go-ethereum/statediff/builder.go

838 lines
30 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Contains a batch of utility type declarations used by the tests. As the node
// operates on unique types, a lot of them are needed to check various features.
package statediff
import (
"bytes"
"fmt"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/statediff/trie_helpers"
types2 "github.com/ethereum/go-ethereum/statediff/types"
"github.com/ethereum/go-ethereum/trie"
)
var (
nullHashBytes = common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000000000")
emptyNode, _ = rlp.EncodeToBytes(&[]byte{})
emptyContractRoot = crypto.Keccak256Hash(emptyNode)
nullCodeHash = crypto.Keccak256Hash([]byte{}).Bytes()
)
// Builder interface exposes the method for building a state diff between two blocks
type Builder interface {
BuildStateDiffObject(args Args, params Params) (types2.StateObject, error)
WriteStateDiffObject(args types2.StateRoots, params Params, output types2.StateNodeSink, codeOutput types2.CodeSink) error
}
type StateDiffBuilder struct {
StateCache state.Database
}
type IterPair struct {
Older, Newer trie.NodeIterator
}
// convenience
func StateNodeAppender(nodes *[]types2.StateNode) types2.StateNodeSink {
return func(node types2.StateNode) error {
*nodes = append(*nodes, node)
return nil
}
}
func StorageNodeAppender(nodes *[]types2.StorageNode) types2.StorageNodeSink {
return func(node types2.StorageNode) error {
*nodes = append(*nodes, node)
return nil
}
}
func CodeMappingAppender(codeAndCodeHashes *[]types2.CodeAndCodeHash) types2.CodeSink {
return func(c types2.CodeAndCodeHash) error {
*codeAndCodeHashes = append(*codeAndCodeHashes, c)
return nil
}
}
// NewBuilder is used to create a statediff builder
func NewBuilder(stateCache state.Database) Builder {
return &StateDiffBuilder{
StateCache: stateCache, // state cache is safe for concurrent reads
}
}
// BuildStateDiffObject builds a statediff object from two blocks and the provided parameters
func (sdb *StateDiffBuilder) BuildStateDiffObject(args Args, params Params) (types2.StateObject, error) {
var stateNodes []types2.StateNode
var codeAndCodeHashes []types2.CodeAndCodeHash
err := sdb.WriteStateDiffObject(
types2.StateRoots{OldStateRoot: args.OldStateRoot, NewStateRoot: args.NewStateRoot},
params, StateNodeAppender(&stateNodes), CodeMappingAppender(&codeAndCodeHashes))
if err != nil {
return types2.StateObject{}, err
}
return types2.StateObject{
BlockHash: args.BlockHash,
BlockNumber: args.BlockNumber,
Nodes: stateNodes,
CodeAndCodeHashes: codeAndCodeHashes,
}, nil
}
// WriteStateDiffObject writes a statediff object to output callback
func (sdb *StateDiffBuilder) WriteStateDiffObject(args types2.StateRoots, params Params, output types2.StateNodeSink, codeOutput types2.CodeSink) error {
// Load tries for old and new states
oldTrie, err := sdb.StateCache.OpenTrie(args.OldStateRoot)
if err != nil {
return fmt.Errorf("error creating trie for oldStateRoot: %v", err)
}
newTrie, err := sdb.StateCache.OpenTrie(args.NewStateRoot)
if err != nil {
return fmt.Errorf("error creating trie for newStateRoot: %v", err)
}
// we do two state trie iterations:
// one for new/updated nodes,
// one for deleted/updated nodes;
// prepare 2 iterator instances for each task
iterPairs := []IterPair{
{
Older: oldTrie.NodeIterator([]byte{}),
Newer: newTrie.NodeIterator([]byte{}),
},
{
Older: oldTrie.NodeIterator([]byte{}),
Newer: newTrie.NodeIterator([]byte{}),
},
}
if !params.IntermediateStateNodes {
return sdb.BuildStateDiffWithoutIntermediateStateNodes(iterPairs, params, output, codeOutput)
} else {
return sdb.BuildStateDiffWithIntermediateStateNodes(iterPairs, params, output, codeOutput)
}
}
func (sdb *StateDiffBuilder) BuildStateDiffWithIntermediateStateNodes(iterPairs []IterPair, params Params, output types2.StateNodeSink, codeOutput types2.CodeSink) error {
// collect a slice of all the nodes that were touched and exist at B (B-A)
// a map of their leafkey to all the accounts that were touched and exist at B
// and a slice of all the paths for the nodes in both of the above sets
diffAccountsAtB, diffPathsAtB, err := sdb.createdAndUpdatedStateWithIntermediateNodes(
