\xdc\x11ʼn@\xf8\x84\xf7C֔\x10\x8e@\xf8\x95\xd6&\xe8\v.\x91@\xf8:\x8c0\xe2\x8ey\x95@\xf8\xdfA:\xdc\x11ř@\xf8\x84\xf7C֔\x10\x9e@\xf8\x95\xd6&\xe8\v.\xa1@\xf8:\x8c0\xe2\x8ey\xa5@\xf8\xdfA:\xdc\x11ũ@\xf8\x84\xf7C֔\x10\xae@\xf8\x95\xd6&\xe8\v.\xb1@\xf8:\x8c0\xe2\x8ey\xb5@\xf8\xdfA:\xdc\x11Ź@\xf8\x84\xf7C֔\x10\xbe@\xf8\x95\xd6&\xe8\v.\xc1@\xf8:\x8c0\xe2\x8ey\xc5@\xf8\xdfA:\xdc\x11\xc5\xc9@\xf8\x84\xf7C֔\x10\xce@\xf8\x95\xd6&\xe8\v.\xd1@\xf8:\x8c0\xe2\x8ey\xd5@\xf8\xdfA:\xdc\x11\xc5\xd9@\xf8\x84\xf7C֔\x10\xde@\xf8\x95\xd6&\xe8\v.\xe1@\xf8:\x8c0\xe2\x8ey\xe5@\xf8\xdfA:\xdc\x11\xc5\xe9@\xf8\x84\xf7C֔\x10\xee@\xf8\x95\xd6&\xe8\v.\xf1@\xf8:\x8c0\xe2\x8ey\xf5@\xf8\xdfA:\xdc\x11\xc5\xf9@\xf8\x84\xf7C֔\x10\xfe@\xf8\x95\xd6&\xe8\v.\x01A\xfe\xf0\x7f\x00"
var secondsToNs = float64(time.Second)
dserialize := func(data string) *metrics2.Float64Histogram {
var res metrics2.Float64Histogram
if err := gob.NewDecoder(bytes.NewReader([]byte(data))).Decode(&res); err != nil {
panic(err)
}
return &res
}
cpuSchedLatency := metrics.RuntimeHistogramFromData(secondsToNs, dserialize(sLatency))
registry.Register("system/cpu/schedlatency", cpuSchedLatency)
memPauses := metrics.RuntimeHistogramFromData(secondsToNs, dserialize(gcPauses))
registry.Register("system/memory/pauses", memPauses)
}
return registry
}

View File

@ -0,0 +1,27 @@
package internal
import (
"bytes"
"encoding/gob"
"fmt"
metrics2 "runtime/metrics"
"testing"
"time"
"github.com/ethereum/go-ethereum/metrics"
)
func TestCollectRuntimeMetrics(t *testing.T) {
t.Skip("Only used for generating testdata")
serialize := func(path string, histogram *metrics2.Float64Histogram) {
var f = new(bytes.Buffer)
if err := gob.NewEncoder(f).Encode(histogram); err != nil {
panic(err)
}
fmt.Printf("var %v = %q\n", path, f.Bytes())
}
time.Sleep(2 * time.Second)
stats := metrics.ReadRuntimeStats()
serialize("schedlatency", stats.SchedLatency)
serialize("gcpauses", stats.GCPauses)
}

View File

@ -61,16 +61,16 @@ func (rep *Reporter) Run() {
// calculate sum of squares from data provided by metrics.Histogram
// see http://en.wikipedia.org/wiki/Standard_deviation#Rapid_calculation_methods
func sumSquares(s metrics.Sample) float64 {
count := float64(s.Count())
sumSquared := math.Pow(count*s.Mean(), 2)
sumSquares := math.Pow(count*s.StdDev(), 2) + sumSquared/count
func sumSquares(icount int64, mean, stDev float64) float64 {
count := float64(icount)
sumSquared := math.Pow(count*mean, 2)
sumSquares := math.Pow(count*stDev, 2) + sumSquared/count
if math.IsNaN(sumSquares) {
return 0.0
}
return sumSquares
}
func sumSquaresTimer(t metrics.Timer) float64 {
func sumSquaresTimer(t metrics.TimerSnapshot) float64 {
count := float64(t.Count())
sumSquared := math.Pow(count*t.Mean(), 2)
sumSquares := math.Pow(count*t.StdDev(), 2) + sumSquared/count
@ -97,9 +97,10 @@ func (rep *Reporter) BuildRequest(now time.Time, r metrics.Registry) (snapshot B
measurement[Period] = rep.Interval.Seconds()
switch m := metric.(type) {
case metrics.Counter:
if m.Count() > 0 {
ms := m.Snapshot()
if ms.Count() > 0 {
measurement[Name] = fmt.Sprintf("%s.%s", name, "count")
measurement[Value] = float64(m.Count())
measurement[Value] = float64(ms.Count())
measurement[Attributes] = map[string]interface{}{
DisplayUnitsLong: Operations,
DisplayUnitsShort: OperationsShort,
@ -108,9 +109,9 @@ func (rep *Reporter) BuildRequest(now time.Time, r metrics.Registry) (snapshot B
snapshot.Counters = append(snapshot.Counters, measurement)
}
case metrics.CounterFloat64:
if m.Count() > 0 {
if count := m.Snapshot().Count(); count > 0 {
measurement[Name] = fmt.Sprintf("%s.%s", name, "count")
measurement[Value] = m.Count()
measurement[Value] = count
measurement[Attributes] = map[string]interface{}{
DisplayUnitsLong: Operations,
DisplayUnitsShort: OperationsShort,
@ -120,44 +121,45 @@ func (rep *Reporter) BuildRequest(now time.Time, r metrics.Registry) (snapshot B
}
case metrics.Gauge:
measurement[Name] = name
measurement[Value] = float64(m.Value())
measurement[Value] = float64(m.Snapshot().Value())
snapshot.Gauges = append(snapshot.Gauges, measurement)
case metrics.GaugeFloat64:
measurement[Name] = name
measurement[Value] = m.Value()
measurement[Value] = m.Snapshot().Value()
snapshot.Gauges = append(snapshot.Gauges, measurement)
case metrics.GaugeInfo:
measurement[Name] = name
measurement[Value] = m.Value()
measurement[Value] = m.Snapshot().Value()
snapshot.Gauges = append(snapshot.Gauges, measurement)
case metrics.Histogram:
if m.Count() > 0 {
ms := m.Snapshot()
if ms.Count() > 0 {
gauges := make([]Measurement, histogramGaugeCount)
s := m.Sample()
measurement[Name] = fmt.Sprintf("%s.%s", name, "hist")
measurement[Count] = uint64(s.Count())
measurement[Max] = float64(s.Max())
measurement[Min] = float64(s.Min())
measurement[Sum] = float64(s.Sum())
measurement[SumSquares] = sumSquares(s)
measurement[Count] = uint64(ms.Count())
measurement[Max] = float64(ms.Max())
measurement[Min] = float64(ms.Min())
measurement[Sum] = float64(ms.Sum())
measurement[SumSquares] = sumSquares(ms.Count(), ms.Mean(), ms.StdDev())
gauges[0] = measurement
for i, p := range rep.Percentiles {
gauges[i+1] = Measurement{
Name: fmt.Sprintf("%s.%.2f", measurement[Name], p),
Value: s.Percentile(p),
Value: ms.Percentile(p),
Period: measurement[Period],
}
}
snapshot.Gauges = append(snapshot.Gauges, gauges...)
}
case metrics.Meter:
ms := m.Snapshot()
measurement[Name] = name
measurement[Value] = float64(m.Count())
measurement[Value] = float64(ms.Count())
snapshot.Counters = append(snapshot.Counters, measurement)
snapshot.Gauges = append(snapshot.Gauges,
Measurement{
Name: fmt.Sprintf("%s.%s", name, "1min"),
Value: m.Rate1(),
Value: ms.Rate1(),
Period: int64(rep.Interval.Seconds()),
Attributes: map[string]interface{}{
DisplayUnitsLong: Operations,
@ -167,7 +169,7 @@ func (rep *Reporter) BuildRequest(now time.Time, r metrics.Registry) (snapshot B
},
Measurement{
Name: fmt.Sprintf("%s.%s", name, "5min"),
Value: m.Rate5(),
Value: ms.Rate5(),
Period: int64(rep.Interval.Seconds()),
Attributes: map[string]interface{}{
DisplayUnitsLong: Operations,
@ -177,7 +179,7 @@ func (rep *Reporter) BuildRequest(now time.Time, r metrics.Registry) (snapshot B
},
Measurement{
Name: fmt.Sprintf("%s.%s", name, "15min"),
Value: m.Rate15(),
Value: ms.Rate15(),
Period: int64(rep.Interval.Seconds()),
Attributes: map[string]interface{}{
DisplayUnitsLong: Operations,
@ -187,26 +189,27 @@ func (rep *Reporter) BuildRequest(now time.Time, r metrics.Registry) (snapshot B
},
)
case metrics.Timer:
ms := m.Snapshot()
measurement[Name] = name
measurement[Value] = float64(m.Count())
measurement[Value] = float64(ms.Count())
snapshot.Counters = append(snapshot.Counters, measurement)
if m.Count() > 0 {
if ms.Count() > 0 {
libratoName := fmt.Sprintf("%s.%s", name, "timer.mean")
gauges := make([]Measurement, histogramGaugeCount)
gauges[0] = Measurement{
Name: libratoName,
Count: uint64(m.Count()),
Sum: m.Mean() * float64(m.Count()),
Max: float64(m.Max()),
Min: float64(m.Min()),
SumSquares: sumSquaresTimer(m),
Count: uint64(ms.Count()),
Sum: ms.Mean() * float64(ms.Count()),
Max: float64(ms.Max()),
Min: float64(ms.Min()),
SumSquares: sumSquaresTimer(ms),
Period: int64(rep.Interval.Seconds()),
Attributes: rep.TimerAttributes,
}
for i, p := range rep.Percentiles {
gauges[i+1] = Measurement{
Name: fmt.Sprintf("%s.timer.%2.0f", name, p*100),
Value: m.Percentile(p),
Value: ms.Percentile(p),
Period: int64(rep.Interval.Seconds()),
Attributes: rep.TimerAttributes,
}
@ -215,7 +218,7 @@ func (rep *Reporter) BuildRequest(now time.Time, r metrics.Registry) (snapshot B
snapshot.Gauges = append(snapshot.Gauges,
Measurement{
Name: fmt.Sprintf("%s.%s", name, "rate.1min"),
Value: m.Rate1(),
Value: ms.Rate1(),
Period: int64(rep.Interval.Seconds()),
Attributes: map[string]interface{}{
DisplayUnitsLong: Operations,
@ -225,7 +228,7 @@ func (rep *Reporter) BuildRequest(now time.Time, r metrics.Registry) (snapshot B
},
Measurement{
Name: fmt.Sprintf("%s.%s", name, "rate.5min"),
Value: m.Rate5(),
Value: ms.Rate5(),
Period: int64(rep.Interval.Seconds()),
Attributes: map[string]interface{}{
DisplayUnitsLong: Operations,
@ -235,7 +238,7 @@ func (rep *Reporter) BuildRequest(now time.Time, r metrics.Registry) (snapshot B
},
Measurement{
Name: fmt.Sprintf("%s.%s", name, "rate.15min"),
Value: m.Rate15(),
Value: ms.Rate15(),
Period: int64(rep.Interval.Seconds()),
Attributes: map[string]interface{}{
DisplayUnitsLong: Operations,

View File

@ -23,19 +23,19 @@ func LogScaled(r Registry, freq time.Duration, scale time.Duration, l Logger) {
switch metric := i.(type) {
case Counter:
l.Printf("counter %s\n", name)
l.Printf(" count: %9d\n", metric.Count())
l.Printf(" count: %9d\n", metric.Snapshot().Count())
case CounterFloat64:
l.Printf("counter %s\n", name)
l.Printf(" count: %f\n", metric.Count())
l.Printf(" count: %f\n", metric.Snapshot().Count())
case Gauge:
l.Printf("gauge %s\n", name)
l.Printf(" value: %9d\n", metric.Value())
l.Printf(" value: %9d\n", metric.Snapshot().Value())
case GaugeFloat64:
l.Printf("gauge %s\n", name)
l.Printf(" value: %f\n", metric.Value())
l.Printf(" value: %f\n", metric.Snapshot().Value())
case GaugeInfo:
l.Printf("gauge %s\n", name)
l.Printf(" value: %s\n", metric.Value())
l.Printf(" value: %s\n", metric.Snapshot().Value())
case Healthcheck:
metric.Check()
l.Printf("healthcheck %s\n", name)

