ipld-eth-server/vendor/github.com/btcsuite/btcd/database/ffldb/db.go
Matt K 293dd2e848 Add vendor dir (#16) (#4)
* Add vendor dir so builds dont require dep

* Pin specific version go-eth version
2018-01-29 13:44:18 -06:00

2085 lines
70 KiB
Go

// Copyright (c) 2015-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ffldb
import (
"bytes"
"encoding/binary"
"fmt"
"os"
"path/filepath"
"runtime"
"sort"
"sync"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/database"
"github.com/btcsuite/btcd/database/internal/treap"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/goleveldb/leveldb"
"github.com/btcsuite/goleveldb/leveldb/comparer"
ldberrors "github.com/btcsuite/goleveldb/leveldb/errors"
"github.com/btcsuite/goleveldb/leveldb/filter"
"github.com/btcsuite/goleveldb/leveldb/iterator"
"github.com/btcsuite/goleveldb/leveldb/opt"
"github.com/btcsuite/goleveldb/leveldb/util"
)
const (
// metadataDbName is the name used for the metadata database.
metadataDbName = "metadata"
// blockHdrSize is the size of a block header. This is simply the
// constant from wire and is only provided here for convenience since
// wire.MaxBlockHeaderPayload is quite long.
blockHdrSize = wire.MaxBlockHeaderPayload
// blockHdrOffset defines the offsets into a block index row for the
// block header.
//
// The serialized block index row format is:
// <blocklocation><blockheader>
blockHdrOffset = blockLocSize
)
var (
// byteOrder is the preferred byte order used through the database and
// block files. Sometimes big endian will be used to allow ordered byte
// sortable integer values.
byteOrder = binary.LittleEndian
// bucketIndexPrefix is the prefix used for all entries in the bucket
// index.
bucketIndexPrefix = []byte("bidx")
// curBucketIDKeyName is the name of the key used to keep track of the
// current bucket ID counter.
curBucketIDKeyName = []byte("bidx-cbid")
// metadataBucketID is the ID of the top-level metadata bucket.
// It is the value 0 encoded as an unsigned big-endian uint32.
metadataBucketID = [4]byte{}
// blockIdxBucketID is the ID of the internal block metadata bucket.
// It is the value 1 encoded as an unsigned big-endian uint32.
blockIdxBucketID = [4]byte{0x00, 0x00, 0x00, 0x01}
// blockIdxBucketName is the bucket used internally to track block
// metadata.
blockIdxBucketName = []byte("ffldb-blockidx")
// writeLocKeyName is the key used to store the current write file
// location.
writeLocKeyName = []byte("ffldb-writeloc")
)
// Common error strings.
const (
// errDbNotOpenStr is the text to use for the database.ErrDbNotOpen
// error code.
errDbNotOpenStr = "database is not open"
// errTxClosedStr is the text to use for the database.ErrTxClosed error
// code.
errTxClosedStr = "database tx is closed"
)
// bulkFetchData is allows a block location to be specified along with the
// index it was requested from. This in turn allows the bulk data loading
// functions to sort the data accesses based on the location to improve
// performance while keeping track of which result the data is for.
type bulkFetchData struct {
*blockLocation
replyIndex int
}
// bulkFetchDataSorter implements sort.Interface to allow a slice of
// bulkFetchData to be sorted. In particular it sorts by file and then
// offset so that reads from files are grouped and linear.
type bulkFetchDataSorter []bulkFetchData
// Len returns the number of items in the slice. It is part of the
// sort.Interface implementation.
func (s bulkFetchDataSorter) Len() int {
return len(s)
}
// Swap swaps the items at the passed indices. It is part of the
// sort.Interface implementation.
func (s bulkFetchDataSorter) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
// Less returns whether the item with index i should sort before the item with
// index j. It is part of the sort.Interface implementation.
func (s bulkFetchDataSorter) Less(i, j int) bool {
if s[i].blockFileNum < s[j].blockFileNum {
return true
}
if s[i].blockFileNum > s[j].blockFileNum {
return false
}
return s[i].fileOffset < s[j].fileOffset
}
// makeDbErr creates a database.Error given a set of arguments.
func makeDbErr(c database.ErrorCode, desc string, err error) database.Error {
return database.Error{ErrorCode: c, Description: desc, Err: err}
}
// convertErr converts the passed leveldb error into a database error with an
// equivalent error code and the passed description. It also sets the passed
// error as the underlying error.
func convertErr(desc string, ldbErr error) database.Error {
// Use the driver-specific error code by default. The code below will
// update this with the converted error if it's recognized.
var code = database.ErrDriverSpecific
switch {
// Database corruption errors.
case ldberrors.IsCorrupted(ldbErr):
code = database.ErrCorruption
// Database open/create errors.
case ldbErr == leveldb.ErrClosed:
code = database.ErrDbNotOpen
// Transaction errors.
case ldbErr == leveldb.ErrSnapshotReleased:
code = database.ErrTxClosed
case ldbErr == leveldb.ErrIterReleased:
code = database.ErrTxClosed
}
return database.Error{ErrorCode: code, Description: desc, Err: ldbErr}
}
// copySlice returns a copy of the passed slice. This is mostly used to copy
// leveldb iterator keys and values since they are only valid until the iterator
// is moved instead of during the entirety of the transaction.
func copySlice(slice []byte) []byte {
ret := make([]byte, len(slice))
copy(ret, slice)
return ret
}
// cursor is an internal type used to represent a cursor over key/value pairs
// and nested buckets of a bucket and implements the database.Cursor interface.
type cursor struct {
bucket *bucket
dbIter iterator.Iterator
pendingIter iterator.Iterator
currentIter iterator.Iterator
}
// Enforce cursor implements the database.Cursor interface.
var _ database.Cursor = (*cursor)(nil)
// Bucket returns the bucket the cursor was created for.
//
// This function is part of the database.Cursor interface implementation.
func (c *cursor) Bucket() database.Bucket {
// Ensure transaction state is valid.
if err := c.bucket.tx.checkClosed(); err != nil {
return nil
}
return c.bucket
}
// Delete removes the current key/value pair the cursor is at without
// invalidating the cursor.
//
// Returns the following errors as required by the interface contract:
// - ErrIncompatibleValue if attempted when the cursor points to a nested
// bucket
// - ErrTxNotWritable if attempted against a read-only transaction
// - ErrTxClosed if the transaction has already been closed
//
// This function is part of the database.Cursor interface implementation.
func (c *cursor) Delete() error {
// Ensure transaction state is valid.
if err := c.bucket.tx.checkClosed(); err != nil {
return err
}
// Error if the cursor is exhausted.
if c.currentIter == nil {
str := "cursor is exhausted"
return makeDbErr(database.ErrIncompatibleValue, str, nil)
}
// Do not allow buckets to be deleted via the cursor.
key := c.currentIter.Key()
if bytes.HasPrefix(key, bucketIndexPrefix) {
str := "buckets may not be deleted from a cursor"
return makeDbErr(database.ErrIncompatibleValue, str, nil)
}
c.bucket.tx.deleteKey(copySlice(key), true)
return nil
}
// skipPendingUpdates skips any keys at the current database iterator position
// that are being updated by the transaction. The forwards flag indicates the
// direction the cursor is moving.
func (c *cursor) skipPendingUpdates(forwards bool) {
for c.dbIter.Valid() {
var skip bool
key := c.dbIter.Key()
if c.bucket.tx.pendingRemove.Has(key) {
skip = true
} else if c.bucket.tx.pendingKeys.Has(key) {
skip = true
}
if !skip {
break
}
if forwards {
c.dbIter.Next()
} else {
c.dbIter.Prev()
}
}
}
// chooseIterator first skips any entries in the database iterator that are
// being updated by the transaction and sets the current iterator to the
// appropriate iterator depending on their validity and the order they compare
// in while taking into account the direction flag. When the cursor is being
// moved forwards and both iterators are valid, the iterator with the smaller
// key is chosen and vice versa when the cursor is being moved backwards.
func (c *cursor) chooseIterator(forwards bool) bool {
// Skip any keys at the current database iterator position that are
// being updated by the transaction.
c.skipPendingUpdates(forwards)
// When both iterators are exhausted, the cursor is exhausted too.
if !c.dbIter.Valid() && !c.pendingIter.Valid() {
c.currentIter = nil
return false
}
// Choose the database iterator when the pending keys iterator is
// exhausted.
if !c.pendingIter.Valid() {
c.currentIter = c.dbIter
return true
}
// Choose the pending keys iterator when the database iterator is
// exhausted.
if !c.dbIter.Valid() {
c.currentIter = c.pendingIter
return true
}
// Both iterators are valid, so choose the iterator with either the
// smaller or larger key depending on the forwards flag.
compare := bytes.Compare(c.dbIter.Key(), c.pendingIter.Key())
if (forwards && compare > 0) || (!forwards && compare < 0) {
c.currentIter = c.pendingIter
} else {
c.currentIter = c.dbIter
}
return true
}
// First positions the cursor at the first key/value pair and returns whether or
// not the pair exists.