iterPairs[0].Older, iterPairs[0].Newer, params.watchedAddressesLeafPaths, output)
if err != nil {
return fmt.Errorf("error collecting createdAndUpdatedNodes: %v", err)
}
// collect a slice of all the nodes that existed at a path in A that doesn't exist in B
// a map of their leafkey to all the accounts that were touched and exist at A
diffAccountsAtA, err := sdb.deletedOrUpdatedState(
iterPairs[1].Older, iterPairs[1].Newer,
diffAccountsAtB, diffPathsAtB, params.watchedAddressesLeafPaths,
params.IntermediateStateNodes, params.IntermediateStorageNodes, output)
if err != nil {
return fmt.Errorf("error collecting deletedOrUpdatedNodes: %v", err)
}
// collect and sort the leafkey keys for both account mappings into a slice
createKeys := trie_helpers.SortKeys(diffAccountsAtB)
deleteKeys := trie_helpers.SortKeys(diffAccountsAtA)
// and then find the intersection of these keys
// these are the leafkeys for the accounts which exist at both A and B but are different
// this also mutates the passed in createKeys and deleteKeys, removing the intersection keys
// and leaving the truly created or deleted keys in place
updatedKeys := trie_helpers.FindIntersection(createKeys, deleteKeys)
// build the diff nodes for the updated accounts using the mappings at both A and B as directed by the keys found as the intersection of the two
err = sdb.buildAccountUpdates(
diffAccountsAtB, diffAccountsAtA, updatedKeys,
params.IntermediateStorageNodes, output)
if err != nil {
return fmt.Errorf("error building diff for updated accounts: %v", err)
}
// build the diff nodes for created accounts
err = sdb.buildAccountCreations(diffAccountsAtB, params.IntermediateStorageNodes, output, codeOutput)
if err != nil {
return fmt.Errorf("error building diff for created accounts: %v", err)
}
return nil
}
func (sdb *StateDiffBuilder) BuildStateDiffWithoutIntermediateStateNodes(iterPairs []IterPair, params Params, output types2.StateNodeSink, codeOutput types2.CodeSink) error {
// collect a map of their leafkey to all the accounts that were touched and exist at B
// and a slice of all the paths for the nodes in both of the above sets
diffAccountsAtB, diffPathsAtB, err := sdb.createdAndUpdatedState(
iterPairs[0].Older, iterPairs[0].Newer,
params.watchedAddressesLeafPaths)
if err != nil {
return fmt.Errorf("error collecting createdAndUpdatedNodes: %v", err)
}
// collect a slice of all the nodes that existed at a path in A that doesn't exist in B
// a map of their leafkey to all the accounts that were touched and exist at A
diffAccountsAtA, err := sdb.deletedOrUpdatedState(
iterPairs[1].Older, iterPairs[1].Newer,
diffAccountsAtB, diffPathsAtB, params.watchedAddressesLeafPaths,
params.IntermediateStateNodes, params.IntermediateStorageNodes, output)
if err != nil {
return fmt.Errorf("error collecting deletedOrUpdatedNodes: %v", err)
}
// collect and sort the leafkeys for both account mappings into a slice
createKeys := trie_helpers.SortKeys(diffAccountsAtB)
deleteKeys := trie_helpers.SortKeys(diffAccountsAtA)
// and then find the intersection of these keys
// these are the leafkeys for the accounts which exist at both A and B but are different
// this also mutates the passed in createKeys and deleteKeys, removing in intersection keys
// and leaving the truly created or deleted keys in place
updatedKeys := trie_helpers.FindIntersection(createKeys, deleteKeys)
// build the diff nodes for the updated accounts using the mappings at both A and B as directed by the keys found as the intersection of the two
err = sdb.buildAccountUpdates(
diffAccountsAtB, diffAccountsAtA, updatedKeys,
params.IntermediateStorageNodes, output)
if err != nil {
return fmt.Errorf("error building diff for updated accounts: %v", err)
}
// build the diff nodes for created accounts
err = sdb.buildAccountCreations(diffAccountsAtB, params.IntermediateStorageNodes, output, codeOutput)
if err != nil {
return fmt.Errorf("error building diff for created accounts: %v", err)
}
return nil
}
// createdAndUpdatedState returns
// a mapping of their leafkeys to all the accounts that exist in a different state at B than A
// and a slice of the paths for all of the nodes included in both
