package keeper import ( "math/big" "github.com/palantir/stacktrace" tmtypes "github.com/tendermint/tendermint/types" sdk "github.com/cosmos/cosmos-sdk/types" sdkerrors "github.com/cosmos/cosmos-sdk/types/errors" authtypes "github.com/cosmos/cosmos-sdk/x/auth/types" stakingtypes "github.com/cosmos/cosmos-sdk/x/staking/types" ethermint "github.com/tharsis/ethermint/types" "github.com/tharsis/ethermint/x/evm/types" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core" ethtypes "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/params" ) // EVMConfig creates the EVMConfig based on current state func (k *Keeper) EVMConfig(ctx sdk.Context) (*types.EVMConfig, error) { params := k.GetParams(ctx) ethCfg := params.ChainConfig.EthereumConfig(k.eip155ChainID) // get the coinbase address from the block proposer coinbase, err := k.GetCoinbaseAddress(ctx) if err != nil { return nil, stacktrace.Propagate(err, "failed to obtain coinbase address") } var baseFee *big.Int if types.IsLondon(ethCfg, ctx.BlockHeight()) { baseFee = k.feeMarketKeeper.GetBaseFee(ctx) } return &types.EVMConfig{ Params: params, ChainConfig: ethCfg, CoinBase: coinbase, BaseFee: baseFee, }, nil } // NewEVM generates a go-ethereum VM from the provided Message fields and the chain parameters // (ChainConfig and module Params). It additionally sets the validator operator address as the // coinbase address to make it available for the COINBASE opcode, even though there is no // beneficiary of the coinbase transaction (since we're not mining). func (k *Keeper) NewEVM( msg core.Message, cfg *types.EVMConfig, tracer vm.Tracer, ) *vm.EVM { blockCtx := vm.BlockContext{ CanTransfer: core.CanTransfer, Transfer: core.Transfer, GetHash: k.GetHashFn(), Coinbase: cfg.CoinBase, GasLimit: ethermint.BlockGasLimit(k.Ctx()), BlockNumber: big.NewInt(k.Ctx().BlockHeight()), Time: big.NewInt(k.Ctx().BlockHeader().Time.Unix()), Difficulty: big.NewInt(0), // unused. Only required in PoW context BaseFee: cfg.BaseFee, } txCtx := core.NewEVMTxContext(msg) if tracer == nil { tracer = k.Tracer(msg, cfg.ChainConfig) } vmConfig := k.VMConfig(cfg.Params, tracer) return vm.NewEVM(blockCtx, txCtx, k, cfg.ChainConfig, vmConfig) } // VMConfig creates an EVM configuration from the debug setting and the extra EIPs enabled on the // module parameters. The config generated uses the default JumpTable from the EVM. func (k Keeper) VMConfig(params types.Params, tracer vm.Tracer) vm.Config { fmParams := k.feeMarketKeeper.GetParams(k.Ctx()) var debug bool if _, ok := tracer.(types.NoOpTracer); !ok { debug = true } return vm.Config{ Debug: debug, Tracer: tracer, NoRecursion: false, // TODO: consider disabling recursion though params NoBaseFee: fmParams.NoBaseFee, ExtraEips: params.EIPs(), } } // GetHashFn implements vm.GetHashFunc for Ethermint. It handles 3 cases: // 1. The requested height matches the current height from context (and thus same epoch number) // 2. The requested height is from an previous height from the same chain epoch // 3. The requested height is from a height greater than the latest one func (k Keeper) GetHashFn() vm.GetHashFunc { return func(height uint64) common.Hash { ctx := k.Ctx() h, err := ethermint.SafeInt64(height) if err != nil { k.Logger(ctx).Error("failed to cast height to int64", "error", err) return common.Hash{} } switch { case ctx.BlockHeight() == h: // Case 1: The requested height matches the one from the context so we can retrieve the header // hash directly from the context. // Note: The headerHash is only set at begin block, it will be nil in case of a query context headerHash := ctx.HeaderHash() if len(headerHash) != 0 { return common.BytesToHash(headerHash) } // only recompute the hash if not set (eg: checkTxState) contextBlockHeader := ctx.BlockHeader() header, err := tmtypes.HeaderFromProto(&contextBlockHeader) if err != nil { k.Logger(ctx).Error("failed to cast tendermint header from proto", "error", err) return common.Hash{} } headerHash = header.Hash() return common.BytesToHash(headerHash) case ctx.BlockHeight() > h: // Case 2: if the chain is not the current height we need to retrieve the hash from the store for the // current chain epoch. This only applies if the current height is greater than the requested