//
// This function is part of the database.Cursor interface implementation.
func (c *cursor) First() bool {
// Ensure transaction state is valid.
if err := c.bucket.tx.checkClosed(); err != nil {
return false
}
// Seek to the first key in both the database and pending iterators and
// choose the iterator that is both valid and has the smaller key.
c.dbIter.First()
c.pendingIter.First()
return c.chooseIterator(true)
}
// Last positions the cursor at the last key/value pair and returns whether or
// not the pair exists.
//
// This function is part of the database.Cursor interface implementation.
func (c *cursor) Last() bool {
// Ensure transaction state is valid.
if err := c.bucket.tx.checkClosed(); err != nil {
return false
}
// Seek to the last key in both the database and pending iterators and
// choose the iterator that is both valid and has the larger key.
c.dbIter.Last()
c.pendingIter.Last()
return c.chooseIterator(false)
}
// Next moves the cursor one key/value pair forward and returns whether or not
// the pair exists.
//
// This function is part of the database.Cursor interface implementation.
func (c *cursor) Next() bool {
// Ensure transaction state is valid.
if err := c.bucket.tx.checkClosed(); err != nil {
return false
}
// Nothing to return if cursor is exhausted.
if c.currentIter == nil {
return false
}
// Move the current iterator to the next entry and choose the iterator
// that is both valid and has the smaller key.
c.currentIter.Next()
return c.chooseIterator(true)
}
// Prev moves the cursor one key/value pair backward and returns whether or not
// the pair exists.
//
// This function is part of the database.Cursor interface implementation.
func (c *cursor) Prev() bool {
// Ensure transaction state is valid.
if err := c.bucket.tx.checkClosed(); err != nil {
return false
}
// Nothing to return if cursor is exhausted.
if c.currentIter == nil {
return false
}
// Move the current iterator to the previous entry and choose the
// iterator that is both valid and has the larger key.
c.currentIter.Prev()
return c.chooseIterator(false)
}
// Seek positions the cursor at the first key/value pair that is greater than or
// equal to the passed seek key. Returns false if no suitable key was found.
//
// This function is part of the database.Cursor interface implementation.
func (c *cursor) Seek(seek []byte) bool {
// Ensure transaction state is valid.
if err := c.bucket.tx.checkClosed(); err != nil {
return false
}
// Seek to the provided key in both the database and pending iterators
// then choose the iterator that is both valid and has the larger key.
seekKey := bucketizedKey(c.bucket.id, seek)
c.dbIter.Seek(seekKey)
c.pendingIter.Seek(seekKey)
return c.chooseIterator(true)
}
// rawKey returns the current key the cursor is pointing to without stripping
// the current bucket prefix or bucket index prefix.
func (c *cursor) rawKey() []byte {
// Nothing to return if cursor is exhausted.
if c.currentIter == nil {
return nil
}
return copySlice(c.currentIter.Key())
}
// Key returns the current key the cursor is pointing to.
//
// This function is part of the database.Cursor interface implementation.
func (c *cursor) Key() []byte {
// Ensure transaction state is valid.
if err := c.bucket.tx.checkClosed(); err != nil {
return nil
}
// Nothing to return if cursor is exhausted.
if c.currentIter == nil {
return nil
}
// Slice out the actual key name and make a copy since it is no longer
// valid after iterating to the next item.
//
// The key is after the bucket index prefix and parent ID when the
// cursor is pointing to a nested bucket.
key := c.currentIter.Key()
if bytes.HasPrefix(key, bucketIndexPrefix) {
key = key[len(bucketIndexPrefix)+4:]
return copySlice(key)
}
// The key is after the bucket ID when the cursor is pointing to a
// normal entry.
key = key[len(c.bucket.id):]
return copySlice(key)
}
// rawValue returns the current value the cursor is pointing to without
// stripping without filtering bucket index values.
func (c *cursor) rawValue() []byte {
// Nothing to return if cursor is exhausted.
if c.currentIter == nil {
return nil
}
return copySlice(c.currentIter.Value())
}
// Value returns the current value the cursor is pointing to. This will be nil
// for nested buckets.
//
// This function is part of the database.Cursor interface implementation.
func (c *cursor) Value() []byte {
// Ensure transaction state is valid.
if err := c.bucket.tx.checkClosed(); err != nil {
return nil
}
// Nothing to return if cursor is exhausted.
if c.currentIter == nil {
return nil
}
// Return nil for the value when the cursor is pointing to a nested
// bucket.
if bytes.HasPrefix(c.currentIter.Key(), bucketIndexPrefix) {
return nil
}
return copySlice(c.currentIter.Value())
}
// cursorType defines the type of cursor to create.
type cursorType int
// The following constants define the allowed cursor types.
const (
// ctKeys iterates through all of the keys in a given bucket.
ctKeys cursorType = iota
// ctBuckets iterates through all directly nested buckets in a given
// bucket.
ctBuckets
// ctFull iterates through both the keys and the directly nested buckets
// in a given bucket.
ctFull
)
// cursorFinalizer is either invoked when a cursor is being garbage collected or
// called manually to ensure the underlying cursor iterators are released.
func cursorFinalizer(c *cursor) {
c.dbIter.Release()
c.pendingIter.Release()
}
// newCursor returns a new cursor for the given bucket, bucket ID, and cursor
// type.
//
// NOTE: The caller is responsible for calling the cursorFinalizer function on
// the returned cursor.
func newCursor(b *bucket, bucketID []byte, cursorTyp cursorType) *cursor {
var dbIter, pendingIter iterator.Iterator
switch cursorTyp {
case ctKeys:
keyRange := util.BytesPrefix(bucketID)
dbIter = b.tx.snapshot.NewIterator(keyRange)
pendingKeyIter := newLdbTreapIter(b.tx, keyRange)
pendingIter = pendingKeyIter
case ctBuckets:
// The serialized bucket index key format is:
// <bucketindexprefix><parentbucketid><bucketname>
// Create an iterator for the both the database and the pending
// keys which are prefixed by the bucket index identifier and
// the provided bucket ID.
prefix := make([]byte, len(bucketIndexPrefix)+4)
copy(prefix, bucketIndexPrefix)
copy(prefix[len(bucketIndexPrefix):], bucketID)
bucketRange := util.BytesPrefix(prefix)
dbIter = b.tx.snapshot.NewIterator(bucketRange)
pendingBucketIter := newLdbTreapIter(b.tx, bucketRange)
pendingIter = pendingBucketIter
case ctFull:
fallthrough
default:
// The serialized bucket index key format is:
// <bucketindexprefix><parentbucketid><bucketname>
prefix := make([]byte, len(bucketIndexPrefix)+4)
copy(prefix, bucketIndexPrefix)
copy(prefix[len(bucketIndexPrefix):], bucketID)
bucketRange := util.BytesPrefix(prefix)
keyRange := util.BytesPrefix(bucketID)
// Since both keys and buckets are needed from the database,
// create an individual iterator for each prefix and then create
// a merged iterator from them.
dbKeyIter := b.tx.snapshot.NewIterator(keyRange)
dbBucketIter := b.tx.snapshot.NewIterator(bucketRange)
iters := []iterator.Iterator{dbKeyIter, dbBucketIter}
dbIter = iterator.NewMergedIterator(iters,
comparer.DefaultComparer, true)
// Since both keys and buckets are needed from the pending keys,
// create an individual iterator for each prefix and then create
// a merged iterator from them.
pendingKeyIter := newLdbTreapIter(b.tx, keyRange)
pendingBucketIter := newLdbTreapIter(b.tx, bucketRange)
iters = []iterator.Iterator{pendingKeyIter, pendingBucketIter}
pendingIter = iterator.NewMergedIterator(iters,
comparer.DefaultComparer, true)
}
// Create the cursor using the iterators.