func (sdb *StateDiffBuilder) createdAndUpdatedState(a, b trie.NodeIterator, watchedAddressesLeafPaths [][]byte) (types2.AccountMap, map[string]bool, error) {
diffPathsAtB := make(map[string]bool)
diffAccountsAtB := make(types2.AccountMap)
watchingAddresses := len(watchedAddressesLeafPaths) > 0
it, _ := trie.NewDifferenceIterator(a, b)
for it.Next(true) {
// ignore node if it is not along paths of interest
if watchingAddresses && !isValidPrefixPath(watchedAddressesLeafPaths, it.Path()) {
continue
}
// skip null nodes
if bytes.Equal(nullHashBytes, it.Hash().Bytes()) {
continue
}
nodePath := make([]byte, len(it.Path()))
copy(nodePath, it.Path())
// if it is a value node, we index the value by leaf key
if it.Leaf() {
// ignore leaf node if it is not a watched address
if !isWatchedAddress(watchedAddressesLeafPaths, nodePath) {
continue
}
// created vs updated is important for leaf nodes since we need to diff their storage
// so we need to map all changed accounts at B to their leafkey, since account can change pathes but not leafkey
var account types.StateAccount
accountRLP := make([]byte, 0)
copy(accountRLP, it.LeafBlob())
if err := rlp.DecodeBytes(accountRLP, &account); err != nil {
return nil, nil, fmt.Errorf("error decoding account for leaf value at leaf key %x\nerror: %v", it.LeafKey(), err)
}
leafKey := make([]byte, len(it.LeafKey()))
copy(leafKey, it.LeafKey())
parentNodeRLP, err := sdb.StateCache.TrieDB().Node(it.Parent())
if err != nil {
return nil, nil, err
}
leafNodeHash := crypto.Keccak256(parentNodeRLP)
diffAccountsAtB[common.Bytes2Hex(leafKey)] = types2.AccountWrapper{
Removed: false,
Path: nodePath,
LeafKey: leafKey,
Account: &account,
LeafNodeHash: leafNodeHash,
}
} else {
// add non-value-node paths to the list of diffPathsAtB
diffPathsAtB[common.Bytes2Hex(nodePath)] = true
}
}
return diffAccountsAtB, diffPathsAtB, it.Error()
}
// createdAndUpdatedStateWithIntermediateNodes returns
// a slice of all the intermediate nodes that exist in a different state at B than A
// a mapping of their leafkeys to all the accounts that exist in a different state at B than A
// and a slice of the paths for all of the nodes included in both
func (sdb *StateDiffBuilder) createdAndUpdatedStateWithIntermediateNodes(a, b trie.NodeIterator, watchedAddressesLeafPaths [][]byte, output types2.StateNodeSink) (types2.AccountMap, map[string]bool, error) {
diffPathsAtB := make(map[string]bool)
diffAccountsAtB := make(types2.AccountMap)
watchingAddresses := len(watchedAddressesLeafPaths) > 0
it, _ := trie.NewDifferenceIterator(a, b)
for it.Next(true) {
// ignore node if it is not along paths of interest
if watchingAddresses && !isValidPrefixPath(watchedAddressesLeafPaths, it.Path()) {
continue
}
// skip null nodes
if bytes.Equal(nullHashBytes, it.Hash().Bytes()) {
continue
}
nodePath := make([]byte, len(it.Path()))
copy(nodePath, it.Path())
// index value nodes by leaf key
if it.Leaf() {
// ignore leaf node if it is not a watched address
if !isWatchedAddress(watchedAddressesLeafPaths, nodePath) {
continue
}
// created vs updated is important for leaf nodes since we need to diff their storage
// so we need to map all changed accounts at B to their leafkey, since account can change paths but not leafkey
var account types.StateAccount
accountRLP := make([]byte, 0)
copy(accountRLP, it.LeafBlob())
if err := rlp.DecodeBytes(accountRLP, &account); err != nil {
return nil, nil, fmt.Errorf("error decoding account for leaf node at key %x\nerror: %v", it.LeafKey(), err)
}
leafKey := make([]byte, len(it.LeafKey()))
copy(leafKey, it.LeafKey())
parentNodeRLP, err := sdb.StateCache.TrieDB().Node(it.Parent())
if err != nil {
return nil, nil, err
}
leafNodeHash := crypto.Keccak256(parentNodeRLP)
diffAccountsAtB[common.Bytes2Hex(leafKey)] = types2.AccountWrapper{
Removed: false,
Path: nodePath,
LeafKey: leafKey,
Account: &account,
LeafNodeHash: leafNodeHash,
}
} else { // trie nodes will be written to blockstore only
nodeVal := make([]byte, len(it.NodeBlob()))
copy(nodeVal, it.NodeBlob())
if err := output(types2.StateNode{
Removed: false,
Path: nodePath,
NodeValue: nodeVal, // TODO: add Hash field so we dont have to recompute hash to insert into blockstore
}); err != nil {
return nil, nil, err