height. histInfo, found := k.stakingKeeper.GetHistoricalInfo(ctx, h) if !found { k.Logger(ctx).Debug("historical info not found", "height", h) return common.Hash{} } header, err := tmtypes.HeaderFromProto(&histInfo.Header) if err != nil { k.Logger(ctx).Error("failed to cast tendermint header from proto", "error", err) return common.Hash{} } return common.BytesToHash(header.Hash()) default: // Case 3: heights greater than the current one returns an empty hash. return common.Hash{} } } } // ApplyTransaction runs and attempts to perform a state transition with the given transaction (i.e Message), that will // only be persisted (committed) to the underlying KVStore if the transaction does not fail. // // Gas tracking // // Ethereum consumes gas according to the EVM opcodes instead of general reads and writes to store. Because of this, the // state transition needs to ignore the SDK gas consumption mechanism defined by the GasKVStore and instead consume the // amount of gas used by the VM execution. The amount of gas used is tracked by the EVM and returned in the execution // result. // // Prior to the execution, the starting tx gas meter is saved and replaced with an infinite gas meter in a new context // in order to ignore the SDK gas consumption config values (read, write, has, delete). // After the execution, the gas used from the message execution will be added to the starting gas consumed, taking into // consideration the amount of gas returned. Finally, the context is updated with the EVM gas consumed value prior to // returning. // // For relevant discussion see: https://github.com/cosmos/cosmos-sdk/discussions/9072 func (k *Keeper) ApplyTransaction(tx *ethtypes.Transaction) (*types.MsgEthereumTxResponse, error) { ctx := k.Ctx() // ensure keeper state error is cleared defer k.ClearStateError() cfg, err := k.EVMConfig(ctx) if err != nil { return nil, stacktrace.Propagate(err, "failed to load evm config") } // get the latest signer according to the chain rules from the config signer := ethtypes.MakeSigner(cfg.ChainConfig, big.NewInt(ctx.BlockHeight())) var baseFee *big.Int if types.IsLondon(cfg.ChainConfig, ctx.BlockHeight()) { baseFee = k.feeMarketKeeper.GetBaseFee(ctx) } msg, err := tx.AsMessage(signer, baseFee) if err != nil { return nil, stacktrace.Propagate(err, "failed to return ethereum transaction as core message") } txHash := tx.Hash() // set the transaction hash and index to the impermanent (transient) block state so that it's also // available on the StateDB functions (eg: AddLog) k.SetTxHashTransient(txHash) // snapshot to contain the tx processing and post processing in same scope var commit func() if k.hooks != nil { // Create a cache context to revert state when tx hooks fails, // the cache context is only committed when both tx and hooks executed successfully. // Didn't use `Snapshot` because the context stack has exponential complexity on certain operations, // thus restricted to be used only inside `ApplyMessage`. var cacheCtx sdk.Context cacheCtx, commit = ctx.CacheContext() k.WithContext(cacheCtx) defer (func() { k.WithContext(ctx) })() } res, err := k.ApplyMessageWithConfig(msg, nil, true, cfg) if err != nil { return nil, stacktrace.Propagate(err, "failed to apply ethereum core message") } // refund gas prior to handling the vm error in order to match the Ethereum gas consumption instead of the default SDK one. err = k.RefundGas(msg, msg.Gas()-res.GasUsed, cfg.Params.EvmDenom) if err != nil { return nil, stacktrace.Propagate(err, "failed to refund gas leftover gas to sender %s", msg.From()) } res.Hash = txHash.Hex() logs := k.GetTxLogsTransient(txHash) if !res.Failed() { // Only call hooks if tx executed successfully. if err = k.PostTxProcessing(txHash, logs); err != nil { // If hooks return error, revert the whole tx. res.VmError = types.ErrPostTxProcessing.Error() k.Logger(k.Ctx()).Error("tx post processing failed", "error", err) } else if commit != nil { // PostTxProcessing is successful, commit the cache context commit() ctx.EventManager().EmitEvents(k.Ctx().EventManager().Events()) } } if len(logs) > 0 { res.Logs = types.NewLogsFromEth(logs) // Update transient block bloom filter bloom := k.GetBlockBloomTransient() bloom.Or(bloom, big.NewInt(0).SetBytes(ethtypes.LogsBloom(logs))) k.SetBlockBloomTransient(bloom) } k.IncreaseTxIndexTransient() // update the gas used after refund k.ResetGasMeterAndConsumeGas(res.GasUsed) return res, nil } // ApplyMessageWithConfig computes the new state by applying the given message against the existing state. // If the message fails, the VM execution error with the reason will be returned to the client // and the transaction won't be committed to the store. // // Reverted state // // The snapshot and rollback are supported by the `ContextStack`, which should be only used inside `ApplyMessage`, // because some operations has exponential computational complexity with deep stack. // // Different Callers // // It's called in three scenarios: // 1. `ApplyTransaction`, in the transaction processing flow. // 2. `EthCall/EthEstimateGas` grpc query handler. // 3. Called by other native modules directly. // // Prechecks and Preprocessing // // All relevant state transition prechecks for the MsgEthereumTx are performed on the AnteHandler, // prior to running the transaction against the state. The prechecks run are the following: // // 1. the nonce of the message caller is correct // 2. caller has enough balance to cover transaction fee(gaslimit * gasprice) // 3. the amount of gas required is available in the block // 4. the purchased gas is enough to cover intrinsic usage // 5. there is no overflow when calculating intrinsic gas // 6. caller has enough balance to cover asset transfer for **topmost** call // // The preprocessing steps performed by the AnteHandler are: // // 1. set up the initial access list (iff fork > Berlin) // // Tracer parameter // // It should be a `vm.Tracer` object or nil, if pass `nil`, it'll create a default one based on keeper options. // // Commit parameter // // If commit is true, the cache context stack will be committed, otherwise discarded. func (k *Keeper) ApplyMessageWithConfig(msg core.Message, tracer vm.Tracer, commit bool, cfg *types.EVMConfig) (*types.MsgEthereumTxResponse, error) { var ( ret []byte // return bytes from evm execution vmErr error // vm errors do not effect consensus and are therefore not assigned to err ) if !k.ctxStack.IsEmpty() { panic("context stack shouldn't be dirty before apply message") } evm := k.NewEVM(msg, cfg, tracer) // ensure keeper state error is cleared defer k.ClearStateError() // return error if contract creation or call are disabled through governance if !cfg.Params.EnableCreate && msg.To() == nil { return nil, stacktrace.Propagate(types.ErrCreateDisabled, "failed to create new contract") } else if !cfg.Params.EnableCall && msg.To() != nil { return nil, stacktrace.Propagate(types.ErrCallDisabled, "failed to call contract") } sender := vm.AccountRef(msg.From()) contractCreation := msg.To() == nil isLondon := cfg.ChainConfig.IsLondon(evm.Context.BlockNumber) intrinsicGas, err := k.GetEthIntrinsicGas(msg, cfg.ChainConfig, contractCreation) if err != nil { // should have already been checked on Ante Handler return nil, stacktrace.Propagate(err, "intrinsic gas failed") } // Should check again even if it is checked on Ante Handler, because eth_call don't go through Ante Handler. if msg.Gas() < intrinsicGas { // eth_estimateGas will check for this exact error return nil, stacktrace.Propagate(core.ErrIntrinsicGas, "apply message") } leftoverGas := msg.Gas() - intrinsicGas // access list preparaion is moved from ante handler to here, because it's needed when `ApplyMessage` is called // under contexts where ante handlers are not run, for example `eth_call` and `eth_estimateGas`. if rules := cfg.ChainConfig.Rules(big.NewInt(k.Ctx().BlockHeight())); rules.IsBerlin { k.PrepareAccessList(msg.From(), msg.To(), vm.ActivePrecompiles(rules), msg.AccessList()) } if contractCreation { ret, _, leftoverGas, vmErr = evm.Create(sender, msg.Data(), leftoverGas, msg.Value()) } else { ret, leftoverGas, vmErr = evm.Call(sender, *msg.To(), msg.Data(), leftoverGas, msg.Value()) } refundQuotient := params.RefundQuotient // After EIP-3529: refunds are capped to gasUsed / 5 if isLondon { refundQuotient = params.RefundQuotientEIP3529 } // calculate gas refund if msg.Gas() < leftoverGas { return nil, stacktrace.Propagate(types.ErrGasOverflow, "apply