return &cursor{bucket: b, dbIter: dbIter, pendingIter: pendingIter}
}
// bucket is an internal type used to represent a collection of key/value pairs
// and implements the database.Bucket interface.
type bucket struct {
tx *transaction
id [4]byte
}
// Enforce bucket implements the database.Bucket interface.
var _ database.Bucket = (*bucket)(nil)
// bucketIndexKey returns the actual key to use for storing and retrieving a
// child bucket in the bucket index. This is required because additional
// information is needed to distinguish nested buckets with the same name.
func bucketIndexKey(parentID [4]byte, key []byte) []byte {
// The serialized bucket index key format is:
// <bucketindexprefix><parentbucketid><bucketname>
indexKey := make([]byte, len(bucketIndexPrefix)+4+len(key))
copy(indexKey, bucketIndexPrefix)
copy(indexKey[len(bucketIndexPrefix):], parentID[:])
copy(indexKey[len(bucketIndexPrefix)+4:], key)
return indexKey
}
// bucketizedKey returns the actual key to use for storing and retrieving a key
// for the provided bucket ID. This is required because bucketizing is handled
// through the use of a unique prefix per bucket.
func bucketizedKey(bucketID [4]byte, key []byte) []byte {
// The serialized block index key format is:
// <bucketid><key>
bKey := make([]byte, 4+len(key))
copy(bKey, bucketID[:])
copy(bKey[4:], key)
return bKey
}
// Bucket retrieves a nested bucket with the given key. Returns nil if
// the bucket does not exist.
//
// This function is part of the database.Bucket interface implementation.
func (b *bucket) Bucket(key []byte) database.Bucket {
// Ensure transaction state is valid.
if err := b.tx.checkClosed(); err != nil {
return nil
}
// Attempt to fetch the ID for the child bucket. The bucket does not
// exist if the bucket index entry does not exist.
childID := b.tx.fetchKey(bucketIndexKey(b.id, key))
if childID == nil {
return nil
}
childBucket := &bucket{tx: b.tx}
copy(childBucket.id[:], childID)
return childBucket
}
// CreateBucket creates and returns a new nested bucket with the given key.
//
// Returns the following errors as required by the interface contract:
// - ErrBucketExists if the bucket already exists
// - ErrBucketNameRequired if the key is empty
// - ErrIncompatibleValue if the key is otherwise invalid for the particular
// implementation
// - ErrTxNotWritable if attempted against a read-only transaction
// - ErrTxClosed if the transaction has already been closed
//
// This function is part of the database.Bucket interface implementation.
func (b *bucket) CreateBucket(key []byte) (database.Bucket, error) {
// Ensure transaction state is valid.
if err := b.tx.checkClosed(); err != nil {
return nil, err
}
// Ensure the transaction is writable.
if !b.tx.writable {
str := "create bucket requires a writable database transaction"
return nil, makeDbErr(database.ErrTxNotWritable, str, nil)
}
// Ensure a key was provided.
if len(key) == 0 {
str := "create bucket requires a key"
return nil, makeDbErr(database.ErrBucketNameRequired, str, nil)
}
// Ensure bucket does not already exist.
bidxKey := bucketIndexKey(b.id, key)
if b.tx.hasKey(bidxKey) {
str := "bucket already exists"
return nil, makeDbErr(database.ErrBucketExists, str, nil)
}
// Find the appropriate next bucket ID to use for the new bucket. In
// the case of the special internal block index, keep the fixed ID.
var childID [4]byte
if b.id == metadataBucketID && bytes.Equal(key, blockIdxBucketName) {
childID = blockIdxBucketID
} else {
var err error
childID, err = b.tx.nextBucketID()
if err != nil {
return nil, err
}
}
// Add the new bucket to the bucket index.
if err := b.tx.putKey(bidxKey, childID[:]); err != nil {
str := fmt.Sprintf("failed to create bucket with key %q", key)
return nil, convertErr(str, err)
}
return &bucket{tx: b.tx, id: childID}, nil
}
// CreateBucketIfNotExists creates and returns a new nested bucket with the
// given key if it does not already exist.
//
// Returns the following errors as required by the interface contract:
// - ErrBucketNameRequired if the key is empty
// - ErrIncompatibleValue if the key is otherwise invalid for the particular
// implementation
// - ErrTxNotWritable if attempted against a read-only transaction
// - ErrTxClosed if the transaction has already been closed
//
// This function is part of the database.Bucket interface implementation.
func (b *bucket) CreateBucketIfNotExists(key []byte) (database.Bucket, error) {
// Ensure transaction state is valid.
if err := b.tx.checkClosed(); err != nil {
return nil, err
}
// Ensure the transaction is writable.
if !b.tx.writable {
str := "create bucket requires a writable database transaction"
return nil, makeDbErr(database.ErrTxNotWritable, str, nil)
}
// Return existing bucket if it already exists, otherwise create it.
if bucket := b.Bucket(key); bucket != nil {
return bucket, nil
}
return b.CreateBucket(key)
}
// DeleteBucket removes a nested bucket with the given key.
//
// Returns the following errors as required by the interface contract:
// - ErrBucketNotFound if the specified bucket does not exist
// - ErrTxNotWritable if attempted against a read-only transaction
// - ErrTxClosed if the transaction has already been closed
//
// This function is part of the database.Bucket interface implementation.
func (b *bucket) DeleteBucket(key []byte) error {
// Ensure transaction state is valid.
if err := b.tx.checkClosed(); err != nil {
return err
}
// Ensure the transaction is writable.
if !b.tx.writable {
str := "delete bucket requires a writable database transaction"
return makeDbErr(database.ErrTxNotWritable, str, nil)
}
// Attempt to fetch the ID for the child bucket. The bucket does not
// exist if the bucket index entry does not exist. In the case of the
// special internal block index, keep the fixed ID.
bidxKey := bucketIndexKey(b.id, key)
childID := b.tx.fetchKey(bidxKey)
if childID == nil {
str := fmt.Sprintf("bucket %q does not exist", key)
return makeDbErr(database.ErrBucketNotFound, str, nil)
}
// Remove all nested buckets and their keys.
childIDs := [][]byte{childID}
for len(childIDs) > 0 {
childID = childIDs[len(childIDs)-1]
childIDs = childIDs[:len(childIDs)-1]
// Delete all keys in the nested bucket.
keyCursor := newCursor(b, childID, ctKeys)
for ok := keyCursor.First(); ok; ok = keyCursor.Next() {
b.tx.deleteKey(keyCursor.rawKey(), false)
}
cursorFinalizer(keyCursor)
// Iterate through all nested buckets.
bucketCursor := newCursor(b, childID, ctBuckets)
for ok := bucketCursor.First(); ok; ok = bucketCursor.Next() {
// Push the id of the nested bucket onto the stack for
// the next iteration.
childID := bucketCursor.rawValue()
childIDs = append(childIDs, childID)
// Remove the nested bucket from the bucket index.
b.tx.deleteKey(bucketCursor.rawKey(), false)
}
cursorFinalizer(bucketCursor)
}
// Remove the nested bucket from the bucket index. Any buckets nested
// under it were already removed above.
b.tx.deleteKey(bidxKey, true)
return nil
}
// Cursor returns a new cursor, allowing for iteration over the bucket's
// key/value pairs and nested buckets in forward or backward order.
//
// You must seek to a position using the First, Last, or Seek functions before
// calling the Next, Prev, Key, or Value functions. Failure to do so will
// result in the same return values as an exhausted cursor, which is false for
// the Prev and Next functions and nil for Key and Value functions.
//
// This function is part of the database.Bucket interface implementation.
func (b *bucket) Cursor() database.Cursor {
// Ensure transaction state is valid.
if err := b.tx.checkClosed(); err != nil {
return &cursor{bucket: b}
}
// Create the cursor and setup a runtime finalizer to ensure the
// iterators are released when the cursor is garbage collected.
c := newCursor(b, b.id[:], ctFull)
runtime.SetFinalizer(c, cursorFinalizer)
return c
}
// ForEach invokes the passed function with every key/value pair in the bucket.
// This does not include nested buckets or the key/value pairs within those
// nested buckets.
