lighthouse/eth2/lmd_ghost/src/reduced_tree.rs

619 lines
19 KiB
Rust
Raw Normal View History

use super::{LmdGhost, Result as SuperResult};
2019-06-15 14:36:16 +00:00
use parking_lot::RwLock;
2019-06-15 14:11:55 +00:00
use std::collections::HashMap;
use std::marker::PhantomData;
use std::sync::Arc;
use store::{iter::BlockRootsIterator, Error as StoreError, Store};
use types::{BeaconBlock, BeaconState, EthSpec, Hash256, Slot};
type Result<T> = std::result::Result<T, Error>;
#[derive(Debug, PartialEq)]
pub enum Error {
MissingNode(Hash256),
MissingBlock(Hash256),
MissingState(Hash256),
MissingChild(Hash256),
NotInTree(Hash256),
NoCommonAncestor((Hash256, Hash256)),
StoreError(StoreError),
2019-06-15 22:19:08 +00:00
ValidatorWeightUnknown(usize),
}
impl From<StoreError> for Error {
fn from(e: StoreError) -> Error {
Error::StoreError(e)
}
}
2019-06-15 22:19:08 +00:00
pub struct ThreadSafeReducedTree<T, E> {
core: RwLock<ReducedTree<T, E>>,
}
impl<T, E> LmdGhost<T, E> for ThreadSafeReducedTree<T, E>
where
T: Store,
E: EthSpec,
{
2019-06-15 22:19:08 +00:00
fn new(store: Arc<T>, genesis_root: Hash256) -> Self {
2019-06-15 14:36:16 +00:00
ThreadSafeReducedTree {
2019-06-15 22:19:08 +00:00
core: RwLock::new(ReducedTree::new(store, genesis_root)),
2019-06-15 14:36:16 +00:00
}
}
fn process_attestation(
2019-06-15 14:36:16 +00:00
&self,
validator_index: usize,
block_hash: Hash256,
block_slot: Slot,
) -> SuperResult<()> {
2019-06-15 14:36:16 +00:00
self.core
.write()
.process_message(validator_index, block_hash, block_slot)
.map_err(|e| format!("process_attestation failed: {:?}", e))
}
/// Process a block that was seen on the network.
fn process_block(&self, block_hash: Hash256, _block_slot: Slot) -> SuperResult<()> {
self.core
.write()
.add_weightless_node(block_hash)
.map_err(|e| format!("process_block failed: {:?}", e))
}
2019-06-15 22:19:08 +00:00
fn find_head<F>(&self, start_block_root: Hash256, weight_fn: F) -> SuperResult<Hash256>
2019-06-15 19:05:34 +00:00
where
2019-06-15 22:19:08 +00:00
F: Fn(usize) -> Option<u64> + Copy,
2019-06-15 19:05:34 +00:00
{
2019-06-15 22:19:08 +00:00
self.core
.write()
.update_weights_and_find_head(start_block_root, weight_fn)
.map_err(|e| format!("find_head failed: {:?}", e))
}
2019-06-15 22:19:08 +00:00
fn update_finalized_root(&self, new_root: Hash256) -> SuperResult<()> {
self.core
.write()
.update_root(new_root)
.map_err(|e| format!("update_finalized_root failed: {:?}", e))
}
}
2019-06-15 22:19:08 +00:00
struct ReducedTree<T, E> {
2019-06-15 14:36:16 +00:00
store: Arc<T>,
/// Stores all nodes of the tree, keyed by the block hash contained in the node.
nodes: HashMap<Hash256, Node>,
/// Maps validator indices to their latest votes.
latest_votes: ElasticList<Option<Vote>>,
2019-06-15 22:19:08 +00:00
/// Stores the root of the tree, used for pruning.
root: Hash256,
2019-06-15 14:36:16 +00:00
_phantom: PhantomData<E>,
}
impl<T, E> ReducedTree<T, E>
where
T: Store,
E: EthSpec,
{
2019-06-15 22:19:08 +00:00
pub fn new(store: Arc<T>, genesis_root: Hash256) -> Self {
let mut nodes = HashMap::new();
// Insert the genesis node.
nodes.insert(
genesis_root,
Node {
block_hash: genesis_root,
..Node::default()
},
);
Self {
store,
2019-06-15 22:19:08 +00:00
nodes,
latest_votes: ElasticList::default(),
2019-06-15 22:19:08 +00:00
root: genesis_root,
_phantom: PhantomData,
}
}
2019-06-15 22:19:08 +00:00
pub fn update_root(&mut self, new_root: Hash256) -> Result<()> {
if !self.nodes.contains_key(&new_root) {
let node = Node {
block_hash: new_root,
voters: vec![],
..Node::default()
};
self.add_node(node)?;
2019-06-15 22:19:08 +00:00
}
self.retain_subtree(self.root, new_root)?;
self.root = new_root;
Ok(())
}
fn retain_subtree(&mut self, current_hash: Hash256, subtree_hash: Hash256) -> Result<()> {
if current_hash != subtree_hash {
// Clone satisifies the borrow checker.
