This first commit contains the first and second implementation stabs (after
primary review by @hsanjuan), using a stack for task buffering.
Known issues: ctrl-c (context cancellation) results in the export code getting
deadlocked. Duplicate blocks in exports. Duplicate block reads from store.
Original commit messages:
works
works against mainnet and calibnet
feat: add internal export api method
- will hopfully make things faster by not streaming the export over the json rpc api
polish: better file nameing
fix: potential race in marking cids as seen
chore: improve logging
feat: front export with cache
fix: give hector a good channel buffer on this shit
docsgen
This:
1. Updates the builtin actors bundle (for actors v10).
2. Updates the event entry type to include the codec.
3. Removes the cbor encoding and zero trimming from event data.
I've chose to:
1. _Not_ add codec handling to the event filtering system for now.
2. _Skip_ events with unexpected codecs.
We don't actually _allow_ these events in the FVM right now, and it
simplifies the implementation.
However, I _am_ recording the codecs in the database so we don't have to
migrate it later.
* Splitstore chain prune
* Protect on reification for simpler logic and sound cold compact protect
* Recovery from checkpoint during chain prune
* Splitstore (discard and universal mode) running in itests
* Add pause and restart functions to itest block miner
* Add config options to itest full nodes
* Add FsRepo support for itest full ndoes
Co-authored-by: zenground0 <ZenGround0@users.noreply.github.com>
- FSM handles the actual cc upgrade process including error states
- PoSting (winning and window) works over upgraded and upgrading sectors
- Integration test and changes to itest framework to reduce flakes
- Update CLI to handle new upgrade
- Update dependencies
Syntaxt of selection is located at
https://pkg.go.dev/github.com/ipld/go-ipld-selector-text-lite#SelectorSpecFromPath
Example use, assuming that:
- The root of the deal is a plain dag-pb unixfs directory
- The directory is not sharded
- The user wants to retrieve the first entry in that directory
lotus client retrieve --miner f0XXXXX --datamodel-path-selector 'Links/0/Hash' bafyROOTCID ~/output
For a much more elaborate example see the top of ./itests/deals_partial_retrieval_test.go
This commit removes badger from the deal-making processes, and
moves to a new architecture with the dagstore as the cental
component on the miner-side, and CARv2s on the client-side.
Every deal that has been handed off to the sealing subsystem becomes
a shard in the dagstore. Shards are mounted via the LotusMount, which
teaches the dagstore how to load the related piece when serving
retrievals.
When the miner starts the Lotus for the first time with this patch,
we will perform a one-time migration of all active deals into the
dagstore. This is a lightweight process, and it consists simply
of registering the shards in the dagstore.
Shards are backed by the unsealed copy of the piece. This is currently
a CARv1. However, the dagstore keeps CARv2 indices for all pieces, so
when it's time to acquire a shard to serve a retrieval, the unsealed
CARv1 is joined with its index (safeguarded by the dagstore), to form
a read-only blockstore, thus taking the place of the monolithic
badger.
Data transfers have been adjusted to interface directly with CARv2 files.
On inbound transfers (client retrievals, miner storage deals), we stream
the received data into a CARv2 ReadWrite blockstore. On outbound transfers
(client storage deals, miner retrievals), we serve the data off a CARv2
ReadOnly blockstore.
Client-side imports are managed by the refactored *imports.Manager
component (when not using IPFS integration). Just like it before, we use
the go-filestore library to avoid duplicating the data from the original
file in the resulting UnixFS DAG (concretely the leaves). However, the
target of those imports are what we call "ref-CARv2s": CARv2 files placed
under the `$LOTUS_PATH/imports` directory, containing the intermediate
nodes in full, and the leaves as positional references to the original file
on disk.
Client-side retrievals are placed into CARv2 files in the location:
`$LOTUS_PATH/retrievals`.
A new set of `Dagstore*` JSON-RPC operations and `lotus-miner dagstore`
subcommands have been introduced on the miner-side to inspect and manage
the dagstore.
Despite moving to a CARv2-backed system, the IPFS integration has been
respected, and it continues to be possible to make storage deals with data
held in an IPFS node, and to perform retrievals directly into an IPFS node.
NOTE: because the "staging" and "client" Badger blockstores are no longer
used, existing imports on the client will be rendered useless. On startup,
Lotus will enumerate all imports and print WARN statements on the log for
each import that needs to be reimported. These log lines contain these
messages:
- import lacks carv2 path; import will not work; please reimport
- import has missing/broken carv2; please reimport
At the end, we will print a "sanity check completed" message indicating
the count of imports found, and how many were deemed broken.
Co-authored-by: Aarsh Shah <aarshkshah1992@gmail.com>
Co-authored-by: Dirk McCormick <dirkmdev@gmail.com>
Co-authored-by: Raúl Kripalani <raul@protocol.ai>
Co-authored-by: Dirk McCormick <dirkmdev@gmail.com>
This is identical to ChainGetTipSetByHeight, but returns the tipset
following any null tipsets. This is what the user usually wants anyways.
(and I need it for another PR)