//
// WARNING: It is not safe to mutate data while iterating with this method.
// Doing so may cause the underlying cursor to be invalidated and return
// unexpected keys and/or values.
//
// Returns the following errors as required by the interface contract:
// - ErrTxClosed if the transaction has already been closed
//
// NOTE: The values returned by this function are only valid during a
// transaction. Attempting to access them after a transaction has ended will
// likely result in an access violation.
//
// This function is part of the database.Bucket interface implementation.
func (b *bucket) ForEach(fn func(k, v []byte) error) error {
// Ensure transaction state is valid.
if err := b.tx.checkClosed(); err != nil {
return err
}
// Invoke the callback for each cursor item. Return the error returned
// from the callback when it is non-nil.
c := newCursor(b, b.id[:], ctKeys)
defer cursorFinalizer(c)
for ok := c.First(); ok; ok = c.Next() {
err := fn(c.Key(), c.Value())
if err != nil {
return err
}
}
return nil
}
// ForEachBucket invokes the passed function with the key of every nested bucket
// in the current bucket. This does not include any nested buckets within those
// nested buckets.
//
// WARNING: It is not safe to mutate data while iterating with this method.
// Doing so may cause the underlying cursor to be invalidated and return
// unexpected keys.
//
// Returns the following errors as required by the interface contract:
// - ErrTxClosed if the transaction has already been closed
//
// NOTE: The values returned by this function are only valid during a
// transaction. Attempting to access them after a transaction has ended will
// likely result in an access violation.
//
// This function is part of the database.Bucket interface implementation.
func (b *bucket) ForEachBucket(fn func(k []byte) error) error {
// Ensure transaction state is valid.
if err := b.tx.checkClosed(); err != nil {
return err
}
// Invoke the callback for each cursor item. Return the error returned
// from the callback when it is non-nil.
c := newCursor(b, b.id[:], ctBuckets)
defer cursorFinalizer(c)
for ok := c.First(); ok; ok = c.Next() {
err := fn(c.Key())
if err != nil {
return err
}
}
return nil
}
// Writable returns whether or not the bucket is writable.
//
// This function is part of the database.Bucket interface implementation.
func (b *bucket) Writable() bool {
return b.tx.writable
}
// Put saves the specified key/value pair to the bucket. Keys that do not
// already exist are added and keys that already exist are overwritten.
//
// Returns the following errors as required by the interface contract:
// - ErrKeyRequired if the key is empty
// - ErrIncompatibleValue if the key is the same as an existing bucket
// - ErrTxNotWritable if attempted against a read-only transaction
// - ErrTxClosed if the transaction has already been closed
//
// This function is part of the database.Bucket interface implementation.
func (b *bucket) Put(key, value []byte) error {
// Ensure transaction state is valid.
if err := b.tx.checkClosed(); err != nil {
return err
}
// Ensure the transaction is writable.
if !b.tx.writable {
str := "setting a key requires a writable database transaction"
return makeDbErr(database.ErrTxNotWritable, str, nil)
}
// Ensure a key was provided.
if len(key) == 0 {
str := "put requires a key"
return makeDbErr(database.ErrKeyRequired, str, nil)
}
return b.tx.putKey(bucketizedKey(b.id, key), value)
}
// Get returns the value for the given key. Returns nil if the key does not
// exist in this bucket. An empty slice is returned for keys that exist but
// have no value assigned.
//
// NOTE: The value returned by this function is only valid during a transaction.
// Attempting to access it after a transaction has ended results in undefined
// behavior. Additionally, the value must NOT be modified by the caller.
//
// This function is part of the database.Bucket interface implementation.
func (b *bucket) Get(key []byte) []byte {
// Ensure transaction state is valid.
if err := b.tx.checkClosed(); err != nil {
return nil
}
// Nothing to return if there is no key.
if len(key) == 0 {
return nil
}
return b.tx.fetchKey(bucketizedKey(b.id, key))
}
// Delete removes the specified key from the bucket. Deleting a key that does
// not exist does not return an error.
//
// Returns the following errors as required by the interface contract:
// - ErrKeyRequired if the key is empty
// - ErrIncompatibleValue if the key is the same as an existing bucket
// - ErrTxNotWritable if attempted against a read-only transaction
// - ErrTxClosed if the transaction has already been closed
//
// This function is part of the database.Bucket interface implementation.
func (b *bucket) Delete(key []byte) error {
// Ensure transaction state is valid.
if err := b.tx.checkClosed(); err != nil {
return err
}
// Ensure the transaction is writable.
if !b.tx.writable {
str := "deleting a value requires a writable database transaction"
return makeDbErr(database.ErrTxNotWritable, str, nil)
}
// Nothing to do if there is no key.
if len(key) == 0 {
return nil
}
b.tx.deleteKey(bucketizedKey(b.id, key), true)
return nil
}
// pendingBlock houses a block that will be written to disk when the database
// transaction is committed.
type pendingBlock struct {
hash *chainhash.Hash
bytes []byte
}
// transaction represents a database transaction. It can either be read-only or
// read-write and implements the database.Bucket interface. The transaction
// provides a root bucket against which all read and writes occur.
type transaction struct {
managed bool // Is the transaction managed?
closed bool // Is the transaction closed?
writable bool // Is the transaction writable?
db *db // DB instance the tx was created from.
snapshot *dbCacheSnapshot // Underlying snapshot for txns.
metaBucket *bucket // The root metadata bucket.
blockIdxBucket *bucket // The block index bucket.
// Blocks that need to be stored on commit. The pendingBlocks map is
// kept to allow quick lookups of pending data by block hash.
pendingBlocks map[chainhash.Hash]int
pendingBlockData []pendingBlock
// Keys that need to be stored or deleted on commit.
pendingKeys *treap.Mutable
pendingRemove *treap.Mutable
// Active iterators that need to be notified when the pending keys have
// been updated so the cursors can properly handle updates to the
// transaction state.
activeIterLock sync.RWMutex
activeIters []*treap.Iterator
}
// Enforce transaction implements the database.Tx interface.
var _ database.Tx = (*transaction)(nil)
// removeActiveIter removes the passed iterator from the list of active
// iterators against the pending keys treap.
func (tx *transaction) removeActiveIter(iter *treap.Iterator) {
// An indexing for loop is intentionally used over a range here as range
// does not reevaluate the slice on each iteration nor does it adjust
// the index for the modified slice.
tx.activeIterLock.Lock()
for i := 0; i < len(tx.activeIters); i++ {
if tx.activeIters[i] == iter {
copy(tx.activeIters[i:], tx.activeIters[i+1:])
tx.activeIters[len(tx.activeIters)-1] = nil
tx.activeIters = tx.activeIters[:len(tx.activeIters)-1]
}
}
tx.activeIterLock.Unlock()
}
// addActiveIter adds the passed iterator to the list of active iterators for
// the pending keys treap.
func (tx *transaction) addActiveIter(iter *treap.Iterator) {
tx.activeIterLock.Lock()
tx.activeIters = append(tx.activeIters, iter)
tx.activeIterLock.Unlock()
}
// notifyActiveIters notifies all of the active iterators for the pending keys
// treap that it has been updated.
func (tx *transaction) notifyActiveIters() {
tx.activeIterLock.RLock()
for _, iter := range tx.activeIters {
iter.ForceReseek()
}
tx.activeIterLock.RUnlock()
}
// checkClosed returns an error if the the database or transaction is closed.
func (tx *transaction) checkClosed() error {
// The transaction is no longer valid if it has been closed.
if tx.closed {
return makeDbErr(database.ErrTxClosed, errTxClosedStr, nil)
}
return nil
}
// hasKey returns whether or not the provided key exists in the database while
// taking into account the current transaction state.
func (tx *transaction) hasKey(key []byte) bool {
// When the transaction is writable, check the pending transaction
// state first.
if tx.writable {
if tx.pendingRemove.Has(key) {
return false
}
if tx.pendingKeys.Has(key) {
return true
}
}
// Consult the database cache and underlying database.
return tx.snapshot.Has(key)
}
// putKey adds the provided key to the list of keys to be updated in the
// database when the transaction is committed.
