laconicd/x/evm/keeper/state_transition.go
crypto-facs d4621f3e82
fix: set EVM debug based on tracer config (#746)
* set debug based on tracer

* fix tests

* set default tracer

* remove debug from keeper

* remove unnecesary param

* remove unnecesary param

* Update x/evm/keeper/state_transition.go

* changelog

Co-authored-by: Federico Kunze Küllmer <31522760+fedekunze@users.noreply.github.com>
Co-authored-by: Federico Kunze Küllmer <federico.kunze94@gmail.com>
2021-11-16 08:57:03 +00:00

471 lines
17 KiB
Go

package keeper
import (
"math/big"
"github.com/palantir/stacktrace"
tmtypes "github.com/tendermint/tendermint/types"
sdk "github.com/cosmos/cosmos-sdk/types"
sdkerrors "github.com/cosmos/cosmos-sdk/types/errors"
authtypes "github.com/cosmos/cosmos-sdk/x/auth/types"
stakingtypes "github.com/cosmos/cosmos-sdk/x/staking/types"
ethermint "github.com/tharsis/ethermint/types"
"github.com/tharsis/ethermint/x/evm/types"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core"
ethtypes "github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/params"
)
// EVMConfig creates the EVMConfig based on current state
func (k *Keeper) EVMConfig(ctx sdk.Context) (*types.EVMConfig, error) {
params := k.GetParams(ctx)
ethCfg := params.ChainConfig.EthereumConfig(k.eip155ChainID)
// get the coinbase address from the block proposer
coinbase, err := k.GetCoinbaseAddress(ctx)
if err != nil {
return nil, stacktrace.Propagate(err, "failed to obtain coinbase address")
}
var baseFee *big.Int
if types.IsLondon(ethCfg, ctx.BlockHeight()) {
baseFee = k.feeMarketKeeper.GetBaseFee(ctx)
}
return &types.EVMConfig{
Params: params,
ChainConfig: ethCfg,
CoinBase: coinbase,
BaseFee: baseFee,
}, nil
}
// NewEVM generates a go-ethereum VM from the provided Message fields and the chain parameters
// (ChainConfig and module Params). It additionally sets the validator operator address as the
// coinbase address to make it available for the COINBASE opcode, even though there is no
// beneficiary of the coinbase transaction (since we're not mining).
func (k *Keeper) NewEVM(
msg core.Message,
cfg *types.EVMConfig,
tracer vm.Tracer,
) *vm.EVM {
blockCtx := vm.BlockContext{
CanTransfer: core.CanTransfer,
Transfer: core.Transfer,
GetHash: k.GetHashFn(),
Coinbase: cfg.CoinBase,
GasLimit: ethermint.BlockGasLimit(k.Ctx()),
BlockNumber: big.NewInt(k.Ctx().BlockHeight()),
Time: big.NewInt(k.Ctx().BlockHeader().Time.Unix()),
Difficulty: big.NewInt(0), // unused. Only required in PoW context
BaseFee: cfg.BaseFee,
}
txCtx := core.NewEVMTxContext(msg)
if tracer == nil {
tracer = k.Tracer(msg, cfg.ChainConfig)
}
vmConfig := k.VMConfig(cfg.Params, tracer)
return vm.NewEVM(blockCtx, txCtx, k, cfg.ChainConfig, vmConfig)
}
// VMConfig creates an EVM configuration from the debug setting and the extra EIPs enabled on the
// module parameters. The config generated uses the default JumpTable from the EVM.
func (k Keeper) VMConfig(params types.Params, tracer vm.Tracer) vm.Config {
fmParams := k.feeMarketKeeper.GetParams(k.Ctx())
var debug bool
if _, ok := tracer.(types.NoOpTracer); !ok {
debug = true
}
return vm.Config{
Debug: debug,
Tracer: tracer,
NoRecursion: false, // TODO: consider disabling recursion though params
NoBaseFee: fmParams.NoBaseFee,
ExtraEips: params.EIPs(),
}
}
// GetHashFn implements vm.GetHashFunc for Ethermint. It handles 3 cases:
// 1. The requested height matches the current height from context (and thus same epoch number)
// 2. The requested height is from an previous height from the same chain epoch
// 3. The requested height is from a height greater than the latest one
func (k Keeper) GetHashFn() vm.GetHashFunc {
return func(height uint64) common.Hash {
ctx := k.Ctx()
h, err := ethermint.SafeInt64(height)
if err != nil {
k.Logger(ctx).Error("failed to cast height to int64", "error", err)
return common.Hash{}
}
switch {
case ctx.BlockHeight() == h:
// Case 1: The requested height matches the one from the context so we can retrieve the header
// hash directly from the context.
// Note: The headerHash is only set at begin block, it will be nil in case of a query context
headerHash := ctx.HeaderHash()
if len(headerHash) != 0 {
return common.BytesToHash(headerHash)
}
// only recompute the hash if not set (eg: checkTxState)
contextBlockHeader := ctx.BlockHeader()
header, err := tmtypes.HeaderFromProto(&contextBlockHeader)
if err != nil {