View File

@ -1,21 +1,25 @@
package metrics
import (
"math"
"sync"
"sync/atomic"
"time"
)
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
type MeterSnapshot interface {
Count() int64
Mark(int64)
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
Snapshot() Meter
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
@ -30,17 +34,6 @@ func GetOrRegisterMeter(name string, r Registry) Meter {
return r.GetOrRegister(name, NewMeter).(Meter)
}
// GetOrRegisterMeterForced returns an existing Meter or constructs and registers a
// new StandardMeter no matter the global switch is enabled or not.
// Be sure to unregister the meter from the registry once it is of no use to
// allow for garbage collection.
func GetOrRegisterMeterForced(name string, r Registry) Meter {
if nil == r {
r = DefaultRegistry
}
return r.GetOrRegister(name, NewMeterForced).(Meter)
}
// NewMeter constructs a new StandardMeter and launches a goroutine.
// Be sure to call Stop() once the meter is of no use to allow for garbage collection.
func NewMeter() Meter {
@ -68,115 +61,53 @@ func NewInactiveMeter() Meter {
return m
}
// NewMeterForced constructs a new StandardMeter and launches a goroutine no matter
// the global switch is enabled or not.
// Be sure to call Stop() once the meter is of no use to allow for garbage collection.
func NewMeterForced() Meter {
m := newStandardMeter()
arbiter.Lock()
defer arbiter.Unlock()
arbiter.meters[m] = struct{}{}
if !arbiter.started {
arbiter.started = true
go arbiter.tick()
}
return m
}
// NewRegisteredMeter constructs and registers a new StandardMeter
// and launches a goroutine.
// Be sure to unregister the meter from the registry once it is of no use to
// allow for garbage collection.
func NewRegisteredMeter(name string, r Registry) Meter {
c := NewMeter()
if nil == r {
r = DefaultRegistry
}
r.Register(name, c)
return c
return GetOrRegisterMeter(name, r)
}
// NewRegisteredMeterForced constructs and registers a new StandardMeter
// and launches a goroutine no matter the global switch is enabled or not.
// Be sure to unregister the meter from the registry once it is of no use to
// allow for garbage collection.
func NewRegisteredMeterForced(name string, r Registry) Meter {
c := NewMeterForced()
if nil == r {
r = DefaultRegistry
}
r.Register(name, c)
return c
}
// MeterSnapshot is a read-only copy of another Meter.
type MeterSnapshot struct {
temp atomic.Int64
// meterSnapshot is a read-only copy of the meter's internal values.
type meterSnapshot struct {
count int64
rate1, rate5, rate15, rateMean float64
}
// Count returns the count of events at the time the snapshot was taken.
func (m *MeterSnapshot) Count() int64 { return m.count }
// Mark panics.
func (*MeterSnapshot) Mark(n int64) {
panic("Mark called on a MeterSnapshot")
}
func (m *meterSnapshot) Count() int64 { return m.count }
// Rate1 returns the one-minute moving average rate of events per second at the
// time the snapshot was taken.
func (m *MeterSnapshot) Rate1() float64 { return m.rate1 }
func (m *meterSnapshot) Rate1() float64 { return m.rate1 }
// Rate5 returns the five-minute moving average rate of events per second at
// the time the snapshot was taken.
func (m *MeterSnapshot) Rate5() float64 { return m.rate5 }
func (m *meterSnapshot) Rate5() float64 { return m.rate5 }
// Rate15 returns the fifteen-minute moving average rate of events per second
// at the time the snapshot was taken.
func (m *MeterSnapshot) Rate15() float64 { return m.rate15 }
func (m *meterSnapshot) Rate15() float64 { return m.rate15 }
// RateMean returns the meter's mean rate of events per second at the time the
// snapshot was taken.
func (m *MeterSnapshot) RateMean() float64 { return m.rateMean }
// Snapshot returns the snapshot.
func (m *MeterSnapshot) Snapshot() Meter { return m }
// Stop is a no-op.
func (m *MeterSnapshot) Stop() {}
func (m *meterSnapshot) RateMean() float64 { return m.rateMean }
// NilMeter is a no-op Meter.
type NilMeter struct{}
// Count is a no-op.
func (NilMeter) Count() int64 { return 0 }
// Mark is a no-op.
func (NilMeter) Mark(n int64) {}
// Rate1 is a no-op.
func (NilMeter) Rate1() float64 { return 0.0 }
// Rate5 is a no-op.
func (NilMeter) Rate5() float64 { return 0.0 }
// Rate15 is a no-op.
func (NilMeter) Rate15() float64 { return 0.0 }
// RateMean is a no-op.
func (NilMeter) RateMean() float64 { return 0.0 }
// Snapshot is a no-op.
func (NilMeter) Snapshot() Meter { return NilMeter{} }
// Stop is a no-op.
func (NilMeter) Stop() {}
func (NilMeter) Count() int64 { return 0 }
func (NilMeter) Mark(n int64) {}
func (NilMeter) Snapshot() MeterSnapshot { return (*emptySnapshot)(nil) }
func (NilMeter) Stop() {}
// StandardMeter is the standard implementation of a Meter.
type StandardMeter struct {
lock sync.RWMutex
snapshot *MeterSnapshot
count atomic.Int64
uncounted atomic.Int64 // not yet added to the EWMAs
rateMean atomic.Uint64
a1, a5, a15 EWMA
startTime time.Time
stopped atomic.Bool
@ -184,7 +115,6 @@ type StandardMeter struct {
func newStandardMeter() *StandardMeter {
return &StandardMeter{
snapshot: &MeterSnapshot{},
a1: NewEWMA1(),
a5: NewEWMA5(),
a15: NewEWMA15(),
@ -194,97 +124,42 @@ func newStandardMeter() *StandardMeter {
// Stop stops the meter, Mark() will be a no-op if you use it after being stopped.
func (m *StandardMeter) Stop() {
stopped := m.stopped.Swap(true)
if !stopped {
if stopped := m.stopped.Swap(true); !stopped {
arbiter.Lock()
delete(arbiter.meters, m)
arbiter.Unlock()
}
}
// Count returns the number of events recorded.
// It updates the meter to be as accurate as possible
func (m *StandardMeter) Count() int64 {
m.lock.Lock()
defer m.lock.Unlock()
m.updateMeter()
return m.snapshot.count
}
// Mark records the occurrence of n events.
func (m *StandardMeter) Mark(n int64) {
m.snapshot.temp.Add(n)
}
// Rate1 returns the one-minute moving average rate of events per second.
func (m *StandardMeter) Rate1() float64 {
m.lock.RLock()
defer m.lock.RUnlock()
return m.snapshot.rate1
}
// Rate5 returns the five-minute moving average rate of events per second.
func (m *StandardMeter) Rate5() float64 {
m.lock.RLock()
defer m.lock.RUnlock()
return m.snapshot.rate5
}
// Rate15 returns the fifteen-minute moving average rate of events per second.
func (m *StandardMeter) Rate15() float64 {
m.lock.RLock()
defer m.lock.RUnlock()
return m.snapshot.rate15
}
// RateMean returns the meter's mean rate of events per second.
func (m *StandardMeter) RateMean() float64 {
m.lock.RLock()
defer m.lock.RUnlock()
return m.snapshot.rateMean
m.uncounted.Add(n)
}
// Snapshot returns a read-only copy of the meter.
func (m *StandardMeter) Snapshot() Meter {
m.lock.RLock()
snapshot := MeterSnapshot{
count: m.snapshot.count,
rate1: m.snapshot.rate1,
rate5: m.snapshot.rate5,
rate15: m.snapshot.rate15,
rateMean: m.snapshot.rateMean,
func (m *StandardMeter) Snapshot() MeterSnapshot {
return &meterSnapshot{
count: m.count.Load() + m.uncounted.Load(),
rate1: m.a1.Snapshot().Rate(),
rate5: m.a5.Snapshot().Rate(),
rate15: m.a15.Snapshot().Rate(),
rateMean: math.Float64frombits(m.rateMean.Load()),
}
snapshot.temp.Store(m.snapshot.temp.Load())
m.lock.RUnlock()
return &snapshot
}
func (m *StandardMeter) updateSnapshot() {
// should run with write lock held on m.lock
snapshot := m.snapshot
snapshot.rate1 = m.a1.Rate()
snapshot.rate5 = m.a5.Rate()
snapshot.rate15 = m.a15.Rate()
snapshot.rateMean = float64(snapshot.count) / time.Since(m.startTime).Seconds()
}
func (m *StandardMeter) updateMeter() {
// should only run with write lock held on m.lock
n := m.snapshot.temp.Swap(0)
m.snapshot.count += n
m.a1.Update(n)
m.a5.Update(n)
m.a15.Update(n)
}
func (m *StandardMeter) tick() {
m.lock.Lock()
defer m.lock.Unlock()
m.updateMeter()
// Take the uncounted values, add to count
n := m.uncounted.Swap(0)
count := m.count.Add(n)
m.rateMean.Store(math.Float64bits(float64(count) / time.Since(m.startTime).Seconds()))
// Update the EWMA's internal state
m.a1.Update(n)
m.a5.Update(n)
m.a15.Update(n)
// And trigger them to calculate the rates
m.a1.Tick()
m.a5.Tick()
m.a15.Tick()
m.updateSnapshot()
}
// meterArbiter ticks meters every 5s from a single goroutine.

View File

@ -12,11 +12,17 @@ func BenchmarkMeter(b *testing.B) {
m.Mark(1)
}
}
func TestMeter(t *testing.T) {
m := NewMeter()
m.Mark(47)
if v := m.Snapshot().Count(); v != 47 {
t.Fatalf("have %d want %d", v, 47)
}
}
func TestGetOrRegisterMeter(t *testing.T) {
r := NewRegistry()
NewRegisteredMeter("foo", r).Mark(47)
if m := GetOrRegisterMeter("foo", r); m.Count() != 47 {
if m := GetOrRegisterMeter("foo", r).Snapshot(); m.Count() != 47 {
t.Fatal(m.Count())
}
}
@ -31,10 +37,10 @@ func TestMeterDecay(t *testing.T) {
ma.meters[m] = struct{}{}
m.Mark(1)
ma.tickMeters()
rateMean := m.RateMean()
rateMean := m.Snapshot().RateMean()
time.Sleep(100 * time.Millisecond)
ma.tickMeters()
if m.RateMean() >= rateMean {
if m.Snapshot().RateMean() >= rateMean {
t.Error("m.RateMean() didn't decrease")
}
}
@ -42,7 +48,7 @@ func TestMeterDecay(t *testing.T) {
func TestMeterNonzero(t *testing.T) {
m := NewMeter()
m.Mark(3)
if count := m.Count(); count != 3 {
if count := m.Snapshot().Count(); count != 3 {
t.Errorf("m.Count(): 3 != %v\n", count)
}
}
@ -59,16 +65,8 @@ func TestMeterStop(t *testing.T) {
}
}
func TestMeterSnapshot(t *testing.T) {
m := NewMeter()
m.Mark(1)
if snapshot := m.Snapshot(); m.RateMean() != snapshot.RateMean() {
t.Fatal(snapshot)
}
}
func TestMeterZero(t *testing.T) {
m := NewMeter()
m := NewMeter().Snapshot()
if count := m.Count(); count != 0 {
t.Errorf("m.Count(): 0 != %v\n", count)
}
@ -79,13 +77,13 @@ func TestMeterRepeat(t *testing.T) {
for i := 0; i < 101; i++ {
m.Mark(int64(i))
}
if count := m.Count(); count != 5050 {
if count := m.Snapshot().Count(); count != 5050 {
t.Errorf("m.Count(): 5050 != %v\n", count)
}
for i := 0; i < 101; i++ {
m.Mark(int64(i))
}
if count := m.Count(); count != 10100 {
if count := m.Snapshot().Count(); count != 10100 {
t.Errorf("m.Count(): 10100 != %v\n", count)
}
}

View File

@ -85,6 +85,12 @@ var runtimeSamples = []metrics.Sample{
{Name: "/sched/latencies:seconds"}, // histogram
}
func ReadRuntimeStats() *runtimeStats {
r := new(runtimeStats)
readRuntimeStats(r)
return r
}
func readRuntimeStats(v *runtimeStats) {
metrics.Read(runtimeSamples)
for _, s := range runtimeSamples {

View File

@ -98,8 +98,8 @@ func Example() {
t.Time(func() { time.Sleep(10 * time.Millisecond) })
t.Update(1)
fmt.Println(c.Count())
fmt.Println(t.Min())
fmt.Println(c.Snapshot().Count())
fmt.Println(t.Snapshot().Min())
// Output: 17
// 1
}

View File

@ -65,15 +65,15 @@ func (c *OpenTSDBConfig) writeRegistry(w io.Writer, now int64, shortHostname str
c.Registry.Each(func(name string, i interface{}) {
switch metric := i.(type) {
case Counter:
fmt.Fprintf(w, "put %s.%s.count %d %d host=%s\n", c.Prefix, name, now, metric.Count(), shortHostname)
fmt.Fprintf(w, "put %s.%s.count %d %d host=%s\n", c.Prefix, name, now, metric.Snapshot().Count(), shortHostname)
case CounterFloat64:
fmt.Fprintf(w, "put %s.%s.count %d %f host=%s\n", c.Prefix, name, now, metric.Count(), shortHostname)
fmt.Fprintf(w, "put %s.%s.count %d %f host=%s\n", c.Prefix, name, now, metric.Snapshot().Count(), shortHostname)
case Gauge:
fmt.Fprintf(w, "put %s.%s.value %d %d host=%s\n", c.Prefix, name, now, metric.Value(), shortHostname)
fmt.Fprintf(w, "put %s.%s.value %d %d host=%s\n", c.Prefix, name, now, metric.Snapshot().Value(), shortHostname)
case GaugeFloat64:
fmt.Fprintf(w, "put %s.%s.value %d %f host=%s\n", c.Prefix, name, now, metric.Value(), shortHostname)
fmt.Fprintf(w, "put %s.%s.value %d %f host=%s\n", c.Prefix, name, now, metric.Snapshot().Value(), shortHostname)
case GaugeInfo:
fmt.Fprintf(w, "put %s.%s.value %d %s host=%s\n", c.Prefix, name, now, metric.Value().String(), shortHostname)
fmt.Fprintf(w, "put %s.%s.value %d %s host=%s\n", c.Prefix, name, now, metric.Snapshot().Value().String(), shortHostname)
case Histogram:
h := metric.Snapshot()
ps := h.Percentiles([]float64{0.5, 0.75, 0.95, 0.99, 0.999})