//
// NOTE: This function must only be called on a writable transaction. Since it
// is an internal helper function, it does not check.
func (tx *transaction) putKey(key, value []byte) error {
// Prevent the key from being deleted if it was previously scheduled
// to be deleted on transaction commit.
tx.pendingRemove.Delete(key)
// Add the key/value pair to the list to be written on transaction
// commit.
tx.pendingKeys.Put(key, value)
tx.notifyActiveIters()
return nil
}
// fetchKey attempts to fetch the provided key from the database cache (and
// hence underlying database) while taking into account the current transaction
// state. Returns nil if the key does not exist.
func (tx *transaction) fetchKey(key []byte) []byte {
// When the transaction is writable, check the pending transaction
// state first.
if tx.writable {
if tx.pendingRemove.Has(key) {
return nil
}
if value := tx.pendingKeys.Get(key); value != nil {
return value
}
}
// Consult the database cache and underlying database.
return tx.snapshot.Get(key)
}
// deleteKey adds the provided key to the list of keys to be deleted from the
// database when the transaction is committed. The notify iterators flag is
// useful to delay notifying iterators about the changes during bulk deletes.
//
// NOTE: This function must only be called on a writable transaction. Since it
// is an internal helper function, it does not check.
func (tx *transaction) deleteKey(key []byte, notifyIterators bool) {
// Remove the key from the list of pendings keys to be written on
// transaction commit if needed.
tx.pendingKeys.Delete(key)
// Add the key to the list to be deleted on transaction commit.
tx.pendingRemove.Put(key, nil)
// Notify the active iterators about the change if the flag is set.
if notifyIterators {
tx.notifyActiveIters()
}
}
// nextBucketID returns the next bucket ID to use for creating a new bucket.
//
// NOTE: This function must only be called on a writable transaction. Since it
// is an internal helper function, it does not check.
func (tx *transaction) nextBucketID() ([4]byte, error) {
// Load the currently highest used bucket ID.
curIDBytes := tx.fetchKey(curBucketIDKeyName)
curBucketNum := binary.BigEndian.Uint32(curIDBytes)
// Increment and update the current bucket ID and return it.
var nextBucketID [4]byte
binary.BigEndian.PutUint32(nextBucketID[:], curBucketNum+1)
if err := tx.putKey(curBucketIDKeyName, nextBucketID[:]); err != nil {
return [4]byte{}, err
}
return nextBucketID, nil
}
// Metadata returns the top-most bucket for all metadata storage.
//
// This function is part of the database.Tx interface implementation.
func (tx *transaction) Metadata() database.Bucket {
return tx.metaBucket
}
// hasBlock returns whether or not a block with the given hash exists.
func (tx *transaction) hasBlock(hash *chainhash.Hash) bool {
// Return true if the block is pending to be written on commit since
// it exists from the viewpoint of this transaction.
if _, exists := tx.pendingBlocks[*hash]; exists {
return true
}
return tx.hasKey(bucketizedKey(blockIdxBucketID, hash[:]))
}
// StoreBlock stores the provided block into the database. There are no checks
// to ensure the block connects to a previous block, contains double spends, or
// any additional functionality such as transaction indexing. It simply stores
// the block in the database.
//
// Returns the following errors as required by the interface contract:
// - ErrBlockExists when the block hash already exists
// - ErrTxNotWritable if attempted against a read-only transaction
// - ErrTxClosed if the transaction has already been closed
//
// This function is part of the database.Tx interface implementation.
func (tx *transaction) StoreBlock(block *btcutil.Block) error {
// Ensure transaction state is valid.
if err := tx.checkClosed(); err != nil {
return err
}
// Ensure the transaction is writable.
if !tx.writable {
str := "store block requires a writable database transaction"
return makeDbErr(database.ErrTxNotWritable, str, nil)
}
// Reject the block if it already exists.
blockHash := block.Hash()
if tx.hasBlock(blockHash) {
str := fmt.Sprintf("block %s already exists", blockHash)
return makeDbErr(database.ErrBlockExists, str, nil)
}
blockBytes, err := block.Bytes()
if err != nil {
str := fmt.Sprintf("failed to get serialized bytes for block %s",
blockHash)
return makeDbErr(database.ErrDriverSpecific, str, err)
}
// Add the block to be stored to the list of pending blocks to store
// when the transaction is committed. Also, add it to pending blocks
// map so it is easy to determine the block is pending based on the
// block hash.
if tx.pendingBlocks == nil {
tx.pendingBlocks = make(map[chainhash.Hash]int)
}
tx.pendingBlocks[*blockHash] = len(tx.pendingBlockData)
tx.pendingBlockData = append(tx.pendingBlockData, pendingBlock{
hash: blockHash,
bytes: blockBytes,
})
log.Tracef("Added block %s to pending blocks", blockHash)
return nil
}
// HasBlock returns whether or not a block with the given hash exists in the
// database.
//
// Returns the following errors as required by the interface contract:
// - ErrTxClosed if the transaction has already been closed
//
// This function is part of the database.Tx interface implementation.
func (tx *transaction) HasBlock(hash *chainhash.Hash) (bool, error) {
// Ensure transaction state is valid.
if err := tx.checkClosed(); err != nil {
return false, err
}
return tx.hasBlock(hash), nil
}
// HasBlocks returns whether or not the blocks with the provided hashes
// exist in the database.
//
// Returns the following errors as required by the interface contract:
// - ErrTxClosed if the transaction has already been closed
//
// This function is part of the database.Tx interface implementation.
func (tx *transaction) HasBlocks(hashes []chainhash.Hash) ([]bool, error) {
// Ensure transaction state is valid.
if err := tx.checkClosed(); err != nil {
return nil, err
}
results := make([]bool, len(hashes))
for i := range hashes {
results[i] = tx.hasBlock(&hashes[i])
}
return results, nil
}
// fetchBlockRow fetches the metadata stored in the block index for the provided
// hash. It will return ErrBlockNotFound if there is no entry.
func (tx *transaction) fetchBlockRow(hash *chainhash.Hash) ([]byte, error) {
blockRow := tx.blockIdxBucket.Get(hash[:])
if blockRow == nil {
str := fmt.Sprintf("block %s does not exist", hash)
return nil, makeDbErr(database.ErrBlockNotFound, str, nil)
}
return blockRow, nil
}
// FetchBlockHeader returns the raw serialized bytes for the block header
// identified by the given hash. The raw bytes are in the format returned by
// Serialize on a wire.BlockHeader.
//
// Returns the following errors as required by the interface contract:
// - ErrBlockNotFound if the requested block hash does not exist
// - ErrTxClosed if the transaction has already been closed
// - ErrCorruption if the database has somehow become corrupted
//
// NOTE: The data returned by this function is only valid during a
// database transaction. Attempting to access it after a transaction
// has ended results in undefined behavior. This constraint prevents
// additional data copies and allows support for memory-mapped database
// implementations.
//
// This function is part of the database.Tx interface implementation.
func (tx *transaction) FetchBlockHeader(hash *chainhash.Hash) ([]byte, error) {
// Ensure transaction state is valid.
if err := tx.checkClosed(); err != nil {
return nil, err
}
// When the block is pending to be written on commit return the bytes
// from there.
if idx, exists := tx.pendingBlocks[*hash]; exists {
blockBytes := tx.pendingBlockData[idx].bytes
return blockBytes[0:blockHdrSize:blockHdrSize], nil
}
// Fetch the block index row and slice off the header. Notice the use
// of the cap on the subslice to prevent the caller from accidentally
// appending into the db data.
blockRow, err := tx.fetchBlockRow(hash)
if err != nil {
return nil, err
}
endOffset := blockLocSize + blockHdrSize
return blockRow[blockLocSize:endOffset:endOffset], nil
}
// FetchBlockHeaders returns the raw serialized bytes for the block headers
// identified by the given hashes. The raw bytes are in the format returned by
// Serialize on a wire.BlockHeader.
//
// Returns the following errors as required by the interface contract:
// - ErrBlockNotFound if the any of the requested block hashes do not exist
// - ErrTxClosed if the transaction has already been closed
// - ErrCorruption if the database has somehow become corrupted
//
// NOTE: The data returned by this function is only valid during a database
// transaction. Attempting to access it after a transaction has ended results
// in undefined behavior. This constraint prevents additional data copies and
// allows support for memory-mapped database implementations.