k.Logger(ctx).Error("failed to cast tendermint header from proto", "error", err)
return common.Hash{}
}
headerHash = header.Hash()
return common.BytesToHash(headerHash)
case ctx.BlockHeight() > h:
// Case 2: if the chain is not the current height we need to retrieve the hash from the store for the
// current chain epoch. This only applies if the current height is greater than the requested height.
histInfo, found := k.stakingKeeper.GetHistoricalInfo(ctx, h)
if !found {
k.Logger(ctx).Debug("historical info not found", "height", h)
return common.Hash{}
}
header, err := tmtypes.HeaderFromProto(&histInfo.Header)
if err != nil {
k.Logger(ctx).Error("failed to cast tendermint header from proto", "error", err)
return common.Hash{}
}
return common.BytesToHash(header.Hash())
default:
// Case 3: heights greater than the current one returns an empty hash.
return common.Hash{}
}
}
}
// ApplyTransaction runs and attempts to perform a state transition with the given transaction (i.e Message), that will
// only be persisted (committed) to the underlying KVStore if the transaction does not fail.
//
// Gas tracking
//
// Ethereum consumes gas according to the EVM opcodes instead of general reads and writes to store. Because of this, the
// state transition needs to ignore the SDK gas consumption mechanism defined by the GasKVStore and instead consume the
// amount of gas used by the VM execution. The amount of gas used is tracked by the EVM and returned in the execution
// result.
//
// Prior to the execution, the starting tx gas meter is saved and replaced with an infinite gas meter in a new context
// in order to ignore the SDK gas consumption config values (read, write, has, delete).
// After the execution, the gas used from the message execution will be added to the starting gas consumed, taking into
// consideration the amount of gas returned. Finally, the context is updated with the EVM gas consumed value prior to
// returning.
//
// For relevant discussion see: https://github.com/cosmos/cosmos-sdk/discussions/9072
func (k *Keeper) ApplyTransaction(tx *ethtypes.Transaction) (*types.MsgEthereumTxResponse, error) {
ctx := k.Ctx()
// ensure keeper state error is cleared
defer k.ClearStateError()
cfg, err := k.EVMConfig(ctx)
if err != nil {
return nil, stacktrace.Propagate(err, "failed to load evm config")
}
// get the latest signer according to the chain rules from the config
signer := ethtypes.MakeSigner(cfg.ChainConfig, big.NewInt(ctx.BlockHeight()))
var baseFee *big.Int
if types.IsLondon(cfg.ChainConfig, ctx.BlockHeight()) {
baseFee = k.feeMarketKeeper.GetBaseFee(ctx)
}
msg, err := tx.AsMessage(signer, baseFee)
if err != nil {
return nil, stacktrace.Propagate(err, "failed to return ethereum transaction as core message")
}
txHash := tx.Hash()
// set the transaction hash and index to the impermanent (transient) block state so that it's also
// available on the StateDB functions (eg: AddLog)
k.SetTxHashTransient(txHash)
// snapshot to contain the tx processing and post processing in same scope
var commit func()
if k.hooks != nil {
// Create a cache context to revert state when tx hooks fails,
// the cache context is only committed when both tx and hooks executed successfully.
// Didn't use `Snapshot` because the context stack has exponential complexity on certain operations,
// thus restricted to be used only inside `ApplyMessage`.
var cacheCtx sdk.Context
cacheCtx, commit = ctx.CacheContext()
k.WithContext(cacheCtx)
defer (func() {
k.WithContext(ctx)
})()
}
res, err := k.ApplyMessageWithConfig(msg, nil, true, cfg)
if err != nil {
return nil, stacktrace.Propagate(err, "failed to apply ethereum core message")
}
// refund gas prior to handling the vm error in order to match the Ethereum gas consumption instead of the default SDK one.
err = k.RefundGas(msg, msg.Gas()-res.GasUsed, cfg.Params.EvmDenom)
if err != nil {
return nil, stacktrace.Propagate(err, "failed to refund gas leftover gas to sender %s", msg.From())
}
res.Hash = txHash.Hex()
logs := k.GetTxLogsTransient(txHash)
if !res.Failed() {
// Only call hooks if tx executed successfully.
if err = k.PostTxProcessing(txHash, logs); err != nil {
// If hooks return error, revert the whole tx.
res.VmError = types.ErrPostTxProcessing.Error()
k.Logger(k.Ctx()).Error("tx post processing failed", "error", err)
} else if commit != nil {
// PostTxProcessing is successful, commit the cache context