View File

@ -1,6 +1,7 @@
package metrics
import (
"fmt"
"net"
"os"
"strings"
@ -47,5 +48,19 @@ func TestExampleOpenTSB(t *testing.T) {
}
if have, want := w.String(), string(wantB); have != want {
t.Errorf("\nhave:\n%v\nwant:\n%v\n", have, want)
t.Logf("have vs want:\n%v", findFirstDiffPos(have, want))
}
}
func findFirstDiffPos(a, b string) string {
yy := strings.Split(b, "\n")
for i, x := range strings.Split(a, "\n") {
if i >= len(yy) {
return fmt.Sprintf("have:%d: %s\nwant:%d: <EOF>", i, x, i)
}
if y := yy[i]; x != y {
return fmt.Sprintf("have:%d: %s\nwant:%d: %s", i, x, i, y)
}
}
return ""
}

View File

@ -75,27 +75,27 @@ func (c *collector) Add(name string, i any) error {
return nil
}
func (c *collector) addCounter(name string, m metrics.Counter) {
func (c *collector) addCounter(name string, m metrics.CounterSnapshot) {
c.writeGaugeCounter(name, m.Count())
}
func (c *collector) addCounterFloat64(name string, m metrics.CounterFloat64) {
func (c *collector) addCounterFloat64(name string, m metrics.CounterFloat64Snapshot) {
c.writeGaugeCounter(name, m.Count())
}
func (c *collector) addGauge(name string, m metrics.Gauge) {
func (c *collector) addGauge(name string, m metrics.GaugeSnapshot) {
c.writeGaugeCounter(name, m.Value())
}
func (c *collector) addGaugeFloat64(name string, m metrics.GaugeFloat64) {
func (c *collector) addGaugeFloat64(name string, m metrics.GaugeFloat64Snapshot) {
c.writeGaugeCounter(name, m.Value())
}
func (c *collector) addGaugeInfo(name string, m metrics.GaugeInfo) {
func (c *collector) addGaugeInfo(name string, m metrics.GaugeInfoSnapshot) {
c.writeGaugeInfo(name, m.Value())
}
func (c *collector) addHistogram(name string, m metrics.Histogram) {
func (c *collector) addHistogram(name string, m metrics.HistogramSnapshot) {
pv := []float64{0.5, 0.75, 0.95, 0.99, 0.999, 0.9999}
ps := m.Percentiles(pv)
c.writeSummaryCounter(name, m.Count())
@ -106,11 +106,11 @@ func (c *collector) addHistogram(name string, m metrics.Histogram) {
c.buff.WriteRune('\n')
}
func (c *collector) addMeter(name string, m metrics.Meter) {
func (c *collector) addMeter(name string, m metrics.MeterSnapshot) {
c.writeGaugeCounter(name, m.Count())
}
func (c *collector) addTimer(name string, m metrics.Timer) {
func (c *collector) addTimer(name string, m metrics.TimerSnapshot) {
pv := []float64{0.5, 0.75, 0.95, 0.99, 0.999, 0.9999}
ps := m.Percentiles(pv)
c.writeSummaryCounter(name, m.Count())
@ -121,13 +121,12 @@ func (c *collector) addTimer(name string, m metrics.Timer) {
c.buff.WriteRune('\n')
}
func (c *collector) addResettingTimer(name string, m metrics.ResettingTimer) {
if len(m.Values()) <= 0 {
func (c *collector) addResettingTimer(name string, m metrics.ResettingTimerSnapshot) {
if m.Count() <= 0 {
return
}
ps := m.Percentiles([]float64{50, 95, 99})
val := m.Values()
c.writeSummaryCounter(name, len(val))
ps := m.Percentiles([]float64{0.50, 0.95, 0.99})
c.writeSummaryCounter(name, m.Count())
c.buff.WriteString(fmt.Sprintf(typeSummaryTpl, mutateKey(name)))
c.writeSummaryPercentile(name, "0.50", ps[0])
c.writeSummaryPercentile(name, "0.95", ps[1])

View File

@ -55,10 +55,10 @@ func findFirstDiffPos(a, b string) string {
yy := strings.Split(b, "\n")
for i, x := range strings.Split(a, "\n") {
if i >= len(yy) {
return fmt.Sprintf("a:%d: %s\nb:%d: <EOF>", i, x, i)
return fmt.Sprintf("have:%d: %s\nwant:%d: <EOF>", i, x, i)
}
if y := yy[i]; x != y {
return fmt.Sprintf("a:%d: %s\nb:%d: %s", i, x, i, y)
return fmt.Sprintf("have:%d: %s\nwant:%d: %s", i, x, i, y)
}
}
return ""

View File

@ -1,3 +1,25 @@
# TYPE system_cpu_schedlatency_count counter
system_cpu_schedlatency_count 5645
# TYPE system_cpu_schedlatency summary
system_cpu_schedlatency {quantile="0.5"} 0
system_cpu_schedlatency {quantile="0.75"} 7168
system_cpu_schedlatency {quantile="0.95"} 1.6777216e+07
system_cpu_schedlatency {quantile="0.99"} 2.9360128e+07
system_cpu_schedlatency {quantile="0.999"} 3.3554432e+07
system_cpu_schedlatency {quantile="0.9999"} 3.3554432e+07
# TYPE system_memory_pauses_count counter
system_memory_pauses_count 14
# TYPE system_memory_pauses summary
system_memory_pauses {quantile="0.5"} 32768
system_memory_pauses {quantile="0.75"} 57344
system_memory_pauses {quantile="0.95"} 196608
system_memory_pauses {quantile="0.99"} 196608
system_memory_pauses {quantile="0.999"} 196608
system_memory_pauses {quantile="0.9999"} 196608
# TYPE test_counter gauge
test_counter 12345
@ -31,9 +53,9 @@ test_meter 0
test_resetting_timer_count 6
# TYPE test_resetting_timer summary
test_resetting_timer {quantile="0.50"} 12000000
test_resetting_timer {quantile="0.95"} 120000000
test_resetting_timer {quantile="0.99"} 120000000
test_resetting_timer {quantile="0.50"} 1.25e+07
test_resetting_timer {quantile="0.95"} 1.2e+08
test_resetting_timer {quantile="0.99"} 1.2e+08
# TYPE test_timer_count counter
test_timer_count 6

View File

@ -150,13 +150,13 @@ func (r *StandardRegistry) GetAll() map[string]map[string]interface{} {
values := make(map[string]interface{})
switch metric := i.(type) {
case Counter:
values["count"] = metric.Count()
values["count"] = metric.Snapshot().Count()
case CounterFloat64:
values["count"] = metric.Count()
values["count"] = metric.Snapshot().Count()
case Gauge:
values["value"] = metric.Value()
values["value"] = metric.Snapshot().Value()
case GaugeFloat64:
values["value"] = metric.Value()
values["value"] = metric.Snapshot().Value()
case Healthcheck:
values["error"] = nil
metric.Check()

View File

@ -85,11 +85,11 @@ func TestRegistryDuplicate(t *testing.T) {
func TestRegistryGet(t *testing.T) {
r := NewRegistry()
r.Register("foo", NewCounter())
if count := r.Get("foo").(Counter).Count(); count != 0 {
if count := r.Get("foo").(Counter).Snapshot().Count(); count != 0 {
t.Fatal(count)
}
r.Get("foo").(Counter).Inc(1)
if count := r.Get("foo").(Counter).Count(); count != 1 {
if count := r.Get("foo").(Counter).Snapshot().Count(); count != 1 {
t.Fatal(count)
}
}

View File

@ -17,7 +17,7 @@ type resettingSample struct {
}
// Snapshot returns a read-only copy of the sample with the original reset.
func (rs *resettingSample) Snapshot() Sample {
func (rs *resettingSample) Snapshot() SampleSnapshot {
s := rs.Sample.Snapshot()
rs.Sample.Clear()
return s

View File

@ -1,22 +1,24 @@
package metrics
import (
"math"
"sync"
"time"
"golang.org/x/exp/slices"
)
// Initial slice capacity for the values stored in a ResettingTimer
const InitialResettingTimerSliceCap = 10
type ResettingTimerSnapshot interface {
Count() int
Mean() float64
Max() int64
Min() int64
Percentiles([]float64) []float64
}
// ResettingTimer is used for storing aggregated values for timers, which are reset on every flush interval.
type ResettingTimer interface {
Values() []int64
Snapshot() ResettingTimer
Percentiles([]float64) []int64
Mean() float64
Snapshot() ResettingTimerSnapshot
Time(func())
Update(time.Duration)
UpdateSince(time.Time)
@ -52,70 +54,40 @@ func NewResettingTimer() ResettingTimer {
}
// NilResettingTimer is a no-op ResettingTimer.
type NilResettingTimer struct {
}
type NilResettingTimer struct{}
// Values is a no-op.
func (NilResettingTimer) Values() []int64 { return nil }
// Snapshot is a no-op.
func (NilResettingTimer) Snapshot() ResettingTimer {
return &ResettingTimerSnapshot{
values: []int64{},
}
}
// Time is a no-op.
func (NilResettingTimer) Time(f func()) { f() }
// Update is a no-op.
func (NilResettingTimer) Update(time.Duration) {}
// Percentiles panics.
func (NilResettingTimer) Percentiles([]float64) []int64 {
panic("Percentiles called on a NilResettingTimer")
}
// Mean panics.
func (NilResettingTimer) Mean() float64 {
panic("Mean called on a NilResettingTimer")
}
// UpdateSince is a no-op.
func (NilResettingTimer) UpdateSince(time.Time) {}
func (NilResettingTimer) Values() []int64 { return nil }
func (n NilResettingTimer) Snapshot() ResettingTimerSnapshot { return n }
func (NilResettingTimer) Time(f func()) { f() }
func (NilResettingTimer) Update(time.Duration) {}
func (NilResettingTimer) Percentiles([]float64) []float64 { return nil }
func (NilResettingTimer) Mean() float64 { return 0.0 }
func (NilResettingTimer) Max() int64 { return 0 }
func (NilResettingTimer) Min() int64 { return 0 }
func (NilResettingTimer) UpdateSince(time.Time) {}
func (NilResettingTimer) Count() int { return 0 }
// StandardResettingTimer is the standard implementation of a ResettingTimer.
// and Meter.
type StandardResettingTimer struct {
values []int64
mutex sync.Mutex
}
sum int64 // sum is a running count of the total sum, used later to calculate mean
// Values returns a slice with all measurements.
func (t *StandardResettingTimer) Values() []int64 {
return t.values
mutex sync.Mutex
}
// Snapshot resets the timer and returns a read-only copy of its contents.
func (t *StandardResettingTimer) Snapshot() ResettingTimer {
func (t *StandardResettingTimer) Snapshot() ResettingTimerSnapshot {
t.mutex.Lock()
defer t.mutex.Unlock()
currentValues := t.values
t.values = make([]int64, 0, InitialResettingTimerSliceCap)
return &ResettingTimerSnapshot{
values: currentValues,
snapshot := &resettingTimerSnapshot{}
if len(t.values) > 0 {
snapshot.mean = float64(t.sum) / float64(len(t.values))
snapshot.values = t.values
t.values = make([]int64, 0, InitialResettingTimerSliceCap)
}
}
// Percentiles panics.
func (t *StandardResettingTimer) Percentiles([]float64) []int64 {
panic("Percentiles called on a StandardResettingTimer")
}
// Mean panics.
func (t *StandardResettingTimer) Mean() float64 {
panic("Mean called on a StandardResettingTimer")
t.sum = 0
return snapshot
}
// Record the duration of the execution of the given function.
@ -130,106 +102,70 @@ func (t *StandardResettingTimer) Update(d time.Duration) {
t.mutex.Lock()
defer t.mutex.Unlock()
t.values = append(t.values, int64(d))
t.sum += int64(d)
}
// Record the duration of an event that started at a time and ends now.
func (t *StandardResettingTimer) UpdateSince(ts time.Time) {
t.mutex.Lock()
defer t.mutex.Unlock()
t.values = append(t.values, int64(time.Since(ts)))
t.Update(time.Since(ts))
}
// ResettingTimerSnapshot is a point-in-time copy of another ResettingTimer.
type ResettingTimerSnapshot struct {
// resettingTimerSnapshot is a point-in-time copy of another ResettingTimer.
type resettingTimerSnapshot struct {
values []int64
mean float64
thresholdBoundaries []int64
max int64
min int64
thresholdBoundaries []float64
calculated bool
}
// Snapshot returns the snapshot.
func (t *ResettingTimerSnapshot) Snapshot() ResettingTimer { return t }
// Time panics.
func (*ResettingTimerSnapshot) Time(func()) {
panic("Time called on a ResettingTimerSnapshot")
}
// Update panics.
func (*ResettingTimerSnapshot) Update(time.Duration) {
panic("Update called on a ResettingTimerSnapshot")
}
// UpdateSince panics.
func (*ResettingTimerSnapshot) UpdateSince(time.Time) {
panic("UpdateSince called on a ResettingTimerSnapshot")
}
// Values returns all values from snapshot.
func (t *ResettingTimerSnapshot) Values() []int64 {
return t.values
// Count return the length of the values from snapshot.
func (t *resettingTimerSnapshot) Count() int {
return len(t.values)
}
// Percentiles returns the boundaries for the input percentiles.
func (t *ResettingTimerSnapshot) Percentiles(percentiles []float64) []int64 {
// note: this method is not thread safe
func (t *resettingTimerSnapshot) Percentiles(percentiles []float64) []float64 {
t.calc(percentiles)
return t.thresholdBoundaries
}
// Mean returns the mean of the snapshotted values
func (t *ResettingTimerSnapshot) Mean() float64 {
// note: this method is not thread safe
func (t *resettingTimerSnapshot) Mean() float64 {
if !t.calculated {
t.calc([]float64{})
t.calc(nil)
}
return t.mean
}
func (t *ResettingTimerSnapshot) calc(percentiles []float64) {
slices.Sort(t.values)
count := len(t.values)
if count > 0 {
min := t.values[0]
max := t.values[count-1]
cumulativeValues := make([]int64, count)
cumulativeValues[0] = min
for i := 1; i < count; i++ {
cumulativeValues[i] = t.values[i] + cumulativeValues[i-1]
}
t.thresholdBoundaries = make([]int64, len(percentiles))
thresholdBoundary := max
for i, pct := range percentiles {
if count > 1 {
var abs float64
if pct >= 0 {
abs = pct
} else {
abs = 100 + pct
}
// poor man's math.Round(x):
// math.Floor(x + 0.5)
indexOfPerc := int(math.Floor(((abs / 100.0) * float64(count)) + 0.5))
if pct >= 0 && indexOfPerc > 0 {
indexOfPerc -= 1 // index offset=0
}
thresholdBoundary = t.values[indexOfPerc]
}
t.thresholdBoundaries[i] = thresholdBoundary
}
sum := cumulativeValues[count-1]
t.mean = float64(sum) / float64(count)
} else {
t.thresholdBoundaries = make([]int64, len(percentiles))
t.mean = 0
// Max returns the max of the snapshotted values
// note: this method is not thread safe
func (t *resettingTimerSnapshot) Max() int64 {
if !t.calculated {
t.calc(nil)
}
t.calculated = true
return t.max
}
// Min returns the min of the snapshotted values
// note: this method is not thread safe
func (t *resettingTimerSnapshot) Min() int64 {
if !t.calculated {
t.calc(nil)
}
return t.min
}
func (t *resettingTimerSnapshot) calc(percentiles []float64) {
scores := CalculatePercentiles(t.values, percentiles)
t.thresholdBoundaries = scores
if len(t.values) == 0 {
return
}
t.min = t.values[0]
t.max = t.values[len(t.values)-1]
}