let children = self.get_node(current_hash)?.children.clone();
for child_hash in children {
self.retain_subtree(child_hash, subtree_hash)?;
}
self.nodes.remove(&current_hash);
}
Ok(())
}
pub fn process_message(
&mut self,
validator_index: usize,
block_hash: Hash256,
slot: Slot,
) -> Result<()> {
if let Some(previous_vote) = self.latest_votes.get(validator_index) {
if previous_vote.slot > slot {
// Given vote is earier than known vote, nothing to do.
return Ok(());
} else if previous_vote.slot == slot && previous_vote.hash == block_hash {
// Given vote is identical to known vote, nothing to do.
return Ok(());
} else if previous_vote.slot == slot && previous_vote.hash != block_hash {
// Vote is an equivocation (double-vote), ignore it.
//
2019-06-15 22:19:08 +00:00
// TODO: this is slashable.
return Ok(());
} else {
// Given vote is newer or different to current vote, replace the current vote.
self.remove_latest_message(validator_index)?;
}
}
2019-06-20 08:44:50 +00:00
self.latest_votes.insert(
validator_index,
Some(Vote {
slot,
hash: block_hash,
}),
);
2019-06-15 14:36:16 +00:00
self.add_latest_message(validator_index, block_hash)?;
Ok(())
}
2019-06-15 22:19:08 +00:00
pub fn update_weights_and_find_head<F>(
&mut self,
start_block_root: Hash256,
weight_fn: F,
) -> Result<Hash256>
where
F: Fn(usize) -> Option<u64> + Copy,
{
2019-06-18 00:39:33 +00:00
// It is possible that the given `start_block_root` is not in the reduced tree.
//
// In this case, we add a weightless node at `start_block_root`.
if !self.nodes.contains_key(&start_block_root) {
self.add_weightless_node(start_block_root)?;
};
2019-06-15 22:19:08 +00:00
let _root_weight = self.update_weight(start_block_root, weight_fn)?;
let start_node = self.get_node(start_block_root)?;
let head_node = self.find_head_from(start_node)?;
Ok(head_node.block_hash)
}
fn find_head_from<'a>(&'a self, start_node: &'a Node) -> Result<&'a Node> {
2019-06-20 08:46:03 +00:00
dbg!(&self.nodes);
2019-06-15 22:19:08 +00:00
if start_node.does_not_have_children() {
Ok(start_node)
} else {
let children = start_node
.children
.iter()
.map(|hash| self.get_node(*hash))
.collect::<Result<Vec<&Node>>>()?;
// TODO: check if `max_by` is `O(n^2)`.
let best_child = children
.iter()
.max_by(|a, b| {
if a.weight != b.weight {
a.weight.cmp(&b.weight)
} else {
a.block_hash.cmp(&b.block_hash)
}
})
// There can only be no maximum if there are no children. This code path is guarded
// against that condition.
.expect("There must be a maximally weighted node.");
self.find_head_from(best_child)
}
}
fn update_weight<F>(&mut self, start_block_root: Hash256, weight_fn: F) -> Result<u64>
where
F: Fn(usize) -> Option<u64> + Copy,
{
let weight = {
let node = self.get_node(start_block_root)?.clone();
let mut weight = 0;
for &child in &node.children {
weight += self.update_weight(child, weight_fn)?;
}
for &voter in &node.voters {
weight += weight_fn(voter).ok_or_else(|| Error::ValidatorWeightUnknown(voter))?;
}
weight
};
let node = self.get_mut_node(start_block_root)?;
node.weight = weight;
Ok(weight)
}
2019-06-15 14:36:16 +00:00
fn remove_latest_message(&mut self, validator_index: usize) -> Result<()> {
2019-06-15 14:11:55 +00:00
if self.latest_votes.get(validator_index).is_some() {
// Unwrap is safe as prior `if` statements ensures the result is `Some`.
let vote = self.latest_votes.get(validator_index).unwrap();
2019-06-15 14:11:55 +00:00
let should_delete = {
self.get_mut_node(vote.hash)?.remove_voter(validator_index);
let node = self.get_node(vote.hash)?.clone();
if let Some(parent_hash) = node.parent_hash {
if node.has_votes() {
// A node with votes is never removed.
false
} else if node.children.len() > 1 {
// A node with more than one child is never removed.
false
} else if node.children.len() == 1 {
// A node which has only one child may be removed.