//
// This function is part of the database.Tx interface implementation.
func (tx *transaction) FetchBlockHeaders(hashes []chainhash.Hash) ([][]byte, error) {
// Ensure transaction state is valid.
if err := tx.checkClosed(); err != nil {
return nil, err
}
// NOTE: This could check for the existence of all blocks before loading
// any of the headers which would be faster in the failure case, however
// callers will not typically be calling this function with invalid
// values, so optimize for the common case.
// Load the headers.
headers := make([][]byte, len(hashes))
for i := range hashes {
hash := &hashes[i]
// When the block is pending to be written on commit return the
// bytes from there.
if idx, exists := tx.pendingBlocks[*hash]; exists {
blkBytes := tx.pendingBlockData[idx].bytes
headers[i] = blkBytes[0:blockHdrSize:blockHdrSize]
continue
}
// Fetch the block index row and slice off the header. Notice
// the use of the cap on the subslice to prevent the caller
// from accidentally appending into the db data.
blockRow, err := tx.fetchBlockRow(hash)
if err != nil {
return nil, err
}
endOffset := blockLocSize + blockHdrSize
headers[i] = blockRow[blockLocSize:endOffset:endOffset]
}
return headers, nil
}
// FetchBlock returns the raw serialized bytes for the block identified by the
// given hash. The raw bytes are in the format returned by Serialize on a
// wire.MsgBlock.
//
// Returns the following errors as required by the interface contract:
// - ErrBlockNotFound if the requested block hash does not exist
// - ErrTxClosed if the transaction has already been closed
// - ErrCorruption if the database has somehow become corrupted
//
// In addition, returns ErrDriverSpecific if any failures occur when reading the
// block files.
//
// NOTE: The data returned by this function is only valid during a database
// transaction. Attempting to access it after a transaction has ended results
// in undefined behavior. This constraint prevents additional data copies and
// allows support for memory-mapped database implementations.
//
// This function is part of the database.Tx interface implementation.
func (tx *transaction) FetchBlock(hash *chainhash.Hash) ([]byte, error) {
// Ensure transaction state is valid.
if err := tx.checkClosed(); err != nil {
return nil, err
}
// When the block is pending to be written on commit return the bytes
// from there.
if idx, exists := tx.pendingBlocks[*hash]; exists {
return tx.pendingBlockData[idx].bytes, nil
}
// Lookup the location of the block in the files from the block index.
blockRow, err := tx.fetchBlockRow(hash)
if err != nil {
return nil, err
}
location := deserializeBlockLoc(blockRow)
// Read the block from the appropriate location. The function also
// performs a checksum over the data to detect data corruption.
blockBytes, err := tx.db.store.readBlock(hash, location)
if err != nil {
return nil, err
}
return blockBytes, nil
}
// FetchBlocks returns the raw serialized bytes for the blocks identified by the
// given hashes. The raw bytes are in the format returned by Serialize on a
// wire.MsgBlock.
//
// Returns the following errors as required by the interface contract:
// - ErrBlockNotFound if any of the requested block hashed do not exist
// - ErrTxClosed if the transaction has already been closed
// - ErrCorruption if the database has somehow become corrupted
//
// In addition, returns ErrDriverSpecific if any failures occur when reading the
// block files.
//
// NOTE: The data returned by this function is only valid during a database
// transaction. Attempting to access it after a transaction has ended results
// in undefined behavior. This constraint prevents additional data copies and
// allows support for memory-mapped database implementations.
//
// This function is part of the database.Tx interface implementation.
func (tx *transaction) FetchBlocks(hashes []chainhash.Hash) ([][]byte, error) {
// Ensure transaction state is valid.
if err := tx.checkClosed(); err != nil {
return nil, err
}
// NOTE: This could check for the existence of all blocks before loading
// any of them which would be faster in the failure case, however
// callers will not typically be calling this function with invalid
// values, so optimize for the common case.
// Load the blocks.
blocks := make([][]byte, len(hashes))
for i := range hashes {
var err error
blocks[i], err = tx.FetchBlock(&hashes[i])
if err != nil {
return nil, err
}
}
return blocks, nil
}
// fetchPendingRegion attempts to fetch the provided region from any block which
// are pending to be written on commit. It will return nil for the byte slice
// when the region references a block which is not pending. When the region
// does reference a pending block, it is bounds checked and returns
// ErrBlockRegionInvalid if invalid.
func (tx *transaction) fetchPendingRegion(region *database.BlockRegion) ([]byte, error) {
// Nothing to do if the block is not pending to be written on commit.
idx, exists := tx.pendingBlocks[*region.Hash]
if !exists {
return nil, nil
}
// Ensure the region is within the bounds of the block.
blockBytes := tx.pendingBlockData[idx].bytes
blockLen := uint32(len(blockBytes))
endOffset := region.Offset + region.Len
if endOffset < region.Offset || endOffset > blockLen {
str := fmt.Sprintf("block %s region offset %d, length %d "+
"exceeds block length of %d", region.Hash,
region.Offset, region.Len, blockLen)
return nil, makeDbErr(database.ErrBlockRegionInvalid, str, nil)
}
// Return the bytes from the pending block.
return blockBytes[region.Offset:endOffset:endOffset], nil
}
// FetchBlockRegion returns the raw serialized bytes for the given block region.
//
// For example, it is possible to directly extract Bitcoin transactions and/or
// scripts from a block with this function. Depending on the backend
// implementation, this can provide significant savings by avoiding the need to
// load entire blocks.
//
// The raw bytes are in the format returned by Serialize on a wire.MsgBlock and
// the Offset field in the provided BlockRegion is zero-based and relative to
// the start of the block (byte 0).
//
// Returns the following errors as required by the interface contract:
// - ErrBlockNotFound if the requested block hash does not exist
// - ErrBlockRegionInvalid if the region exceeds the bounds of the associated
// block
// - ErrTxClosed if the transaction has already been closed
// - ErrCorruption if the database has somehow become corrupted
//
// In addition, returns ErrDriverSpecific if any failures occur when reading the
// block files.
//
// NOTE: The data returned by this function is only valid during a database
// transaction. Attempting to access it after a transaction has ended results
// in undefined behavior. This constraint prevents additional data copies and
// allows support for memory-mapped database implementations.
//
// This function is part of the database.Tx interface implementation.
func (tx *transaction) FetchBlockRegion(region *database.BlockRegion) ([]byte, error) {
// Ensure transaction state is valid.
if err := tx.checkClosed(); err != nil {
return nil, err
}
// When the block is pending to be written on commit return the bytes
// from there.
if tx.pendingBlocks != nil {
regionBytes, err := tx.fetchPendingRegion(region)
if err != nil {
return nil, err
}
if regionBytes != nil {
return regionBytes, nil
}
}
// Lookup the location of the block in the files from the block index.
blockRow, err := tx.fetchBlockRow(region.Hash)
if err != nil {
return nil, err
}
location := deserializeBlockLoc(blockRow)
// Ensure the region is within the bounds of the block.
endOffset := region.Offset + region.Len
if endOffset < region.Offset || endOffset > location.blockLen {
str := fmt.Sprintf("block %s region offset %d, length %d "+
"exceeds block length of %d", region.Hash,
region.Offset, region.Len, location.blockLen)
return nil, makeDbErr(database.ErrBlockRegionInvalid, str, nil)
}
// Read the region from the appropriate disk block file.
regionBytes, err := tx.db.store.readBlockRegion(location, region.Offset,
region.Len)
if err != nil {
return nil, err
}
return regionBytes, nil
}
// FetchBlockRegions returns the raw serialized bytes for the given block
// regions.
//
// For example, it is possible to directly extract Bitcoin transactions and/or
// scripts from various blocks with this function. Depending on the backend
// implementation, this can provide significant savings by avoiding the need to
// load entire blocks.
//
// The raw bytes are in the format returned by Serialize on a wire.MsgBlock and
// the Offset fields in the provided BlockRegions are zero-based and relative to
// the start of the block (byte 0).
//
// Returns the following errors as required by the interface contract:
// - ErrBlockNotFound if any of the request block hashes do not exist
// - ErrBlockRegionInvalid if one or more region exceed the bounds of the
// associated block
// - ErrTxClosed if the transaction has already been closed
// - ErrCorruption if the database has somehow become corrupted
//
// In addition, returns ErrDriverSpecific if any failures occur when reading the
// block files.
//
// NOTE: The data returned by this function is only valid during a database
// transaction. Attempting to access it after a transaction has ended results
// in undefined behavior. This constraint prevents additional data copies and
// allows support for memory-mapped database implementations.