View File

@ -10,9 +10,9 @@ func TestResettingTimer(t *testing.T) {
values []int64
start int
end int
wantP50 int64
wantP95 int64
wantP99 int64
wantP50 float64
wantP95 float64
wantP99 float64
wantMean float64
wantMin int64
wantMax int64
@ -21,14 +21,14 @@ func TestResettingTimer(t *testing.T) {
values: []int64{},
start: 1,
end: 11,
wantP50: 5, wantP95: 10, wantP99: 10,
wantP50: 5.5, wantP95: 10, wantP99: 10,
wantMin: 1, wantMax: 10, wantMean: 5.5,
},
{
values: []int64{},
start: 1,
end: 101,
wantP50: 50, wantP95: 95, wantP99: 99,
wantP50: 50.5, wantP95: 95.94999999999999, wantP99: 99.99,
wantMin: 1, wantMax: 100, wantMean: 50.5,
},
{
@ -56,11 +56,11 @@ func TestResettingTimer(t *testing.T) {
values: []int64{1, 10},
start: 0,
end: 0,
wantP50: 1, wantP95: 10, wantP99: 10,
wantP50: 5.5, wantP95: 10, wantP99: 10,
wantMin: 1, wantMax: 10, wantMean: 5.5,
},
}
for ind, tt := range tests {
for i, tt := range tests {
timer := NewResettingTimer()
for i := tt.start; i < tt.end; i++ {
@ -70,37 +70,27 @@ func TestResettingTimer(t *testing.T) {
for _, v := range tt.values {
timer.Update(time.Duration(v))
}
snap := timer.Snapshot()
ps := snap.Percentiles([]float64{50, 95, 99})
ps := snap.Percentiles([]float64{0.50, 0.95, 0.99})
val := snap.Values()
if len(val) > 0 {
if tt.wantMin != val[0] {
t.Fatalf("%d: min: got %d, want %d", ind, val[0], tt.wantMin)
}
if tt.wantMax != val[len(val)-1] {
t.Fatalf("%d: max: got %d, want %d", ind, val[len(val)-1], tt.wantMax)
}
if have, want := snap.Min(), tt.wantMin; have != want {
t.Fatalf("%d: min: have %d, want %d", i, have, want)
}
if tt.wantMean != snap.Mean() {
t.Fatalf("%d: mean: got %.2f, want %.2f", ind, snap.Mean(), tt.wantMean)
if have, want := snap.Max(), tt.wantMax; have != want {
t.Fatalf("%d: max: have %d, want %d", i, have, want)
}
if tt.wantP50 != ps[0] {
t.Fatalf("%d: p50: got %d, want %d", ind, ps[0], tt.wantP50)
if have, want := snap.Mean(), tt.wantMean; have != want {
t.Fatalf("%d: mean: have %v, want %v", i, have, want)
}
if tt.wantP95 != ps[1] {
t.Fatalf("%d: p95: got %d, want %d", ind, ps[1], tt.wantP95)
if have, want := ps[0], tt.wantP50; have != want {
t.Errorf("%d: p50: have %v, want %v", i, have, want)
}
if tt.wantP99 != ps[2] {
t.Fatalf("%d: p99: got %d, want %d", ind, ps[2], tt.wantP99)
if have, want := ps[1], tt.wantP95; have != want {
t.Errorf("%d: p95: have %v, want %v", i, have, want)
}
if have, want := ps[2], tt.wantP99; have != want {
t.Errorf("%d: p99: have %v, want %v", i, have, want)
}
}
}
@ -110,11 +100,11 @@ func TestResettingTimerWithFivePercentiles(t *testing.T) {
values []int64
start int
end int
wantP05 int64
wantP20 int64
wantP50 int64
wantP95 int64
wantP99 int64
wantP05 float64
wantP20 float64
wantP50 float64
wantP95 float64
wantP99 float64
wantMean float64
wantMin int64
wantMax int64
@ -123,14 +113,14 @@ func TestResettingTimerWithFivePercentiles(t *testing.T) {
values: []int64{},
start: 1,
end: 11,
wantP05: 1, wantP20: 2, wantP50: 5, wantP95: 10, wantP99: 10,
wantP05: 1, wantP20: 2.2, wantP50: 5.5, wantP95: 10, wantP99: 10,
wantMin: 1, wantMax: 10, wantMean: 5.5,
},
{
values: []int64{},
start: 1,
end: 101,
wantP05: 5, wantP20: 20, wantP50: 50, wantP95: 95, wantP99: 99,
wantP05: 5.050000000000001, wantP20: 20.200000000000003, wantP50: 50.5, wantP95: 95.94999999999999, wantP99: 99.99,
wantMin: 1, wantMax: 100, wantMean: 50.5,
},
{
@ -158,7 +148,7 @@ func TestResettingTimerWithFivePercentiles(t *testing.T) {
values: []int64{1, 10},
start: 0,
end: 0,
wantP05: 1, wantP20: 1, wantP50: 1, wantP95: 10, wantP99: 10,
wantP05: 1, wantP20: 1, wantP50: 5.5, wantP95: 10, wantP99: 10,
wantMin: 1, wantMax: 10, wantMean: 5.5,
},
}
@ -175,42 +165,33 @@ func TestResettingTimerWithFivePercentiles(t *testing.T) {
snap := timer.Snapshot()
ps := snap.Percentiles([]float64{5, 20, 50, 95, 99})
ps := snap.Percentiles([]float64{0.05, 0.20, 0.50, 0.95, 0.99})
val := snap.Values()
if tt.wantMin != snap.Min() {
t.Errorf("%d: min: got %d, want %d", ind, snap.Min(), tt.wantMin)
}
if len(val) > 0 {
if tt.wantMin != val[0] {
t.Fatalf("%d: min: got %d, want %d", ind, val[0], tt.wantMin)
}
if tt.wantMax != val[len(val)-1] {
t.Fatalf("%d: max: got %d, want %d", ind, val[len(val)-1], tt.wantMax)
}
if tt.wantMax != snap.Max() {
t.Errorf("%d: max: got %d, want %d", ind, snap.Max(), tt.wantMax)
}
if tt.wantMean != snap.Mean() {
t.Fatalf("%d: mean: got %.2f, want %.2f", ind, snap.Mean(), tt.wantMean)
t.Errorf("%d: mean: got %.2f, want %.2f", ind, snap.Mean(), tt.wantMean)
}
if tt.wantP05 != ps[0] {
t.Fatalf("%d: p05: got %d, want %d", ind, ps[0], tt.wantP05)
t.Errorf("%d: p05: got %v, want %v", ind, ps[0], tt.wantP05)
}
if tt.wantP20 != ps[1] {
t.Fatalf("%d: p20: got %d, want %d", ind, ps[1], tt.wantP20)
t.Errorf("%d: p20: got %v, want %v", ind, ps[1], tt.wantP20)
}
if tt.wantP50 != ps[2] {
t.Fatalf("%d: p50: got %d, want %d", ind, ps[2], tt.wantP50)
t.Errorf("%d: p50: got %v, want %v", ind, ps[2], tt.wantP50)
}
if tt.wantP95 != ps[3] {
t.Fatalf("%d: p95: got %d, want %d", ind, ps[3], tt.wantP95)
t.Errorf("%d: p95: got %v, want %v", ind, ps[3], tt.wantP95)
}
if tt.wantP99 != ps[4] {
t.Fatalf("%d: p99: got %d, want %d", ind, ps[4], tt.wantP99)
t.Errorf("%d: p99: got %v, want %v", ind, ps[4], tt.wantP99)
}
}
}

View File

@ -17,13 +17,19 @@ func getOrRegisterRuntimeHistogram(name string, scale float64, r Registry) *runt
// runtimeHistogram wraps a runtime/metrics histogram.
type runtimeHistogram struct {
v atomic.Value
v atomic.Value // v is a pointer to a metrics.Float64Histogram
scaleFactor float64
}
func newRuntimeHistogram(scale float64) *runtimeHistogram {
h := &runtimeHistogram{scaleFactor: scale}
h.update(&metrics.Float64Histogram{})
h.update(new(metrics.Float64Histogram))
return h
}
func RuntimeHistogramFromData(scale float64, hist *metrics.Float64Histogram) *runtimeHistogram {
h := &runtimeHistogram{scaleFactor: scale}
h.update(hist)
return h
}
@ -35,130 +41,107 @@ func (h *runtimeHistogram) update(mh *metrics.Float64Histogram) {
return
}
s := runtimeHistogramSnapshot{
s := metrics.Float64Histogram{
Counts: make([]uint64, len(mh.Counts)),
Buckets: make([]float64, len(mh.Buckets)),
}
copy(s.Counts, mh.Counts)
copy(s.Buckets, mh.Buckets)
for i, b := range s.Buckets {
for i, b := range mh.Buckets {
s.Buckets[i] = b * h.scaleFactor
}
h.v.Store(&s)
}
func (h *runtimeHistogram) load() *runtimeHistogramSnapshot {
return h.v.Load().(*runtimeHistogramSnapshot)
}
func (h *runtimeHistogram) Clear() {
panic("runtimeHistogram does not support Clear")
}
func (h *runtimeHistogram) Update(int64) {
panic("runtimeHistogram does not support Update")
}
func (h *runtimeHistogram) Sample() Sample {
return NilSample{}
// Snapshot returns a non-changing copy of the histogram.
func (h *runtimeHistogram) Snapshot() HistogramSnapshot {
hist := h.v.Load().(*metrics.Float64Histogram)
return newRuntimeHistogramSnapshot(hist)
}
// Snapshot returns a non-changing cop of the histogram.
func (h *runtimeHistogram) Snapshot() Histogram {
return h.load()
type runtimeHistogramSnapshot struct {
internal *metrics.Float64Histogram
calculated bool
// The following fields are (lazily) calculated based on 'internal'
mean float64
count int64
min int64 // min is the lowest sample value.
max int64 // max is the highest sample value.
variance float64
}
// Count returns the sample count.
func (h *runtimeHistogram) Count() int64 {
return h.load().Count()
func newRuntimeHistogramSnapshot(h *metrics.Float64Histogram) *runtimeHistogramSnapshot {
return &runtimeHistogramSnapshot{
internal: h,
}
}
// Mean returns an approximation of the mean.
func (h *runtimeHistogram) Mean() float64 {
return h.load().Mean()
}
// StdDev approximates the standard deviation of the histogram.
func (h *runtimeHistogram) StdDev() float64 {
return h.load().StdDev()
}
// Variance approximates the variance of the histogram.
func (h *runtimeHistogram) Variance() float64 {
return h.load().Variance()
}
// Percentile computes the p'th percentile value.
func (h *runtimeHistogram) Percentile(p float64) float64 {
return h.load().Percentile(p)
}
// Percentiles computes all requested percentile values.
func (h *runtimeHistogram) Percentiles(ps []float64) []float64 {
return h.load().Percentiles(ps)
}
// Max returns the highest sample value.
func (h *runtimeHistogram) Max() int64 {
return h.load().Max()
}
// Min returns the lowest sample value.
func (h *runtimeHistogram) Min() int64 {
return h.load().Min()
}
// Sum returns the sum of all sample values.
func (h *runtimeHistogram) Sum() int64 {
return h.load().Sum()
}
type runtimeHistogramSnapshot metrics.Float64Histogram
func (h *runtimeHistogramSnapshot) Clear() {
panic("runtimeHistogram does not support Clear")
}
func (h *runtimeHistogramSnapshot) Update(int64) {
panic("runtimeHistogram does not support Update")
}
func (h *runtimeHistogramSnapshot) Sample() Sample {
return NilSample{}
}
func (h *runtimeHistogramSnapshot) Snapshot() Histogram {
return h
// calc calculates the values for the snapshot. This method is not threadsafe.
func (h *runtimeHistogramSnapshot) calc() {
h.calculated = true
var (
count int64 // number of samples
sum float64 // approx sum of all sample values
min int64
max float64
)
if len(h.internal.Counts) == 0 {
return
}
for i, c := range h.internal.Counts {
if c == 0 {
continue
}
if count == 0 { // Set min only first loop iteration
min = int64(math.Floor(h.internal.Buckets[i]))
}
count += int64(c)
sum += h.midpoint(i) * float64(c)
// Set max on every iteration
edge := h.internal.Buckets[i+1]
if math.IsInf(edge, 1) {
edge = h.internal.Buckets[i]
}
if edge > max {
max = edge
}
}
h.min = min
h.max = int64(max)
h.mean = sum / float64(count)
h.count = count
}
// Count returns the sample count.
func (h *runtimeHistogramSnapshot) Count() int64 {
var count int64
for _, c := range h.Counts {
count += int64(c)
if !h.calculated {
h.calc()
}
return count
return h.count
}
// Size returns the size of the sample at the time the snapshot was taken.
func (h *runtimeHistogramSnapshot) Size() int {
return len(h.internal.Counts)
}
// Mean returns an approximation of the mean.
func (h *runtimeHistogramSnapshot) Mean() float64 {
if len(h.Counts) == 0 {
return 0
if !h.calculated {
h.calc()
}
mean, _ := h.mean()
return mean
}
// mean computes the mean and also the total sample count.
func (h *runtimeHistogramSnapshot) mean() (mean, totalCount float64) {
var sum float64
for i, c := range h.Counts {
midpoint := h.midpoint(i)
sum += midpoint * float64(c)
totalCount += float64(c)
}
return sum / totalCount, totalCount
return h.mean
}
func (h *runtimeHistogramSnapshot) midpoint(bucket int) float64 {
high := h.Buckets[bucket+1]
low := h.Buckets[bucket]
high := h.internal.Buckets[bucket+1]
low := h.internal.Buckets[bucket]
if math.IsInf(high, 1) {
// The edge of the highest bucket can be +Inf, and it's supposed to mean that this
// bucket contains all remaining samples > low. We can't get the middle of an
@ -180,23 +163,31 @@ func (h *runtimeHistogramSnapshot) StdDev() float64 {
// Variance approximates the variance of the histogram.
func (h *runtimeHistogramSnapshot) Variance() float64 {
if len(h.Counts) == 0 {
if len(h.internal.Counts) == 0 {
return 0
}
mean, totalCount := h.mean()
if totalCount <= 1 {
if !h.calculated {
h.calc()
}
if h.count <= 1 {
// There is no variance when there are zero or one items.
return 0
}
// Variance is not calculated in 'calc', because it requires a second iteration.
// Therefore we calculate it lazily in this method, triggered either by
// a direct call to Variance or via StdDev.
if h.variance != 0.0 {
return h.variance
}
var sum float64
for i, c := range h.Counts {
for i, c := range h.internal.Counts {
midpoint := h.midpoint(i)
d := midpoint - mean
d := midpoint - h.mean
sum += float64(c) * (d * d)
}
return sum / (totalCount - 1)
h.variance = sum / float64(h.count-1)
return h.variance
}
// Percentile computes the p'th percentile value.
@ -231,11 +222,11 @@ func (h *runtimeHistogramSnapshot) Percentiles(ps []float64) []float64 {
func (h *runtimeHistogramSnapshot) computePercentiles(thresh []float64) {
var totalCount float64
for i, count := range h.Counts {
for i, count := range h.internal.Counts {
totalCount += float64(count)
for len(thresh) > 0 && thresh[0] < totalCount {
thresh[0] = h.Buckets[i]
thresh[0] = h.internal.Buckets[i]
thresh = thresh[1:]
}
if len(thresh) == 0 {
@ -250,34 +241,25 @@ func (h *runtimeHistogramSnapshot) computePercentiles(thresh []float64) {
// Max returns the highest sample value.
func (h *runtimeHistogramSnapshot) Max() int64 {
for i := len(h.Counts) - 1; i >= 0; i-- {
count := h.Counts[i]
if count > 0 {
edge := h.Buckets[i+1]
if math.IsInf(edge, 1) {
edge = h.Buckets[i]
}
return int64(math.Ceil(edge))
}
if !h.calculated {
h.calc()
}
return 0
return h.max
}
// Min returns the lowest sample value.
func (h *runtimeHistogramSnapshot) Min() int64 {
for i, count := range h.Counts {
if count > 0 {
return int64(math.Floor(h.Buckets[i]))
}
if !h.calculated {
h.calc()
}
return 0
return h.min
}
// Sum returns the sum of all sample values.
func (h *runtimeHistogramSnapshot) Sum() int64 {
var sum float64
for i := range h.Counts {
sum += h.Buckets[i] * float64(h.Counts[i])
for i := range h.internal.Counts {
sum += h.internal.Buckets[i] * float64(h.internal.Counts[i])
}
return int64(math.Ceil(sum))
}