commit()
ctx.EventManager().EmitEvents(k.Ctx().EventManager().Events())
}
}
if len(logs) > 0 {
res.Logs = types.NewLogsFromEth(logs)
// Update transient block bloom filter
bloom := k.GetBlockBloomTransient()
bloom.Or(bloom, big.NewInt(0).SetBytes(ethtypes.LogsBloom(logs)))
k.SetBlockBloomTransient(bloom)
}
k.IncreaseTxIndexTransient()
// update the gas used after refund
k.ResetGasMeterAndConsumeGas(res.GasUsed)
return res, nil
}
// ApplyMessageWithConfig computes the new state by applying the given message against the existing state.
// If the message fails, the VM execution error with the reason will be returned to the client
// and the transaction won't be committed to the store.
//
// Reverted state
//
// The snapshot and rollback are supported by the `ContextStack`, which should be only used inside `ApplyMessage`,
// because some operations has exponential computational complexity with deep stack.
//
// Different Callers
//
// It's called in three scenarios:
// 1. `ApplyTransaction`, in the transaction processing flow.
// 2. `EthCall/EthEstimateGas` grpc query handler.
// 3. Called by other native modules directly.
//
// Prechecks and Preprocessing
//
// All relevant state transition prechecks for the MsgEthereumTx are performed on the AnteHandler,
// prior to running the transaction against the state. The prechecks run are the following:
//
// 1. the nonce of the message caller is correct
// 2. caller has enough balance to cover transaction fee(gaslimit * gasprice)
// 3. the amount of gas required is available in the block
// 4. the purchased gas is enough to cover intrinsic usage
// 5. there is no overflow when calculating intrinsic gas
// 6. caller has enough balance to cover asset transfer for **topmost** call
//
// The preprocessing steps performed by the AnteHandler are:
//
// 1. set up the initial access list (iff fork > Berlin)
//
// Tracer parameter
//
// It should be a `vm.Tracer` object or nil, if pass `nil`, it'll create a default one based on keeper options.
//
// Commit parameter
//
// If commit is true, the cache context stack will be committed, otherwise discarded.
func (k *Keeper) ApplyMessageWithConfig(msg core.Message, tracer vm.Tracer, commit bool, cfg *types.EVMConfig) (*types.MsgEthereumTxResponse, error) {
var (
ret []byte // return bytes from evm execution
vmErr error // vm errors do not effect consensus and are therefore not assigned to err
)
if !k.ctxStack.IsEmpty() {
panic("context stack shouldn't be dirty before apply message")
}
evm := k.NewEVM(msg, cfg, tracer)
// ensure keeper state error is cleared
defer k.ClearStateError()
// return error if contract creation or call are disabled through governance
if !cfg.Params.EnableCreate && msg.To() == nil {
return nil, stacktrace.Propagate(types.ErrCreateDisabled, "failed to create new contract")
} else if !cfg.Params.EnableCall && msg.To() != nil {
return nil, stacktrace.Propagate(types.ErrCallDisabled, "failed to call contract")
}
sender := vm.AccountRef(msg.From())
contractCreation := msg.To() == nil
isLondon := cfg.ChainConfig.IsLondon(evm.Context.BlockNumber)
intrinsicGas, err := k.GetEthIntrinsicGas(msg, cfg.ChainConfig, contractCreation)
if err != nil {
// should have already been checked on Ante Handler
return nil, stacktrace.Propagate(err, "intrinsic gas failed")
}
// Should check again even if it is checked on Ante Handler, because eth_call don't go through Ante Handler.
if msg.Gas() < intrinsicGas {
// eth_estimateGas will check for this exact error
return nil, stacktrace.Propagate(core.ErrIntrinsicGas, "apply message")
}
leftoverGas := msg.Gas() - intrinsicGas
// access list preparaion is moved from ante handler to here, because it's needed when `ApplyMessage` is called
// under contexts where ante handlers are not run, for example `eth_call` and `eth_estimateGas`.
if rules := cfg.ChainConfig.Rules(big.NewInt(k.Ctx().BlockHeight())); rules.IsBerlin {
k.PrepareAccessList(msg.From(), msg.To(), vm.ActivePrecompiles(rules), msg.AccessList())
}
if contractCreation {
ret, _, leftoverGas, vmErr = evm.Create(sender, msg.Data(), leftoverGas, msg.Value())
} else {
ret, leftoverGas, vmErr = evm.Call(sender, *msg.To(), msg.Data(), leftoverGas, msg.Value())
}
refundQuotient := params.RefundQuotient
// After EIP-3529: refunds are capped to gasUsed / 5
if isLondon {
refundQuotient = params.RefundQuotientEIP3529