//
// This function is part of the database.Tx interface implementation.
func (tx *transaction) FetchBlockRegions(regions []database.BlockRegion) ([][]byte, error) {
// Ensure transaction state is valid.
if err := tx.checkClosed(); err != nil {
return nil, err
}
// NOTE: This could check for the existence of all blocks before
// deserializing the locations and building up the fetch list which
// would be faster in the failure case, however callers will not
// typically be calling this function with invalid values, so optimize
// for the common case.
// NOTE: A potential optimization here would be to combine adjacent
// regions to reduce the number of reads.
// In order to improve efficiency of loading the bulk data, first grab
// the block location for all of the requested block hashes and sort
// the reads by filenum:offset so that all reads are grouped by file
// and linear within each file. This can result in quite a significant
// performance increase depending on how spread out the requested hashes
// are by reducing the number of file open/closes and random accesses
// needed. The fetchList is intentionally allocated with a cap because
// some of the regions might be fetched from the pending blocks and
// hence there is no need to fetch those from disk.
blockRegions := make([][]byte, len(regions))
fetchList := make([]bulkFetchData, 0, len(regions))
for i := range regions {
region := &regions[i]
// When the block is pending to be written on commit grab the
// bytes from there.
if tx.pendingBlocks != nil {
regionBytes, err := tx.fetchPendingRegion(region)
if err != nil {
return nil, err
}
if regionBytes != nil {
blockRegions[i] = regionBytes
continue
}
}
// Lookup the location of the block in the files from the block
// index.
blockRow, err := tx.fetchBlockRow(region.Hash)
if err != nil {
return nil, err
}
location := deserializeBlockLoc(blockRow)
// Ensure the region is within the bounds of the block.
endOffset := region.Offset + region.Len
if endOffset < region.Offset || endOffset > location.blockLen {
str := fmt.Sprintf("block %s region offset %d, length "+
"%d exceeds block length of %d", region.Hash,
region.Offset, region.Len, location.blockLen)
return nil, makeDbErr(database.ErrBlockRegionInvalid, str, nil)
}
fetchList = append(fetchList, bulkFetchData{&location, i})
}
sort.Sort(bulkFetchDataSorter(fetchList))
// Read all of the regions in the fetch list and set the results.
for i := range fetchList {
fetchData := &fetchList[i]
ri := fetchData.replyIndex
region := &regions[ri]
location := fetchData.blockLocation
regionBytes, err := tx.db.store.readBlockRegion(*location,
region.Offset, region.Len)
if err != nil {
return nil, err
}
blockRegions[ri] = regionBytes
}
return blockRegions, nil
}
// close marks the transaction closed then releases any pending data, the
// underlying snapshot, the transaction read lock, and the write lock when the
// transaction is writable.
func (tx *transaction) close() {
tx.closed = true
// Clear pending blocks that would have been written on commit.
tx.pendingBlocks = nil
tx.pendingBlockData = nil
// Clear pending keys that would have been written or deleted on commit.
tx.pendingKeys = nil
tx.pendingRemove = nil
// Release the snapshot.
if tx.snapshot != nil {
tx.snapshot.Release()
tx.snapshot = nil
}
tx.db.closeLock.RUnlock()
// Release the writer lock for writable transactions to unblock any
// other write transaction which are possibly waiting.
if tx.writable {
tx.db.writeLock.Unlock()
}
}
// serializeBlockRow serializes a block row into a format suitable for storage
// into the block index.
func serializeBlockRow(blockLoc blockLocation, blockHdr []byte) []byte {
// The serialized block index row format is:
//
// [0:blockLocSize] Block location
// [blockLocSize:blockLocSize+blockHdrSize] Block header
serializedRow := make([]byte, blockLocSize+blockHdrSize)
copy(serializedRow, serializeBlockLoc(blockLoc))
copy(serializedRow[blockHdrOffset:], blockHdr)
return serializedRow
}
// writePendingAndCommit writes pending block data to the flat block files,
// updates the metadata with their locations as well as the new current write
// location, and commits the metadata to the memory database cache. It also
// properly handles rollback in the case of failures.
//
// This function MUST only be called when there is pending data to be written.
func (tx *transaction) writePendingAndCommit() error {
// Save the current block store write position for potential rollback.
// These variables are only updated here in this function and there can
// only be one write transaction active at a time, so it's safe to store
// them for potential rollback.
wc := tx.db.store.writeCursor
wc.RLock()
oldBlkFileNum := wc.curFileNum
oldBlkOffset := wc.curOffset
wc.RUnlock()
// rollback is a closure that is used to rollback all writes to the
// block files.
rollback := func() {
// Rollback any modifications made to the block files if needed.
tx.db.store.handleRollback(oldBlkFileNum, oldBlkOffset)
}
// Loop through all of the pending blocks to store and write them.
for _, blockData := range tx.pendingBlockData {
log.Tracef("Storing block %s", blockData.hash)
location, err := tx.db.store.writeBlock(blockData.bytes)
if err != nil {
rollback()
return err
}
// Add a record in the block index for the block. The record
// includes the location information needed to locate the block
// on the filesystem as well as the block header since they are
// so commonly needed.
blockHdr := blockData.bytes[0:blockHdrSize]
blockRow := serializeBlockRow(location, blockHdr)
err = tx.blockIdxBucket.Put(blockData.hash[:], blockRow)
if err != nil {
rollback()
return err
}
}
// Update the metadata for the current write file and offset.
writeRow := serializeWriteRow(wc.curFileNum, wc.curOffset)
if err := tx.metaBucket.Put(writeLocKeyName, writeRow); err != nil {
rollback()
return convertErr("failed to store write cursor", err)
}
// Atomically update the database cache. The cache automatically
// handles flushing to the underlying persistent storage database.
return tx.db.cache.commitTx(tx)
}
// Commit commits all changes that have been made to the root metadata bucket
// and all of its sub-buckets to the database cache which is periodically synced
// to persistent storage. In addition, it commits all new blocks directly to
// persistent storage bypassing the db cache. Blocks can be rather large, so
// this help increase the amount of cache available for the metadata updates and
// is safe since blocks are immutable.
//
// This function is part of the database.Tx interface implementation.
func (tx *transaction) Commit() error {
// Prevent commits on managed transactions.
if tx.managed {
tx.close()
panic("managed transaction commit not allowed")
}
// Ensure transaction state is valid.
if err := tx.checkClosed(); err != nil {
return err
}
// Regardless of whether the commit succeeds, the transaction is closed
// on return.
defer tx.close()
// Ensure the transaction is writable.
if !tx.writable {
str := "Commit requires a writable database transaction"
return makeDbErr(database.ErrTxNotWritable, str, nil)
}
// Write pending data. The function will rollback if any errors occur.
return tx.writePendingAndCommit()
}
// Rollback undoes all changes that have been made to the root bucket and all of
// its sub-buckets.
//
// This function is part of the database.Tx interface implementation.
func (tx *transaction) Rollback() error {
// Prevent rollbacks on managed transactions.
if tx.managed {
tx.close()
panic("managed transaction rollback not allowed")
}
// Ensure transaction state is valid.
if err := tx.checkClosed(); err != nil {
return err
}
tx.close()
return nil
}
// db represents a collection of namespaces which are persisted and implements
// the database.DB interface. All database access is performed through
// transactions which are obtained through the specific Namespace.
type db struct {
writeLock sync.Mutex // Limit to one write transaction at a time.
closeLock sync.RWMutex // Make database close block while txns active.
closed bool // Is the database closed?
store *blockStore // Handles read/writing blocks to flat files.
cache *dbCache // Cache layer which wraps underlying leveldb DB.
}
// Enforce db implements the database.DB interface.
var _ database.DB = (*db)(nil)
// Type returns the database driver type the current database instance was
// created with.
//
// This function is part of the database.DB interface implementation.
func (db *db) Type() string {
return dbType
}
// begin is the implementation function for the Begin database method. See its
// documentation for more details.
//
// This function is only separate because it returns the internal transaction
// which is used by the managed transaction code while the database method
// returns the interface.
func (db *db) begin(writable bool) (*transaction, error) {
// Whenever a new writable transaction is started, grab the write lock
// to ensure only a single write transaction can be active at the same
// time. This lock will not be released until the transaction is
// closed (via Rollback or Commit).
if writable {
db.writeLock.Lock()
}
// Whenever a new transaction is started, grab a read lock against the
// database to ensure Close will wait for the transaction to finish.