View File

@ -1,11 +1,14 @@
package metrics
import (
"bytes"
"encoding/gob"
"fmt"
"math"
"reflect"
"runtime/metrics"
"testing"
"time"
)
var _ Histogram = (*runtimeHistogram)(nil)
@ -74,7 +77,7 @@ func TestRuntimeHistogramStats(t *testing.T) {
for i, test := range tests {
t.Run(fmt.Sprint(i), func(t *testing.T) {
s := runtimeHistogramSnapshot(test.h)
s := RuntimeHistogramFromData(1.0, &test.h).Snapshot()
if v := s.Count(); v != test.Count {
t.Errorf("Count() = %v, want %v", v, test.Count)
@ -121,13 +124,39 @@ func approxEqual(x, y, ε float64) bool {
// This test verifies that requesting Percentiles in unsorted order
// returns them in the requested order.
func TestRuntimeHistogramStatsPercentileOrder(t *testing.T) {
p := runtimeHistogramSnapshot{
s := RuntimeHistogramFromData(1.0, &metrics.Float64Histogram{
Counts: []uint64{1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
Buckets: []float64{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
}
result := p.Percentiles([]float64{1, 0.2, 0.5, 0.1, 0.2})
}).Snapshot()
result := s.Percentiles([]float64{1, 0.2, 0.5, 0.1, 0.2})
expected := []float64{10, 2, 5, 1, 2}
if !reflect.DeepEqual(result, expected) {
t.Fatal("wrong result:", result)
}
}
func BenchmarkRuntimeHistogramSnapshotRead(b *testing.B) {
var sLatency = "7\xff\x81\x03\x01\x01\x10Float64Histogram\x01\xff\x82\x00\x01\x02\x01\x06Counts\x01\xff\x84\x00\x01\aBuckets\x01\xff\x86\x00\x00\x00\x16\xff\x83\x02\x01\x01\b[]uint64\x01\xff\x84\x00\x01\x06\x00\x00\x17\xff\x85\x02\x01\x01\t[]float64\x01\xff\x86\x00\x01\b\x00\x00\xfe\x06T\xff\x82\x01\xff\xa2\x00\xfe\r\xef\x00\x01\x02\x02\x04\x05\x04\b\x15\x17 B?6.L;$!2) \x1a? \x190aH7FY6#\x190\x1d\x14\x10\x1b\r\t\x04\x03\x01\x01\x00\x03\x02\x00\x03\x05\x05\x02\x02\x06\x04\v\x06\n\x15\x18\x13'&.\x12=H/L&\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\xff\xa3\xfe\xf0\xff\x00\xf8\x95\xd6&\xe8\v.q>\xf8\x95\xd6&\xe8\v.\x81>\xf8\xdfA:\xdc\x11ʼn>\xf8\x95\xd6&\xe8\v.\x91>\xf8:\x8c0\xe2\x8ey\x95>\xf8\xdfA:\xdc\x11ř>\xf8\x84\xf7C֔\x10\x9e>\xf8\x95\xd6&\xe8\v.\xa1>\xf8:\x8c0\xe2\x8ey\xa5>\xf8\xdfA:\xdc\x11ũ>\xf8\x84\xf7C֔\x10\xae>\xf8\x95\xd6&\xe8\v.\xb1>\xf8:\x8c0\xe2\x8ey\xb5>\xf8\xdfA:\xdc\x11Ź>\xf8\x84\xf7C֔\x10\xbe>\xf8\x95\xd6&\xe8\v.\xc1>\xf8:\x8c0\xe2\x8ey\xc5>\xf8\xdfA:\xdc\x11\xc5\xc9>\xf8\x84\xf7C֔\x10\xce>\xf8\x95\xd6&\xe8\v.\xd1>\xf8:\x8c0\xe2\x8ey\xd5>\xf8\xdfA:\xdc\x11\xc5\xd9>\xf8\x84\xf7C֔\x10\xde>\xf8\x95\xd6&\xe8\v.\xe1>\xf8:\x8c0\xe2\x8ey\xe5>\xf8\xdfA:\xdc\x11\xc5\xe9>\xf8\x84\xf7C֔\x10\xee>\xf8\x95\xd6&\xe8\v.\xf1>\xf8:\x8c0\xe2\x8ey\xf5>\xf8\xdfA:\xdc\x11\xc5\xf9>\xf8\x84\xf7C֔\x10\xfe>\xf8\x95\xd6&\xe8\v.\x01?\xf8:\x8c0\xe2\x8ey\x05?\xf8\xdfA:\xdc\x11\xc5\t?\xf8\x84\xf7C֔\x10\x0e?\xf8\x95\xd6&\xe8\v.\x11?\xf8:\x8c0\xe2\x8ey\x15?\xf8\xdfA:\xdc\x11\xc5\x19?\xf8\x84\xf7C֔\x10\x1e?\xf8\x95\xd6&\xe8\v.!?\xf8:\x8c0\xe2\x8ey%?\xf8\xdfA:\xdc\x11\xc5)?\xf8\x84\xf7C֔\x10.?\xf8\x95\xd6&\xe8\v.1?\xf8:\x8c0\xe2\x8ey5?\xf8\xdfA:\xdc\x11\xc59?\xf8\x84\xf7C֔\x10>?\xf8\x95\xd6&\xe8\v.A?\xf8:\x8c0\xe2\x8eyE?\xf8\xdfA:\xdc\x11\xc5I?\xf8\x84\xf7C֔\x10N?\xf8\x95\xd6&\xe8\v.Q?\xf8:\x8c0\xe2\x8eyU?\xf8\xdfA:\xdc\x11\xc5Y?\xf8\x84\xf7C֔\x10^?\xf8\x95\xd6&\xe8\v.a?\xf8:\x8c0\xe2\x8eye?\xf8\xdfA:\xdc\x11\xc5i?\xf8\x84\xf7C֔\x10n?\xf8\x95\xd6&\xe8\v.q?\xf8:\x8c0\xe2\x8eyu?\xf8\xdfA:\xdc\x11\xc5y?\xf8\x84\xf7C֔\x10~?\xf8\x95\xd6&\xe8\v.\x81?\xf8:\x8c0\xe2\x8ey\x85?\xf8\xdfA:\xdc\x11ʼn?\xf8\x84\xf7C֔\x10\x8e?\xf8\x95\xd6&\xe8\v.\x91?\xf8:\x8c0\xe2\x8ey\x95?\xf8\xdfA:\xdc\x11ř?\xf8\x84\xf7C֔\x10\x9e?\xf8\x95\xd6&\xe8\v.\xa1?\xf8:\x8c0\xe2\x8ey\xa5?\xf8\xdfA:\xdc\x11ũ?\xf8\x84\xf7C֔\x10\xae?\xf8\x95\xd6&\xe8\v.\xb1?\xf8:\x8c0\xe2\x8ey\xb5?\xf8\xdfA:\xdc\x11Ź?\xf8\x84\xf7C֔\x10\xbe?\xf8\x95\xd6&\xe8\v.\xc1?\xf8:\x8c0\xe2\x8ey\xc5?\xf8\xdfA:\xdc\x11\xc5\xc9?\xf8\x84\xf7C֔\x10\xce?\xf8\x95\xd6&\xe8\v.\xd1?\xf8:\x8c0\xe2\x8ey\xd5?\xf8\xdfA:\xdc\x11\xc5\xd9?\xf8\x84\xf7C֔\x10\xde?\xf8\x95\xd6&\xe8\v.\xe1?\xf8:\x8c0\xe2\x8ey\xe5?\xf8\xdfA:\xdc\x11\xc5\xe9?\xf8\x84\xf7C֔\x10\xee?\xf8\x95\xd6&\xe8\v.\xf1?\xf8:\x8c0\xe2\x8ey\xf5?\xf8\xdfA:\xdc\x11\xc5\xf9?\xf8\x84\xf7C֔\x10\xfe?\xf8\x95\xd6&\xe8\v.\x01@\xf8:\x8c0\xe2\x8ey\x05@\xf8\xdfA:\xdc\x11\xc5\t@\xf8\x84\xf7C֔\x10\x0e@\xf8\x95\xd6&\xe8\v.\x11@\xf8:\x8c0\xe2\x8ey\x15@\xf8\xdfA:\xdc\x11\xc5\x19@\xf8\x84\xf7C֔\x10\x1e@\xf8\x95\xd6&\xe8\v.!@\xf8:\x8c0\xe2\x8ey%@\xf8\xdfA:\xdc\x11\xc5)@\xf8\x84\xf7C֔\x10.@\xf8\x95\xd6&\xe8\v.1@\xf8:\x8c0\xe2\x8ey5@\xf8\xdfA:\xdc\x11\xc59@\xf8\x84\xf7C֔\x10>@\xf8\x95\xd6&\xe8\v.A@\xf8:\x8c0\xe2\x8eyE@\xf8\xdfA:\xdc\x11\xc5I@\xf8\x84\xf7C֔\x10N@\xf8\x95\xd6&\xe8\v.Q@\xf8:\x8c0\xe2\x8eyU@\xf8\xdfA:\xdc\x11\xc5Y@\xf8\x84\xf7C֔\x10^@\xf8\x95\xd6&\xe8\v.a@\xf8:\x8c0\xe2\x8eye@\xf8\xdfA:\xdc\x11\xc5i@\xf8\x84\xf7C֔\x10n@\xf8\x95\xd6&\xe8\v.q@\xf8:\x8c0\xe2\x8eyu@\xf8\xdfA:\xdc\x11\xc5y@\xf8\x84\xf7C֔\x10~@\xf8\x95\xd6&\xe8\v.\x81@\xf8:\x8c0\xe2\x8ey\x85@\xf8\xdfA:\xdc\x11ʼn@\xf8\x84\xf7C֔\x10\x8e@\xf8\x95\xd6&\xe8\v.\x91@\xf8:\x8c0\xe2\x8ey\x95@\xf8\xdfA:\xdc\x11ř@\xf8\x84\xf7C֔\x10\x9e@\xf8\x95\xd6&\xe8\v.\xa1@\xf8:\x8c0\xe2\x8ey\xa5@\xf8\xdfA:\xdc\x11ũ@\xf8\x84\xf7C֔\x10\xae@\xf8\x95\xd6&\xe8\v.\xb1@\xf8:\x8c0\xe2\x8ey\xb5@\xf8\xdfA:\xdc\x11Ź@\xf8\x84\xf7C֔\x10\xbe@\xf8\x95\xd6&\xe8\v.\xc1@\xf8:\x8c0\xe2\x8ey\xc5@\xf8\xdfA:\xdc\x11\xc5\xc9@\xf8\x84\xf7C֔\x10\xce@\xf8\x95\xd6&\xe8\v.\xd1@\xf8:\x8c0\xe2\x8ey\xd5@\xf8\xdfA:\xdc\x11\xc5\xd9@\xf8\x84\xf7C֔\x10\xde@\xf8\x95\xd6&\xe8\v.\xe1@\xf8:\x8c0\xe2\x8ey\xe5@\xf8\xdfA:\xdc\x11\xc5\xe9@\xf8\x84\xf7C֔\x10\xee@\xf8\x95\xd6&\xe8\v.\xf1@\xf8:\x8c0\xe2\x8ey\xf5@\xf8\xdfA:\xdc\x11\xc5\xf9@\xf8\x84\xf7C֔\x10\xfe@\xf8\x95\xd6&\xe8\v.\x01A\xfe\xf0\x7f\x00"
dserialize := func(data string) *metrics.Float64Histogram {
var res metrics.Float64Histogram
if err := gob.NewDecoder(bytes.NewReader([]byte(data))).Decode(&res); err != nil {
panic(err)
}
return &res
}
latency := RuntimeHistogramFromData(float64(time.Second), dserialize(sLatency))
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
snap := latency.Snapshot()
// These are the fields that influxdb accesses
_ = snap.Count()
_ = snap.Max()
_ = snap.Mean()
_ = snap.Min()
_ = snap.StdDev()
_ = snap.Variance()
_ = snap.Percentiles([]float64{0.25, 0.5, 0.75, 0.95, 0.99, 0.999, 0.9999})
}
}