//
// Load the child of the node and set it's parent to be the parent of this
// node (viz., graft the node's child to the node's parent)
let child = self
.nodes
.get_mut(&node.children[0])
.ok_or_else(|| Error::MissingNode(node.children[0]))?;
child.parent_hash = node.parent_hash;
true
} else if node.children.len() == 0 {
// A node which has no children may be deleted and potentially it's parent
// too.
self.maybe_delete_node(parent_hash)?;
true
} else {
// It is impossible for a node to have a number of children that is not 0, 1 or
// greater than one.
//
// This code is strictly unnecessary, however we keep it for readability.
unreachable!();
}
} else {
// A node without a parent is the genesis/finalized node and should never be removed.
false
}
};
if should_delete {
self.nodes.remove(&vote.hash);
}
2019-06-15 14:11:55 +00:00
self.latest_votes.insert(validator_index, Some(vote));
}
Ok(())
}
fn maybe_delete_node(&mut self, hash: Hash256) -> Result<()> {
let should_delete = {
2019-06-15 14:11:55 +00:00
let node = self.get_node(hash)?.clone();
if let Some(parent_hash) = node.parent_hash {
if (node.children.len() == 1) && !node.has_votes() {
// Graft the child to it's grandparent.
let child_hash = {
let child_node = self.get_mut_node(node.children[0])?;
child_node.parent_hash = node.parent_hash;
child_node.block_hash
};
// Graft the grandparent to it's grandchild.
let parent_node = self.get_mut_node(parent_hash)?;
parent_node.replace_child(node.block_hash, child_hash)?;
true
} else {
false
}
} else {
// A node without a parent is the genesis node and should not be deleted.
false
}
};
if should_delete {
self.nodes.remove(&hash);
}
Ok(())
}
2019-06-15 14:36:16 +00:00
fn add_latest_message(&mut self, validator_index: usize, hash: Hash256) -> Result<()> {
if let Ok(node) = self.get_mut_node(hash) {
node.add_voter(validator_index);
} else {
let node = Node {
block_hash: hash,
voters: vec![validator_index],
..Node::default()
};
self.add_node(node)?;
}
Ok(())
}
fn add_weightless_node(&mut self, hash: Hash256) -> Result<()> {
if !self.nodes.contains_key(&hash) {
let node = Node {
block_hash: hash,
..Node::default()
};
self.add_node(node)?;
if let Some(parent_hash) = self.get_node(hash)?.parent_hash {
self.maybe_delete_node(parent_hash)?;
}
}
Ok(())
}
fn add_node(&mut self, mut node: Node) -> Result<()> {
// Find the highest (by slot) ancestor of the given hash/block that is in the reduced tree.
let mut prev_in_tree = {
let hash = self
.find_prev_in_tree(node.block_hash)
.ok_or_else(|| Error::NotInTree(node.block_hash))?;
self.get_mut_node(hash)?.clone()
};
let mut added_new_ancestor = false;
if !prev_in_tree.children.is_empty() {
for &child_hash in &prev_in_tree.children {
let ancestor_hash = self.find_least_common_ancestor(node.block_hash, child_hash)?;
2019-06-18 00:39:33 +00:00
// TODO: handle the case where the new block is a child of an existing node and a
// parent of an existing node.
if ancestor_hash != prev_in_tree.block_hash {
let child = self.get_mut_node(child_hash)?;
let common_ancestor = Node {
block_hash: ancestor_hash,
parent_hash: Some(prev_in_tree.block_hash),
children: vec![node.block_hash, child_hash],
..Node::default()
};
child.parent_hash = Some(common_ancestor.block_hash);
node.parent_hash = Some(common_ancestor.block_hash);
prev_in_tree.replace_child(child_hash, ancestor_hash)?;
self.nodes
.insert(common_ancestor.block_hash, common_ancestor);
added_new_ancestor = true;
break;
}
}
}
if !added_new_ancestor {
node.parent_hash = Some(prev_in_tree.block_hash);
prev_in_tree.children.push(node.block_hash);
}
// Update `prev_in_tree`. A mutable reference was not maintained to satisfy the borrow
// checker.
//
// This is not an ideal solution and results in unnecessary memory copies -- a better
// solution is certainly possible.
self.nodes.insert(prev_in_tree.block_hash, prev_in_tree);
self.nodes.insert(node.block_hash, node);
Ok(())
}
/// For the given block `hash`, find it's highest (by slot) ancestor that exists in the reduced
/// tree.
fn find_prev_in_tree(&mut self, hash: Hash256) -> Option<Hash256> {
self.iter_ancestors(hash)
.ok()?
.find(|(root, _slot)| self.nodes.contains_key(root))
.and_then(|(root, _slot)| Some(root))
}
/// For the given `child` block hash, return the block's ancestor at the given `target` slot.
fn find_ancestor_at_slot(&self, child: Hash256, target: Slot) -> Result<Hash256> {
let (root, slot) = self
.iter_ancestors(child)?