// This lock will not be released until the transaction is closed (via
// Rollback or Commit).
db.closeLock.RLock()
if db.closed {
db.closeLock.RUnlock()
if writable {
db.writeLock.Unlock()
}
return nil, makeDbErr(database.ErrDbNotOpen, errDbNotOpenStr,
nil)
}
// Grab a snapshot of the database cache (which in turn also handles the
// underlying database).
snapshot, err := db.cache.Snapshot()
if err != nil {
db.closeLock.RUnlock()
if writable {
db.writeLock.Unlock()
}
return nil, err
}
// The metadata and block index buckets are internal-only buckets, so
// they have defined IDs.
tx := &transaction{
writable: writable,
db: db,
snapshot: snapshot,
pendingKeys: treap.NewMutable(),
pendingRemove: treap.NewMutable(),
}
tx.metaBucket = &bucket{tx: tx, id: metadataBucketID}
tx.blockIdxBucket = &bucket{tx: tx, id: blockIdxBucketID}
return tx, nil
}
// Begin starts a transaction which is either read-only or read-write depending
// on the specified flag. Multiple read-only transactions can be started
// simultaneously while only a single read-write transaction can be started at a
// time. The call will block when starting a read-write transaction when one is
// already open.
//
// NOTE: The transaction must be closed by calling Rollback or Commit on it when
// it is no longer needed. Failure to do so will result in unclaimed memory.
//
// This function is part of the database.DB interface implementation.
func (db *db) Begin(writable bool) (database.Tx, error) {
return db.begin(writable)
}
// rollbackOnPanic rolls the passed transaction back if the code in the calling
// function panics. This is needed since the mutex on a transaction must be
// released and a panic in called code would prevent that from happening.
//
// NOTE: This can only be handled manually for managed transactions since they
// control the life-cycle of the transaction. As the documentation on Begin
// calls out, callers opting to use manual transactions will have to ensure the
// transaction is rolled back on panic if it desires that functionality as well
// or the database will fail to close since the read-lock will never be
// released.
func rollbackOnPanic(tx *transaction) {
if err := recover(); err != nil {
tx.managed = false
_ = tx.Rollback()
panic(err)
}
}
// View invokes the passed function in the context of a managed read-only
// transaction with the root bucket for the namespace. Any errors returned from
// the user-supplied function are returned from this function.
//
// This function is part of the database.DB interface implementation.
func (db *db) View(fn func(database.Tx) error) error {
// Start a read-only transaction.
tx, err := db.begin(false)
if err != nil {
return err
}
// Since the user-provided function might panic, ensure the transaction
// releases all mutexes and resources. There is no guarantee the caller
// won't use recover and keep going. Thus, the database must still be
// in a usable state on panics due to caller issues.
defer rollbackOnPanic(tx)
tx.managed = true
err = fn(tx)
tx.managed = false
if err != nil {
// The error is ignored here because nothing was written yet
// and regardless of a rollback failure, the tx is closed now
// anyways.
_ = tx.Rollback()
return err
}
return tx.Rollback()
}
// Update invokes the passed function in the context of a managed read-write
// transaction with the root bucket for the namespace. Any errors returned from
// the user-supplied function will cause the transaction to be rolled back and
// are returned from this function. Otherwise, the transaction is committed
// when the user-supplied function returns a nil error.
//
// This function is part of the database.DB interface implementation.
func (db *db) Update(fn func(database.Tx) error) error {
// Start a read-write transaction.
tx, err := db.begin(true)
if err != nil {
return err
}
// Since the user-provided function might panic, ensure the transaction
// releases all mutexes and resources. There is no guarantee the caller
// won't use recover and keep going. Thus, the database must still be
// in a usable state on panics due to caller issues.
defer rollbackOnPanic(tx)
tx.managed = true
err = fn(tx)
tx.managed = false
if err != nil {
// The error is ignored here because nothing was written yet
// and regardless of a rollback failure, the tx is closed now
// anyways.
_ = tx.Rollback()
return err
}
return tx.Commit()
}
// Close cleanly shuts down the database and syncs all data. It will block
// until all database transactions have been finalized (rolled back or
// committed).
//
// This function is part of the database.DB interface implementation.
func (db *db) Close() error {
// Since all transactions have a read lock on this mutex, this will
// cause Close to wait for all readers to complete.
db.closeLock.Lock()
defer db.closeLock.Unlock()
if db.closed {
return makeDbErr(database.ErrDbNotOpen, errDbNotOpenStr, nil)
}
db.closed = true
// NOTE: Since the above lock waits for all transactions to finish and
// prevents any new ones from being started, it is safe to flush the
// cache and clear all state without the individual locks.
// Close the database cache which will flush any existing entries to
// disk and close the underlying leveldb database. Any error is saved
// and returned at the end after the remaining cleanup since the
// database will be marked closed even if this fails given there is no
// good way for the caller to recover from a failure here anyways.
closeErr := db.cache.Close()
// Close any open flat files that house the blocks.
wc := db.store.writeCursor
if wc.curFile.file != nil {
_ = wc.curFile.file.Close()
wc.curFile.file = nil
}
for _, blockFile := range db.store.openBlockFiles {
_ = blockFile.file.Close()
}
db.store.openBlockFiles = nil
db.store.openBlocksLRU.Init()
db.store.fileNumToLRUElem = nil
return closeErr
}
// filesExists reports whether the named file or directory exists.
func fileExists(name string) bool {
if _, err := os.Stat(name); err != nil {
if os.IsNotExist(err) {
return false
}
}
return true
}
// initDB creates the initial buckets and values used by the package. This is
// mainly in a separate function for testing purposes.
func initDB(ldb *leveldb.DB) error {
// The starting block file write cursor location is file num 0, offset
// 0.
batch := new(leveldb.Batch)
batch.Put(bucketizedKey(metadataBucketID, writeLocKeyName),
serializeWriteRow(0, 0))
// Create block index bucket and set the current bucket id.
//
// NOTE: Since buckets are virtualized through the use of prefixes,
// there is no need to store the bucket index data for the metadata
// bucket in the database. However, the first bucket ID to use does
// need to account for it to ensure there are no key collisions.
batch.Put(bucketIndexKey(metadataBucketID, blockIdxBucketName),
blockIdxBucketID[:])
batch.Put(curBucketIDKeyName, blockIdxBucketID[:])
// Write everything as a single batch.
if err := ldb.Write(batch, nil); err != nil {
str := fmt.Sprintf("failed to initialize metadata database: %v",
err)
return convertErr(str, err)
}
return nil
}
// openDB opens the database at the provided path. database.ErrDbDoesNotExist
// is returned if the database doesn't exist and the create flag is not set.
func openDB(dbPath string, network wire.BitcoinNet, create bool) (database.DB, error) {
// Error if the database doesn't exist and the create flag is not set.
metadataDbPath := filepath.Join(dbPath, metadataDbName)
dbExists := fileExists(metadataDbPath)
if !create && !dbExists {
str := fmt.Sprintf("database %q does not exist", metadataDbPath)
return nil, makeDbErr(database.ErrDbDoesNotExist, str, nil)
}
// Ensure the full path to the database exists.
if !dbExists {
// The error can be ignored here since the call to
// leveldb.OpenFile will fail if the directory couldn't be
// created.
_ = os.MkdirAll(dbPath, 0700)
}
// Open the metadata database (will create it if needed).
opts := opt.Options{
ErrorIfExist: create,
Strict: opt.DefaultStrict,
Compression: opt.NoCompression,
Filter: filter.NewBloomFilter(10),
}
ldb, err := leveldb.OpenFile(metadataDbPath, &opts)
if err != nil {
return nil, convertErr(err.Error(), err)
}
// Create the block store which includes scanning the existing flat
// block files to find what the current write cursor position is
// according to the data that is actually on disk. Also create the
// database cache which wraps the underlying leveldb database to provide
// write caching.
store := newBlockStore(dbPath, network)
cache := newDbCache(ldb, store, defaultCacheSize, defaultFlushSecs)
pdb := &db{store: store, cache: cache}
// Perform any reconciliation needed between the block and metadata as
// well as database initialization, if needed.
return reconcileDB(pdb, create)
}