}
// calculate gas refund
if msg.Gas() < leftoverGas {
return nil, stacktrace.Propagate(types.ErrGasOverflow, "apply message")
}
gasUsed := msg.Gas() - leftoverGas
refund := k.GasToRefund(gasUsed, refundQuotient)
if refund > gasUsed {
return nil, stacktrace.Propagate(types.ErrGasOverflow, "apply message")
}
gasUsed -= refund
// EVM execution error needs to be available for the JSON-RPC client
var vmError string
if vmErr != nil {
vmError = vmErr.Error()
}
// The context stack is designed specifically for `StateDB` interface, it should only be used in `ApplyMessage`,
// after return, the stack should be clean, the cached states are either committed or discarded.
if commit {
k.CommitCachedContexts()
} else {
k.ctxStack.RevertAll()
}
return &types.MsgEthereumTxResponse{
GasUsed: gasUsed,
VmError: vmError,
Ret: ret,
}, nil
}
// ApplyMessage calls ApplyMessageWithConfig with default EVMConfig
func (k *Keeper) ApplyMessage(msg core.Message, tracer vm.Tracer, commit bool) (*types.MsgEthereumTxResponse, error) {
cfg, err := k.EVMConfig(k.Ctx())
if err != nil {
return nil, stacktrace.Propagate(err, "failed to load evm config")
}
return k.ApplyMessageWithConfig(msg, tracer, commit, cfg)
}
// GetEthIntrinsicGas returns the intrinsic gas cost for the transaction
func (k *Keeper) GetEthIntrinsicGas(msg core.Message, cfg *params.ChainConfig, isContractCreation bool) (uint64, error) {
height := big.NewInt(k.Ctx().BlockHeight())
homestead := cfg.IsHomestead(height)
istanbul := cfg.IsIstanbul(height)
return core.IntrinsicGas(msg.Data(), msg.AccessList(), isContractCreation, homestead, istanbul)
}
// GasToRefund calculates the amount of gas the state machine should refund to the sender. It is
// capped by the refund quotient value.
// Note: do not pass 0 to refundQuotient
func (k *Keeper) GasToRefund(gasConsumed, refundQuotient uint64) uint64 {
// Apply refund counter
refund := gasConsumed / refundQuotient
availableRefund := k.GetRefund()
if refund > availableRefund {
return availableRefund
}
return refund
}
// RefundGas transfers the leftover gas to the sender of the message, caped to half of the total gas
// consumed in the transaction. Additionally, the function sets the total gas consumed to the value
// returned by the EVM execution, thus ignoring the previous intrinsic gas consumed during in the
// AnteHandler.
func (k *Keeper) RefundGas(msg core.Message, leftoverGas uint64, denom string) error {
// Return EVM tokens for remaining gas, exchanged at the original rate.
remaining := new(big.Int).Mul(new(big.Int).SetUint64(leftoverGas), msg.GasPrice())
switch remaining.Sign() {
case -1:
// negative refund errors
return sdkerrors.Wrapf(types.ErrInvalidRefund, "refunded amount value cannot be negative %d", remaining.Int64())
case 1:
// positive amount refund
refundedCoins := sdk.Coins{sdk.NewCoin(denom, sdk.NewIntFromBigInt(remaining))}
// refund to sender from the fee collector module account, which is the escrow account in charge of collecting tx fees
err := k.bankKeeper.SendCoinsFromModuleToAccount(k.Ctx(), authtypes.FeeCollectorName, msg.From().Bytes(), refundedCoins)
if err != nil {
err = sdkerrors.Wrapf(sdkerrors.ErrInsufficientFunds, "fee collector account failed to refund fees: %s", err.Error())
return stacktrace.Propagate(err, "failed to refund %d leftover gas (%s)", leftoverGas, refundedCoins.String())
}
default:
// no refund, consume gas and update the tx gas meter
}
return nil
}
// ResetGasMeterAndConsumeGas reset first the gas meter consumed value to zero and set it back to the new value
// 'gasUsed'
func (k *Keeper) ResetGasMeterAndConsumeGas(gasUsed uint64) {
// reset the gas count
ctx := k.Ctx()
ctx.GasMeter().RefundGas(ctx.GasMeter().GasConsumed(), "reset the gas count")
ctx.GasMeter().ConsumeGas(gasUsed, "apply evm transaction")
}
// GetCoinbaseAddress returns the block proposer's validator operator address.
func (k Keeper) GetCoinbaseAddress(ctx sdk.Context) (common.Address, error) {
consAddr := sdk.ConsAddress(ctx.BlockHeader().ProposerAddress)
validator, found := k.stakingKeeper.GetValidatorByConsAddr(ctx, consAddr)
if !found {
return common.Address{}, stacktrace.Propagate(
sdkerrors.Wrap(stakingtypes.ErrNoValidatorFound, consAddr.String()),
"failed to retrieve validator from block proposer address",
)
}
coinbase := common.BytesToAddress(validator.GetOperator())
return coinbase, nil
}