View File

@ -11,10 +11,7 @@ import (
const rescaleThreshold = time.Hour
// Samples maintain a statistically-significant selection of values from
// a stream.
type Sample interface {
Clear()
type SampleSnapshot interface {
Count() int64
Max() int64
Mean() float64
@ -22,14 +19,19 @@ type Sample interface {
Percentile(float64) float64
Percentiles([]float64) []float64
Size() int
Snapshot() Sample
StdDev() float64
Sum() int64
Update(int64)
Values() []int64
Variance() float64
}
// Samples maintain a statistically-significant selection of values from
// a stream.
type Sample interface {
Snapshot() SampleSnapshot
Clear()
Update(int64)
}
// ExpDecaySample is an exponentially-decaying sample using a forward-decaying
// priority reservoir. See Cormode et al's "Forward Decay: A Practical Time
// Decay Model for Streaming Systems".
@ -77,72 +79,29 @@ func (s *ExpDecaySample) Clear() {
s.values.Clear()
}
// Count returns the number of samples recorded, which may exceed the
// reservoir size.
func (s *ExpDecaySample) Count() int64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return s.count
}
// Max returns the maximum value in the sample, which may not be the maximum
// value ever to be part of the sample.
func (s *ExpDecaySample) Max() int64 {
return SampleMax(s.Values())
}
// Mean returns the mean of the values in the sample.
func (s *ExpDecaySample) Mean() float64 {
return SampleMean(s.Values())
}
// Min returns the minimum value in the sample, which may not be the minimum
// value ever to be part of the sample.
func (s *ExpDecaySample) Min() int64 {
return SampleMin(s.Values())
}
// Percentile returns an arbitrary percentile of values in the sample.
func (s *ExpDecaySample) Percentile(p float64) float64 {
return SamplePercentile(s.Values(), p)
}
// Percentiles returns a slice of arbitrary percentiles of values in the
// sample.
func (s *ExpDecaySample) Percentiles(ps []float64) []float64 {
return SamplePercentiles(s.Values(), ps)
}
// Size returns the size of the sample, which is at most the reservoir size.
func (s *ExpDecaySample) Size() int {
s.mutex.Lock()
defer s.mutex.Unlock()
return s.values.Size()
}
// Snapshot returns a read-only copy of the sample.
func (s *ExpDecaySample) Snapshot() Sample {
func (s *ExpDecaySample) Snapshot() SampleSnapshot {
s.mutex.Lock()
defer s.mutex.Unlock()
vals := s.values.Values()
values := make([]int64, len(vals))
for i, v := range vals {
values[i] = v.v
var (
samples = s.values.Values()
values = make([]int64, len(samples))
max int64 = math.MinInt64
min int64 = math.MaxInt64
sum int64
)
for i, item := range samples {
v := item.v
values[i] = v
sum += v
if v > max {
max = v
}
if v < min {
min = v
}
}
return &SampleSnapshot{
count: s.count,
values: values,
}
}
// StdDev returns the standard deviation of the values in the sample.
func (s *ExpDecaySample) StdDev() float64 {
return SampleStdDev(s.Values())
}
// Sum returns the sum of the values in the sample.
func (s *ExpDecaySample) Sum() int64 {
return SampleSum(s.Values())
return newSampleSnapshotPrecalculated(s.count, values, min, max, sum)
}
// Update samples a new value.
@ -150,23 +109,6 @@ func (s *ExpDecaySample) Update(v int64) {
s.update(time.Now(), v)
}
// Values returns a copy of the values in the sample.
func (s *ExpDecaySample) Values() []int64 {
s.mutex.Lock()
defer s.mutex.Unlock()
vals := s.values.Values()
values := make([]int64, len(vals))
for i, v := range vals {
values[i] = v.v
}
return values
}
// Variance returns the variance of the values in the sample.
func (s *ExpDecaySample) Variance() float64 {
return SampleVariance(s.Values())
}
// update samples a new value at a particular timestamp. This is a method all
// its own to facilitate testing.
func (s *ExpDecaySample) update(t time.Time, v int64) {
@ -202,207 +144,160 @@ func (s *ExpDecaySample) update(t time.Time, v int64) {
// NilSample is a no-op Sample.
type NilSample struct{}
// Clear is a no-op.
func (NilSample) Clear() {}
// Count is a no-op.
func (NilSample) Count() int64 { return 0 }
// Max is a no-op.
func (NilSample) Max() int64 { return 0 }
// Mean is a no-op.
func (NilSample) Mean() float64 { return 0.0 }
// Min is a no-op.
func (NilSample) Min() int64 { return 0 }
// Percentile is a no-op.
func (NilSample) Percentile(p float64) float64 { return 0.0 }
// Percentiles is a no-op.
func (NilSample) Percentiles(ps []float64) []float64 {
return make([]float64, len(ps))
}
// Size is a no-op.
func (NilSample) Size() int { return 0 }
// Sample is a no-op.
func (NilSample) Snapshot() Sample { return NilSample{} }
// StdDev is a no-op.
func (NilSample) StdDev() float64 { return 0.0 }
// Sum is a no-op.
func (NilSample) Sum() int64 { return 0 }
// Update is a no-op.
func (NilSample) Update(v int64) {}
// Values is a no-op.
func (NilSample) Values() []int64 { return []int64{} }
// Variance is a no-op.
func (NilSample) Variance() float64 { return 0.0 }
// SampleMax returns the maximum value of the slice of int64.
func SampleMax(values []int64) int64 {
if len(values) == 0 {
return 0
}
var max int64 = math.MinInt64
for _, v := range values {
if max < v {
max = v
}
}
return max
}
// SampleMean returns the mean value of the slice of int64.
func SampleMean(values []int64) float64 {
if len(values) == 0 {
return 0.0
}
return float64(SampleSum(values)) / float64(len(values))
}
// SampleMin returns the minimum value of the slice of int64.
func SampleMin(values []int64) int64 {
if len(values) == 0 {
return 0
}
var min int64 = math.MaxInt64
for _, v := range values {
if min > v {
min = v
}
}
return min
}
func (NilSample) Clear() {}
func (NilSample) Snapshot() SampleSnapshot { return (*emptySnapshot)(nil) }
func (NilSample) Update(v int64) {}
// SamplePercentiles returns an arbitrary percentile of the slice of int64.
func SamplePercentile(values []int64, p float64) float64 {
return SamplePercentiles(values, []float64{p})[0]
return CalculatePercentiles(values, []float64{p})[0]
}
// SamplePercentiles returns a slice of arbitrary percentiles of the slice of
// int64.
func SamplePercentiles(values []int64, ps []float64) []float64 {
// CalculatePercentiles returns a slice of arbitrary percentiles of the slice of
// int64. This method returns interpolated results, so e.g if there are only two
// values, [0, 10], a 50% percentile will land between them.
//
// Note: As a side-effect, this method will also sort the slice of values.
// Note2: The input format for percentiles is NOT percent! To express 50%, use 0.5, not 50.
func CalculatePercentiles(values []int64, ps []float64) []float64 {
scores := make([]float64, len(ps))
size := len(values)
if size > 0 {
slices.Sort(values)
for i, p := range ps {
pos := p * float64(size+1)
if pos < 1.0 {
scores[i] = float64(values[0])
} else if pos >= float64(size) {
scores[i] = float64(values[size-1])
} else {
lower := float64(values[int(pos)-1])
upper := float64(values[int(pos)])
scores[i] = lower + (pos-math.Floor(pos))*(upper-lower)
}
if size == 0 {
return scores
}
slices.Sort(values)
for i, p := range ps {
pos := p * float64(size+1)
if pos < 1.0 {
scores[i] = float64(values[0])
} else if pos >= float64(size) {
scores[i] = float64(values[size-1])
} else {
lower := float64(values[int(pos)-1])
upper := float64(values[int(pos)])
scores[i] = lower + (pos-math.Floor(pos))*(upper-lower)
}
}
return scores
}
// SampleSnapshot is a read-only copy of another Sample.
type SampleSnapshot struct {
// sampleSnapshot is a read-only copy of another Sample.
type sampleSnapshot struct {
count int64
values []int64
max int64
min int64
mean float64
sum int64
variance float64
}
func NewSampleSnapshot(count int64, values []int64) *SampleSnapshot {
return &SampleSnapshot{
// newSampleSnapshotPrecalculated creates a read-only sampleSnapShot, using
// precalculated sums to avoid iterating the values
func newSampleSnapshotPrecalculated(count int64, values []int64, min, max, sum int64) *sampleSnapshot {
if len(values) == 0 {
return &sampleSnapshot{
count: count,
values: values,
}
}
return &sampleSnapshot{
count: count,
values: values,
max: max,
min: min,
mean: float64(sum) / float64(len(values)),
sum: sum,
}
}
// Clear panics.
func (*SampleSnapshot) Clear() {
panic("Clear called on a SampleSnapshot")
// newSampleSnapshot creates a read-only sampleSnapShot, and calculates some
// numbers.
func newSampleSnapshot(count int64, values []int64) *sampleSnapshot {
var (
max int64 = math.MinInt64
min int64 = math.MaxInt64
sum int64
)
for _, v := range values {
sum += v
if v > max {
max = v
}
if v < min {
min = v
}
}
return newSampleSnapshotPrecalculated(count, values, min, max, sum)
}
// Count returns the count of inputs at the time the snapshot was taken.
func (s *SampleSnapshot) Count() int64 { return s.count }
func (s *sampleSnapshot) Count() int64 { return s.count }
// Max returns the maximal value at the time the snapshot was taken.
func (s *SampleSnapshot) Max() int64 { return SampleMax(s.values) }
func (s *sampleSnapshot) Max() int64 { return s.max }
// Mean returns the mean value at the time the snapshot was taken.
func (s *SampleSnapshot) Mean() float64 { return SampleMean(s.values) }
func (s *sampleSnapshot) Mean() float64 { return s.mean }
// Min returns the minimal value at the time the snapshot was taken.
func (s *SampleSnapshot) Min() int64 { return SampleMin(s.values) }
func (s *sampleSnapshot) Min() int64 { return s.min }
// Percentile returns an arbitrary percentile of values at the time the
// snapshot was taken.
func (s *SampleSnapshot) Percentile(p float64) float64 {
func (s *sampleSnapshot) Percentile(p float64) float64 {
return SamplePercentile(s.values, p)
}
// Percentiles returns a slice of arbitrary percentiles of values at the time
// the snapshot was taken.
func (s *SampleSnapshot) Percentiles(ps []float64) []float64 {
return SamplePercentiles(s.values, ps)
func (s *sampleSnapshot) Percentiles(ps []float64) []float64 {
return CalculatePercentiles(s.values, ps)
}
// Size returns the size of the sample at the time the snapshot was taken.
func (s *SampleSnapshot) Size() int { return len(s.values) }
func (s *sampleSnapshot) Size() int { return len(s.values) }
// Snapshot returns the snapshot.
func (s *SampleSnapshot) Snapshot() Sample { return s }
func (s *sampleSnapshot) Snapshot() SampleSnapshot { return s }
// StdDev returns the standard deviation of values at the time the snapshot was
// taken.
func (s *SampleSnapshot) StdDev() float64 { return SampleStdDev(s.values) }
// Sum returns the sum of values at the time the snapshot was taken.
func (s *SampleSnapshot) Sum() int64 { return SampleSum(s.values) }
// Update panics.
func (*SampleSnapshot) Update(int64) {
panic("Update called on a SampleSnapshot")
func (s *sampleSnapshot) StdDev() float64 {
if s.variance == 0.0 {
s.variance = SampleVariance(s.mean, s.values)
}
return math.Sqrt(s.variance)
}
// Sum returns the sum of values at the time the snapshot was taken.
func (s *sampleSnapshot) Sum() int64 { return s.sum }
// Values returns a copy of the values in the sample.
func (s *SampleSnapshot) Values() []int64 {
func (s *sampleSnapshot) Values() []int64 {
values := make([]int64, len(s.values))
copy(values, s.values)
return values
}
// Variance returns the variance of values at the time the snapshot was taken.
func (s *SampleSnapshot) Variance() float64 { return SampleVariance(s.values) }
// SampleStdDev returns the standard deviation of the slice of int64.
func SampleStdDev(values []int64) float64 {
return math.Sqrt(SampleVariance(values))
}
// SampleSum returns the sum of the slice of int64.
func SampleSum(values []int64) int64 {
var sum int64
for _, v := range values {
sum += v
func (s *sampleSnapshot) Variance() float64 {
if s.variance == 0.0 {
s.variance = SampleVariance(s.mean, s.values)
}
return sum
return s.variance
}
// SampleVariance returns the variance of the slice of int64.
func SampleVariance(values []int64) float64 {
func SampleVariance(mean float64, values []int64) float64 {
if len(values) == 0 {
return 0.0
}
m := SampleMean(values)
var sum float64
for _, v := range values {
d := float64(v) - m
d := float64(v) - mean
sum += d * d
}
return sum / float64(len(values))
@ -445,83 +340,14 @@ func (s *UniformSample) Clear() {
s.values = make([]int64, 0, s.reservoirSize)
}
// Count returns the number of samples recorded, which may exceed the
// reservoir size.
func (s *UniformSample) Count() int64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return s.count
}
// Max returns the maximum value in the sample, which may not be the maximum
// value ever to be part of the sample.
func (s *UniformSample) Max() int64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return SampleMax(s.values)
}
// Mean returns the mean of the values in the sample.
func (s *UniformSample) Mean() float64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return SampleMean(s.values)
}
// Min returns the minimum value in the sample, which may not be the minimum
// value ever to be part of the sample.
func (s *UniformSample) Min() int64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return SampleMin(s.values)
}
// Percentile returns an arbitrary percentile of values in the sample.
func (s *UniformSample) Percentile(p float64) float64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return SamplePercentile(s.values, p)
}
// Percentiles returns a slice of arbitrary percentiles of values in the
// sample.
func (s *UniformSample) Percentiles(ps []float64) []float64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return SamplePercentiles(s.values, ps)
}
// Size returns the size of the sample, which is at most the reservoir size.
func (s *UniformSample) Size() int {
s.mutex.Lock()
defer s.mutex.Unlock()
return len(s.values)
}
// Snapshot returns a read-only copy of the sample.
func (s *UniformSample) Snapshot() Sample {
func (s *UniformSample) Snapshot() SampleSnapshot {
s.mutex.Lock()
defer s.mutex.Unlock()
values := make([]int64, len(s.values))
copy(values, s.values)
return &SampleSnapshot{
count: s.count,
values: values,
}
}
// StdDev returns the standard deviation of the values in the sample.
func (s *UniformSample) StdDev() float64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return SampleStdDev(s.values)
}
// Sum returns the sum of the values in the sample.
func (s *UniformSample) Sum() int64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return SampleSum(s.values)
count := s.count
s.mutex.Unlock()
return newSampleSnapshot(count, values)
}
// Update samples a new value.
@ -544,22 +370,6 @@ func (s *UniformSample) Update(v int64) {
}
}
// Values returns a copy of the values in the sample.
func (s *UniformSample) Values() []int64 {
s.mutex.Lock()
defer s.mutex.Unlock()
values := make([]int64, len(s.values))
copy(values, s.values)
return values
}
// Variance returns the variance of the values in the sample.
func (s *UniformSample) Variance() float64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return SampleVariance(s.values)
}
// expDecaySample represents an individual sample in a heap.
type expDecaySample struct {
k float64