.find(|(_block, slot)| *slot <= target)
.ok_or_else(|| Error::NotInTree(child))?;
// Explicitly check that the slot is the target in the case that the given child has a slot
// above target.
if slot == target {
Ok(root)
} else {
Err(Error::NotInTree(child))
}
}
/// For the two given block roots (`a_root` and `b_root`), find the first block they share in
/// the tree. Viz, find the block that these two distinct blocks forked from.
fn find_least_common_ancestor(&self, a_root: Hash256, b_root: Hash256) -> Result<Hash256> {
// If the blocks behind `a_root` and `b_root` are not at the same slot, take the highest
// block (by slot) down to be equal with the lower slot.
//
// The result is two roots which identify two blocks at the same height.
let (a_root, b_root) = {
let a = self.get_block(a_root)?;
let b = self.get_block(b_root)?;
if a.slot > b.slot {
(self.find_ancestor_at_slot(a_root, b.slot)?, b_root)
} else if b.slot > a.slot {
(a_root, self.find_ancestor_at_slot(b_root, a.slot)?)
} else {
(a_root, b_root)
}
};
let ((a_root, _a_slot), (_b_root, _b_slot)) = self
.iter_ancestors(a_root)?
.zip(self.iter_ancestors(b_root)?)
.find(|((a_root, _), (b_root, _))| a_root == b_root)
.ok_or_else(|| Error::NoCommonAncestor((a_root, b_root)))?;
Ok(a_root)
}
fn iter_ancestors(&self, child: Hash256) -> Result<BlockRootsIterator<E, T>> {
let block = self.get_block(child)?;
let state = self.get_state(block.state_root)?;
Ok(BlockRootsIterator::owned(
self.store.clone(),
state,
block.slot,
))
}
fn get_node(&self, hash: Hash256) -> Result<&Node> {
self.nodes
.get(&hash)
.ok_or_else(|| Error::MissingNode(hash))
}
fn get_mut_node(&mut self, hash: Hash256) -> Result<&mut Node> {
self.nodes
.get_mut(&hash)
.ok_or_else(|| Error::MissingNode(hash))
}
fn get_block(&self, block_root: Hash256) -> Result<BeaconBlock> {
self.store
.get::<BeaconBlock>(&block_root)?
.ok_or_else(|| Error::MissingBlock(block_root))
}
fn get_state(&self, state_root: Hash256) -> Result<BeaconState<E>> {
self.store
.get::<BeaconState<E>>(&state_root)?
.ok_or_else(|| Error::MissingState(state_root))
}
}
#[derive(Default, Clone, Debug)]
2019-06-15 22:19:08 +00:00
pub struct Node {
pub parent_hash: Option<Hash256>,
pub children: Vec<Hash256>,
pub weight: u64,
pub block_hash: Hash256,
pub voters: Vec<usize>,
}
impl Node {
pub fn does_not_have_children(&self) -> bool {
self.children.is_empty()
}
pub fn replace_child(&mut self, old: Hash256, new: Hash256) -> Result<()> {
let i = self
.children
.iter()
.position(|&c| c == old)
.ok_or_else(|| Error::MissingChild(old))?;
self.children[i] = new;
Ok(())
}
2019-06-15 22:19:08 +00:00
pub fn remove_voter(&mut self, voter: usize) -> Option<usize> {
let i = self.voters.iter().position(|&v| v == voter)?;
Some(self.voters.remove(i))
}
pub fn add_voter(&mut self, voter: usize) {
self.voters.push(voter);
}
pub fn has_votes(&self) -> bool {
!self.voters.is_empty()
}
}
#[derive(Debug, Clone, Copy)]
pub struct Vote {
hash: Hash256,
slot: Slot,
}
2019-06-15 14:11:55 +00:00
/// A Vec-wrapper which will grow to match any request.
///
/// E.g., a `get` or `insert` to an out-of-bounds element will cause the Vec to grow (using
/// Default) to the smallest size required to fulfill the request.
2019-06-20 08:46:03 +00:00
#[derive(Default, Clone, Debug)]
pub struct ElasticList<T>(Vec<T>);
impl<T> ElasticList<T>
where
T: Default,
{
fn ensure(&mut self, i: usize) {
if self.0.len() <= i {
self.0.resize_with(i + 1, Default::default);
}
}
pub fn get(&mut self, i: usize) -> &T {
self.ensure(i);
&self.0[i]
}
pub fn insert(&mut self, i: usize, element: T) {
self.ensure(i);
self.0[i] = element;
}
}
2019-06-15 22:19:08 +00:00
impl From<Error> for String {
fn from(e: Error) -> String {
format!("{:?}", e)
}
}