message") } gasUsed := msg.Gas() - leftoverGas refund := k.GasToRefund(gasUsed, refundQuotient) if refund > gasUsed { return nil, stacktrace.Propagate(types.ErrGasOverflow, "apply message") } gasUsed -= refund // EVM execution error needs to be available for the JSON-RPC client var vmError string if vmErr != nil { vmError = vmErr.Error() } // The context stack is designed specifically for `StateDB` interface, it should only be used in `ApplyMessage`, // after return, the stack should be clean, the cached states are either committed or discarded. if commit { k.CommitCachedContexts() } else { k.ctxStack.RevertAll() } return &types.MsgEthereumTxResponse{ GasUsed: gasUsed, VmError: vmError, Ret: ret, }, nil } // ApplyMessage calls ApplyMessageWithConfig with default EVMConfig func (k *Keeper) ApplyMessage(msg core.Message, tracer vm.Tracer, commit bool) (*types.MsgEthereumTxResponse, error) { cfg, err := k.EVMConfig(k.Ctx()) if err != nil { return nil, stacktrace.Propagate(err, "failed to load evm config") } return k.ApplyMessageWithConfig(msg, tracer, commit, cfg) } // GetEthIntrinsicGas returns the intrinsic gas cost for the transaction func (k *Keeper) GetEthIntrinsicGas(msg core.Message, cfg *params.ChainConfig, isContractCreation bool) (uint64, error) { height := big.NewInt(k.Ctx().BlockHeight()) homestead := cfg.IsHomestead(height) istanbul := cfg.IsIstanbul(height) return core.IntrinsicGas(msg.Data(), msg.AccessList(), isContractCreation, homestead, istanbul) } // GasToRefund calculates the amount of gas the state machine should refund to the sender. It is // capped by the refund quotient value. // Note: do not pass 0 to refundQuotient func (k *Keeper) GasToRefund(gasConsumed, refundQuotient uint64) uint64 { // Apply refund counter refund := gasConsumed / refundQuotient availableRefund := k.GetRefund() if refund > availableRefund { return availableRefund } return refund } // RefundGas transfers the leftover gas to the sender of the message, caped to half of the total gas // consumed in the transaction. Additionally, the function sets the total gas consumed to the value // returned by the EVM execution, thus ignoring the previous intrinsic gas consumed during in the // AnteHandler. func (k *Keeper) RefundGas(msg core.Message, leftoverGas uint64, denom string) error { // Return EVM tokens for remaining gas, exchanged at the original rate. remaining := new(big.Int).Mul(new(big.Int).SetUint64(leftoverGas), msg.GasPrice()) switch remaining.Sign() { case -1: // negative refund errors return sdkerrors.Wrapf(types.ErrInvalidRefund, "refunded amount value cannot be negative %d", remaining.Int64()) case 1: // positive amount refund refundedCoins := sdk.Coins{sdk.NewCoin(denom, sdk.NewIntFromBigInt(remaining))} // refund to sender from the fee collector module account, which is the escrow account in charge of collecting tx fees err := k.bankKeeper.SendCoinsFromModuleToAccount(k.Ctx(), authtypes.FeeCollectorName, msg.From().Bytes(), refundedCoins) if err != nil { err = sdkerrors.Wrapf(sdkerrors.ErrInsufficientFunds, "fee collector account failed to refund fees: %s", err.Error()) return stacktrace.Propagate(err, "failed to refund %d leftover gas (%s)", leftoverGas, refundedCoins.String()) } default: // no refund, consume gas and update the tx gas meter } return nil } // ResetGasMeterAndConsumeGas reset first the gas meter consumed value to zero and set it back to the new value // 'gasUsed' func (k *Keeper) ResetGasMeterAndConsumeGas(gasUsed uint64) { // reset the gas count ctx := k.Ctx() ctx.GasMeter().RefundGas(ctx.GasMeter().GasConsumed(), "reset the gas count") ctx.GasMeter().ConsumeGas(gasUsed, "apply evm transaction") } // GetCoinbaseAddress returns the block proposer's validator operator address. func (k Keeper) GetCoinbaseAddress(ctx sdk.Context) (common.Address, error) { consAddr := sdk.ConsAddress(ctx.BlockHeader().ProposerAddress) validator, found := k.stakingKeeper.GetValidatorByConsAddr(ctx, consAddr) if !found { return common.Address{}, stacktrace.Propagate( sdkerrors.Wrap(stakingtypes.ErrNoValidatorFound, consAddr.String()), "failed to retrieve validator from block proposer address", ) } coinbase := common.BytesToAddress(validator.GetOperator()) return coinbase, nil }