View File

@ -8,28 +8,36 @@ import (
"time"
)
const epsilonPercentile = .00000000001
// Benchmark{Compute,Copy}{1000,1000000} demonstrate that, even for relatively
// expensive computations like Variance, the cost of copying the Sample, as
// approximated by a make and copy, is much greater than the cost of the
// computation for small samples and only slightly less for large samples.
func BenchmarkCompute1000(b *testing.B) {
s := make([]int64, 1000)
var sum int64
for i := 0; i < len(s); i++ {
s[i] = int64(i)
sum += int64(i)
}
mean := float64(sum) / float64(len(s))
b.ResetTimer()
for i := 0; i < b.N; i++ {
SampleVariance(s)
SampleVariance(mean, s)
}
}
func BenchmarkCompute1000000(b *testing.B) {
s := make([]int64, 1000000)
var sum int64
for i := 0; i < len(s); i++ {
s[i] = int64(i)
sum += int64(i)
}
mean := float64(sum) / float64(len(s))
b.ResetTimer()
for i := 0; i < b.N; i++ {
SampleVariance(s)
SampleVariance(mean, s)
}
}
func BenchmarkCopy1000(b *testing.B) {
@ -79,65 +87,42 @@ func BenchmarkUniformSample1028(b *testing.B) {
benchmarkSample(b, NewUniformSample(1028))
}
func TestExpDecaySample10(t *testing.T) {
s := NewExpDecaySample(100, 0.99)
for i := 0; i < 10; i++ {
s.Update(int64(i))
}
if size := s.Count(); size != 10 {
t.Errorf("s.Count(): 10 != %v\n", size)
}
if size := s.Size(); size != 10 {
t.Errorf("s.Size(): 10 != %v\n", size)
}
if l := len(s.Values()); l != 10 {
t.Errorf("len(s.Values()): 10 != %v\n", l)
}
for _, v := range s.Values() {
if v > 10 || v < 0 {
t.Errorf("out of range [0, 10): %v\n", v)
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func TestExpDecaySample100(t *testing.T) {
s := NewExpDecaySample(1000, 0.01)
for i := 0; i < 100; i++ {
s.Update(int64(i))
}
if size := s.Count(); size != 100 {
t.Errorf("s.Count(): 100 != %v\n", size)
}
if size := s.Size(); size != 100 {
t.Errorf("s.Size(): 100 != %v\n", size)
}
if l := len(s.Values()); l != 100 {
t.Errorf("len(s.Values()): 100 != %v\n", l)
}
for _, v := range s.Values() {
if v > 100 || v < 0 {
t.Errorf("out of range [0, 100): %v\n", v)
func TestExpDecaySample(t *testing.T) {
for _, tc := range []struct {
reservoirSize int
alpha float64
updates int
}{
{100, 0.99, 10},
{1000, 0.01, 100},
{100, 0.99, 1000},
} {
sample := NewExpDecaySample(tc.reservoirSize, tc.alpha)
for i := 0; i < tc.updates; i++ {
sample.Update(int64(i))
}
}
}
func TestExpDecaySample1000(t *testing.T) {
s := NewExpDecaySample(100, 0.99)
for i := 0; i < 1000; i++ {
s.Update(int64(i))
}
if size := s.Count(); size != 1000 {
t.Errorf("s.Count(): 1000 != %v\n", size)
}
if size := s.Size(); size != 100 {
t.Errorf("s.Size(): 100 != %v\n", size)
}
if l := len(s.Values()); l != 100 {
t.Errorf("len(s.Values()): 100 != %v\n", l)
}
for _, v := range s.Values() {
if v > 1000 || v < 0 {
t.Errorf("out of range [0, 1000): %v\n", v)
snap := sample.Snapshot()
if have, want := int(snap.Count()), tc.updates; have != want {
t.Errorf("have %d want %d", have, want)
}
if have, want := snap.Size(), min(tc.updates, tc.reservoirSize); have != want {
t.Errorf("have %d want %d", have, want)
}
values := snap.(*sampleSnapshot).values
if have, want := len(values), min(tc.updates, tc.reservoirSize); have != want {
t.Errorf("have %d want %d", have, want)
}
for _, v := range values {
if v > int64(tc.updates) || v < 0 {
t.Errorf("out of range [0, %d): %v", tc.updates, v)
}
}
}
}
@ -147,15 +132,16 @@ func TestExpDecaySample1000(t *testing.T) {
// The priority becomes +Inf quickly after starting if this is done,
// effectively freezing the set of samples until a rescale step happens.
func TestExpDecaySampleNanosecondRegression(t *testing.T) {
s := NewExpDecaySample(100, 0.99)
sw := NewExpDecaySample(100, 0.99)
for i := 0; i < 100; i++ {
s.Update(10)
sw.Update(10)
}
time.Sleep(1 * time.Millisecond)
for i := 0; i < 100; i++ {
s.Update(20)
sw.Update(20)
}
v := s.Values()
s := sw.Snapshot()
v := s.(*sampleSnapshot).values
avg := float64(0)
for i := 0; i < len(v); i++ {
avg += float64(v[i])
@ -194,24 +180,27 @@ func TestExpDecaySampleStatistics(t *testing.T) {
for i := 1; i <= 10000; i++ {
s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i))
}
testExpDecaySampleStatistics(t, s)
testExpDecaySampleStatistics(t, s.Snapshot())
}
func TestUniformSample(t *testing.T) {
s := NewUniformSample(100)
sw := NewUniformSample(100)
for i := 0; i < 1000; i++ {
s.Update(int64(i))
sw.Update(int64(i))
}
s := sw.Snapshot()
if size := s.Count(); size != 1000 {
t.Errorf("s.Count(): 1000 != %v\n", size)
}
if size := s.Size(); size != 100 {
t.Errorf("s.Size(): 100 != %v\n", size)
}
if l := len(s.Values()); l != 100 {
values := s.(*sampleSnapshot).values
if l := len(values); l != 100 {
t.Errorf("len(s.Values()): 100 != %v\n", l)
}
for _, v := range s.Values() {
for _, v := range values {
if v > 1000 || v < 0 {
t.Errorf("out of range [0, 100): %v\n", v)
}
@ -219,12 +208,13 @@ func TestUniformSample(t *testing.T) {
}
func TestUniformSampleIncludesTail(t *testing.T) {
s := NewUniformSample(100)
sw := NewUniformSample(100)
max := 100
for i := 0; i < max; i++ {
s.Update(int64(i))
sw.Update(int64(i))
}
v := s.Values()
s := sw.Snapshot()
v := s.(*sampleSnapshot).values
sum := 0
exp := (max - 1) * max / 2
for i := 0; i < len(v); i++ {
@ -250,7 +240,7 @@ func TestUniformSampleStatistics(t *testing.T) {
for i := 1; i <= 10000; i++ {
s.Update(int64(i))
}
testUniformSampleStatistics(t, s)
testUniformSampleStatistics(t, s.Snapshot())
}
func benchmarkSample(b *testing.B, s Sample) {
@ -267,7 +257,7 @@ func benchmarkSample(b *testing.B, s Sample) {
b.Logf("GC cost: %d ns/op", int(memStats.PauseTotalNs-pauseTotalNs)/b.N)
}
func testExpDecaySampleStatistics(t *testing.T, s Sample) {
func testExpDecaySampleStatistics(t *testing.T, s SampleSnapshot) {
if count := s.Count(); count != 10000 {
t.Errorf("s.Count(): 10000 != %v\n", count)
}
@ -295,7 +285,7 @@ func testExpDecaySampleStatistics(t *testing.T, s Sample) {
}
}
func testUniformSampleStatistics(t *testing.T, s Sample) {
func testUniformSampleStatistics(t *testing.T, s SampleSnapshot) {
if count := s.Count(); count != 10000 {
t.Errorf("s.Count(): 10000 != %v\n", count)
}
@ -349,8 +339,22 @@ func TestUniformSampleConcurrentUpdateCount(t *testing.T) {
}
}()
for i := 0; i < 1000; i++ {
s.Count()
s.Snapshot().Count()
time.Sleep(5 * time.Millisecond)
}
quit <- struct{}{}
}
func BenchmarkCalculatePercentiles(b *testing.B) {
pss := []float64{0.5, 0.75, 0.95, 0.99, 0.999, 0.9999}
var vals []int64
for i := 0; i < 1000; i++ {
vals = append(vals, int64(rand.Int31()))
}
v := make([]int64, len(vals))
b.ResetTimer()
for i := 0; i < b.N; i++ {
copy(v, vals)
_ = CalculatePercentiles(v, pss)
}
}

View File

@ -16,15 +16,15 @@ func Syslog(r Registry, d time.Duration, w *syslog.Writer) {
r.Each(func(name string, i interface{}) {
switch metric := i.(type) {
case Counter:
w.Info(fmt.Sprintf("counter %s: count: %d", name, metric.Count()))
w.Info(fmt.Sprintf("counter %s: count: %d", name, metric.Snapshot().Count()))
case CounterFloat64:
w.Info(fmt.Sprintf("counter %s: count: %f", name, metric.Count()))
w.Info(fmt.Sprintf("counter %s: count: %f", name, metric.Snapshot().Count()))
case Gauge:
w.Info(fmt.Sprintf("gauge %s: value: %d", name, metric.Value()))
w.Info(fmt.Sprintf("gauge %s: value: %d", name, metric.Snapshot().Value()))
case GaugeFloat64:
w.Info(fmt.Sprintf("gauge %s: value: %f", name, metric.Value()))
w.Info(fmt.Sprintf("gauge %s: value: %f", name, metric.Snapshot().Value()))
case GaugeInfo:
w.Info(fmt.Sprintf("gauge %s: value: %s", name, metric.Value()))
w.Info(fmt.Sprintf("gauge %s: value: %s", name, metric.Snapshot().Value()))
case Healthcheck:
metric.Check()
w.Info(fmt.Sprintf("healthcheck %s: error: %v", name, metric.Error()))

View File

@ -1,4 +1,4 @@
put pre.elite.count 978307200 0 host=hal9000
put pre.elite.count 978307200 1337 host=hal9000
put pre.elite.one-minute 978307200 0.00 host=hal9000
put pre.elite.five-minute 978307200 0.00 host=hal9000
put pre.elite.fifteen-minute 978307200 0.00 host=hal9000

View File

@ -5,26 +5,18 @@ import (
"time"
)
type TimerSnapshot interface {
HistogramSnapshot
MeterSnapshot
}
// Timers capture the duration and rate of events.
type Timer interface {
Count() int64
Max() int64
Mean() float64
Min() int64
Percentile(float64) float64
Percentiles([]float64) []float64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
Snapshot() Timer
StdDev() float64
Snapshot() TimerSnapshot
Stop()
Sum() int64
Time(func())
Update(time.Duration)
UpdateSince(time.Time)
Variance() float64
Update(time.Duration)
}
// GetOrRegisterTimer returns an existing Timer or constructs and registers a
@ -78,61 +70,11 @@ func NewTimer() Timer {
// NilTimer is a no-op Timer.
type NilTimer struct{}
// Count is a no-op.
func (NilTimer) Count() int64 { return 0 }
// Max is a no-op.
func (NilTimer) Max() int64 { return 0 }
// Mean is a no-op.
func (NilTimer) Mean() float64 { return 0.0 }
// Min is a no-op.
func (NilTimer) Min() int64 { return 0 }
// Percentile is a no-op.
func (NilTimer) Percentile(p float64) float64 { return 0.0 }
// Percentiles is a no-op.
func (NilTimer) Percentiles(ps []float64) []float64 {
return make([]float64, len(ps))
}
// Rate1 is a no-op.
func (NilTimer) Rate1() float64 { return 0.0 }
// Rate5 is a no-op.
func (NilTimer) Rate5() float64 { return 0.0 }
// Rate15 is a no-op.
func (NilTimer) Rate15() float64 { return 0.0 }
// RateMean is a no-op.
func (NilTimer) RateMean() float64 { return 0.0 }
// Snapshot is a no-op.
func (NilTimer) Snapshot() Timer { return NilTimer{} }
// StdDev is a no-op.
func (NilTimer) StdDev() float64 { return 0.0 }
// Stop is a no-op.
func (NilTimer) Stop() {}
// Sum is a no-op.
func (NilTimer) Sum() int64 { return 0 }
// Time is a no-op.
func (NilTimer) Time(f func()) { f() }
// Update is a no-op.
func (NilTimer) Update(time.Duration) {}
// UpdateSince is a no-op.
func (NilTimer) UpdateSince(time.Time) {}
// Variance is a no-op.
func (NilTimer) Variance() float64 { return 0.0 }
func (NilTimer) Snapshot() TimerSnapshot { return (*emptySnapshot)(nil) }
func (NilTimer) Stop() {}
func (NilTimer) Time(f func()) { f() }
func (NilTimer) Update(time.Duration) {}
func (NilTimer) UpdateSince(time.Time) {}
// StandardTimer is the standard implementation of a Timer and uses a Histogram
// and Meter.
@ -142,82 +84,21 @@ type StandardTimer struct {
mutex sync.Mutex
}
// Count returns the number of events recorded.
func (t *StandardTimer) Count() int64 {
return t.histogram.Count()
}
// Max returns the maximum value in the sample.
func (t *StandardTimer) Max() int64 {
return t.histogram.Max()
}
// Mean returns the mean of the values in the sample.
func (t *StandardTimer) Mean() float64 {
return t.histogram.Mean()
}
// Min returns the minimum value in the sample.
func (t *StandardTimer) Min() int64 {
return t.histogram.Min()
}
// Percentile returns an arbitrary percentile of the values in the sample.
func (t *StandardTimer) Percentile(p float64) float64 {
return t.histogram.Percentile(p)
}
// Percentiles returns a slice of arbitrary percentiles of the values in the
// sample.
func (t *StandardTimer) Percentiles(ps []float64) []float64 {
return t.histogram.Percentiles(ps)
}
// Rate1 returns the one-minute moving average rate of events per second.
func (t *StandardTimer) Rate1() float64 {
return t.meter.Rate1()
}
// Rate5 returns the five-minute moving average rate of events per second.
func (t *StandardTimer) Rate5() float64 {
return t.meter.Rate5()
}
// Rate15 returns the fifteen-minute moving average rate of events per second.
func (t *StandardTimer) Rate15() float64 {
return t.meter.Rate15()
}
// RateMean returns the meter's mean rate of events per second.
func (t *StandardTimer) RateMean() float64 {
return t.meter.RateMean()
}
// Snapshot returns a read-only copy of the timer.
func (t *StandardTimer) Snapshot() Timer {
func (t *StandardTimer) Snapshot() TimerSnapshot {
t.mutex.Lock()
defer t.mutex.Unlock()
return &TimerSnapshot{
histogram: t.histogram.Snapshot().(*HistogramSnapshot),
meter: t.meter.Snapshot().(*MeterSnapshot),
return &timerSnapshot{
histogram: t.histogram.Snapshot(),
meter: t.meter.Snapshot(),
}
}
// StdDev returns the standard deviation of the values in the sample.
func (t *StandardTimer) StdDev() float64 {
return t.histogram.StdDev()
}
// Stop stops the meter.
func (t *StandardTimer) Stop() {
t.meter.Stop()
}
// Sum returns the sum in the sample.
func (t *StandardTimer) Sum() int64 {
return t.histogram.Sum()
}
// Record the duration of the execution of the given function.
func (t *StandardTimer) Time(f func()) {
ts := time.Now()
@ -241,86 +122,63 @@ func (t *StandardTimer) UpdateSince(ts time.Time) {
t.meter.Mark(1)
}
// Variance returns the variance of the values in the sample.
func (t *StandardTimer) Variance() float64 {
return t.histogram.Variance()
}
// TimerSnapshot is a read-only copy of another Timer.
type TimerSnapshot struct {
histogram *HistogramSnapshot
meter *MeterSnapshot
// timerSnapshot is a read-only copy of another Timer.
type timerSnapshot struct {
histogram HistogramSnapshot
meter MeterSnapshot
}
// Count returns the number of events recorded at the time the snapshot was
// taken.
func (t *TimerSnapshot) Count() int64 { return t.histogram.Count() }
func (t *timerSnapshot) Count() int64 { return t.histogram.Count() }
// Max returns the maximum value at the time the snapshot was taken.
func (t *TimerSnapshot) Max() int64 { return t.histogram.Max() }
func (t *timerSnapshot) Max() int64 { return t.histogram.Max() }
// Size returns the size of the sample at the time the snapshot was taken.
func (t *timerSnapshot) Size() int { return t.histogram.Size() }
// Mean returns the mean value at the time the snapshot was taken.
func (t *TimerSnapshot) Mean() float64 { return t.histogram.Mean() }
func (t *timerSnapshot) Mean() float64 { return t.histogram.Mean() }
// Min returns the minimum value at the time the snapshot was taken.
func (t *TimerSnapshot) Min() int64 { return t.histogram.Min() }
func (t *timerSnapshot) Min() int64 { return t.histogram.Min() }
// Percentile returns an arbitrary percentile of sampled values at the time the
// snapshot was taken.
func (t *TimerSnapshot) Percentile(p float64) float64 {
func (t *timerSnapshot) Percentile(p float64) float64 {
return t.histogram.Percentile(p)
}
// Percentiles returns a slice of arbitrary percentiles of sampled values at
// the time the snapshot was taken.
func (t *TimerSnapshot) Percentiles(ps []float64) []float64 {
func (t *timerSnapshot) Percentiles(ps []float64) []float64 {
return t.histogram.Percentiles(ps)
}
// Rate1 returns the one-minute moving average rate of events per second at the
// time the snapshot was taken.
func (t *TimerSnapshot) Rate1() float64 { return t.meter.Rate1() }
func (t *timerSnapshot) Rate1() float64 { return t.meter.Rate1() }
// Rate5 returns the five-minute moving average rate of events per second at
// the time the snapshot was taken.
func (t *TimerSnapshot) Rate5() float64 { return t.meter.Rate5() }
func (t *timerSnapshot) Rate5() float64 { return t.meter.Rate5() }
// Rate15 returns the fifteen-minute moving average rate of events per second
// at the time the snapshot was taken.
func (t *TimerSnapshot) Rate15() float64 { return t.meter.Rate15() }
func (t *timerSnapshot) Rate15() float64 { return t.meter.Rate15() }
// RateMean returns the meter's mean rate of events per second at the time the
// snapshot was taken.
func (t *TimerSnapshot) RateMean() float64 { return t.meter.RateMean() }
// Snapshot returns the snapshot.
func (t *TimerSnapshot) Snapshot() Timer { return t }
func (t *timerSnapshot) RateMean() float64 { return t.meter.RateMean() }
// StdDev returns the standard deviation of the values at the time the snapshot
// was taken.
func (t *TimerSnapshot) StdDev() float64 { return t.histogram.StdDev() }
// Stop is a no-op.
func (t *TimerSnapshot) Stop() {}
func (t *timerSnapshot) StdDev() float64 { return t.histogram.StdDev() }
// Sum returns the sum at the time the snapshot was taken.
func (t *TimerSnapshot) Sum() int64 { return t.histogram.Sum() }
// Time panics.
func (*TimerSnapshot) Time(func()) {
panic("Time called on a TimerSnapshot")
}
// Update panics.
func (*TimerSnapshot) Update(time.Duration) {
panic("Update called on a TimerSnapshot")
}
// UpdateSince panics.
func (*TimerSnapshot) UpdateSince(time.Time) {
panic("UpdateSince called on a TimerSnapshot")
}
func (t *timerSnapshot) Sum() int64 { return t.histogram.Sum() }
// Variance returns the variance of the values at the time the snapshot was
// taken.
func (t *TimerSnapshot) Variance() float64 { return t.histogram.Variance() }
func (t *timerSnapshot) Variance() float64 { return t.histogram.Variance() }

View File

@ -18,7 +18,7 @@ func BenchmarkTimer(b *testing.B) {
func TestGetOrRegisterTimer(t *testing.T) {
r := NewRegistry()
NewRegisteredTimer("foo", r).Update(47)
if tm := GetOrRegisterTimer("foo", r); tm.Count() != 1 {
if tm := GetOrRegisterTimer("foo", r).Snapshot(); tm.Count() != 1 {
t.Fatal(tm)
}
}
@ -27,7 +27,7 @@ func TestTimerExtremes(t *testing.T) {
tm := NewTimer()
tm.Update(math.MaxInt64)
tm.Update(0)
if stdDev := tm.StdDev(); stdDev != 4.611686018427388e+18 {
if stdDev := tm.Snapshot().StdDev(); stdDev != 4.611686018427388e+18 {
t.Errorf("tm.StdDev(): 4.611686018427388e+18 != %v\n", stdDev)
}
}
@ -56,7 +56,7 @@ func TestTimerFunc(t *testing.T) {
})
var (
drift = time.Millisecond * 2
measured = time.Duration(tm.Max())
measured = time.Duration(tm.Snapshot().Max())
ceil = actualTime + drift
floor = actualTime - drift
)
@ -66,7 +66,7 @@ func TestTimerFunc(t *testing.T) {
}
func TestTimerZero(t *testing.T) {
tm := NewTimer()
tm := NewTimer().Snapshot()
if count := tm.Count(); count != 0 {
t.Errorf("tm.Count(): 0 != %v\n", count)
}
@ -110,5 +110,5 @@ func ExampleGetOrRegisterTimer() {
m := "account.create.latency"
t := GetOrRegisterTimer(m, nil)
t.Update(47)
fmt.Println(t.Max()) // Output: 47
fmt.Println(t.Snapshot().Max()) // Output: 47
}

View File

@ -29,19 +29,19 @@ func WriteOnce(r Registry, w io.Writer) {
switch metric := namedMetric.m.(type) {
case Counter:
fmt.Fprintf(w, "counter %s\n", namedMetric.name)
fmt.Fprintf(w, " count: %9d\n", metric.Count())
fmt.Fprintf(w, " count: %9d\n", metric.Snapshot().Count())
case CounterFloat64:
fmt.Fprintf(w, "counter %s\n", namedMetric.name)
fmt.Fprintf(w, " count: %f\n", metric.Count())
fmt.Fprintf(w, " count: %f\n", metric.Snapshot().Count())
case Gauge:
fmt.Fprintf(w, "gauge %s\n", namedMetric.name)
fmt.Fprintf(w, " value: %9d\n", metric.Value())
fmt.Fprintf(w, " value: %9d\n", metric.Snapshot().Value())
case GaugeFloat64:
fmt.Fprintf(w, "gauge %s\n", namedMetric.name)
fmt.Fprintf(w, " value: %f\n", metric.Value())
fmt.Fprintf(w, " value: %f\n", metric.Snapshot().Value())
case GaugeInfo:
fmt.Fprintf(w, "gauge %s\n", namedMetric.name)
fmt.Fprintf(w, " value: %s\n", metric.Value().String())
fmt.Fprintf(w, " value: %s\n", metric.Snapshot().Value().String())
case Healthcheck:
metric.Check()
fmt.Fprintf(w, "healthcheck %s\n", namedMetric.name)