}
// add non-value-node paths to the list of diffPathsAtB
diffPathsAtB[common.Bytes2Hex(nodePath)] = true
}
}
return diffAccountsAtB, diffPathsAtB, it.Error()
}
// deletedOrUpdatedState returns a slice of all the pathes that are emptied at B
// and a mapping of their leafkeys to all the accounts that exist in a different state at A than B
func (sdb *StateDiffBuilder) deletedOrUpdatedState(a, b trie.NodeIterator, diffAccountsAtB types2.AccountMap, diffPathsAtB map[string]bool, watchedAddressesLeafPaths [][]byte, intermediateStateNodes, intermediateStorageNodes bool, output types2.StateNodeSink) (types2.AccountMap, error) {
diffAccountAtA := make(types2.AccountMap)
watchingAddresses := len(watchedAddressesLeafPaths) > 0
it, _ := trie.NewDifferenceIterator(b, a)
for it.Next(true) {
// ignore node if it is not along paths of interest
if watchingAddresses && !isValidPrefixPath(watchedAddressesLeafPaths, it.Path()) {
continue
}
// skip null nodes
if bytes.Equal(nullHashBytes, it.Hash().Bytes()) {
continue
}
nodePath := make([]byte, len(it.Path()))
copy(nodePath, it.Path())
if it.Leaf() {
// ignore leaf node if it is not a watched address
if !isWatchedAddress(watchedAddressesLeafPaths, nodePath) {
continue
}
// map all different accounts at A to their leafkey
var account types.StateAccount
accountRLP := make([]byte, 0)
copy(accountRLP, it.LeafBlob())
if err := rlp.DecodeBytes(accountRLP, &account); err != nil {
return nil, fmt.Errorf("error decoding account for leaf node at key %x\n nerror: %v", it.LeafKey(), err)
}
leafKey := make([]byte, len(it.LeafKey()))
copy(leafKey, it.LeafKey())
parentNodeRLP, err := sdb.StateCache.TrieDB().Node(it.Parent())
if err != nil {
return nil, err
}
leafNodeHash := crypto.Keccak256(parentNodeRLP)
diffAccountAtA[common.Bytes2Hex(leafKey)] = types2.AccountWrapper{
Removed: false,
Path: nodePath,
LeafKey: leafKey,
Account: &account,
LeafNodeHash: leafNodeHash,
}
// if this node's path did not show up in diffPathsAtB
// that means the node at this path was deleted (or moved) in B
if _, ok := diffPathsAtB[common.Bytes2Hex(nodePath)]; !ok {
// TODO: REMOVE THIS CONDITION
// value nodes dont insert path in diffPathsAtB, this will always be !ok
var diff types2.StateNode
// if this node's leaf key also did not show up in diffAccountsAtB
// that means the node was deleted
// in that case, emit an empty "removed" diff state node
// include empty "removed" diff storage nodes for all the storage slots
if _, ok := diffAccountsAtB[common.Bytes2Hex(leafKey)]; !ok {
diff = types2.StateNode{
Removed: true,
Path: nodePath,
LeafKey: leafKey,
NodeValue: []byte{},
}
var storageDiffs []types2.StorageNode
err := sdb.buildRemovedAccountStorageNodes(account.Root, intermediateStorageNodes, StorageNodeAppender(&storageDiffs))
if err != nil {
return nil, fmt.Errorf("failed building storage diffs for removed state account with key %x\r\nerror: %v", leafKey, err)
}
diff.StorageNodes = storageDiffs
} else {
// emit an empty "removed" diff with empty leaf key if the account was moved
diff = types2.StateNode{
Removed: true,
Path: nodePath,
NodeValue: []byte{},
}
}
if err := output(diff); err != nil {
return nil, err
}
}
} else {
// if this node's path did not show up in diffPathsAtB
// that means the node at this path was deleted (or moved) in B
// emit an empty "removed" diff to signify as such
if intermediateStateNodes {
if _, ok := diffPathsAtB[common.Bytes2Hex(nodePath)]; !ok {
if err := output(types2.StateNode{
Path: nodePath,
NodeValue: []byte{},
Removed: true,
}); err != nil {
return nil, err
}
}
}
// fall through, we did everything we need to do with these node types
}
}
return diffAccountAtA, it.Error()
}
// buildAccountUpdates uses the account diffs maps for A => B and B => A and the known intersection of their leafkeys
// to generate the statediff node objects for all of the accounts that existed at both A and B but in different states
// needs to be called before building account creations and deletions as this mutates
// those account maps to remove the accounts which were updated
func (sdb *StateDiffBuilder) buildAccountUpdates(creations, deletions types2.AccountMap, updatedKeys []string, intermediateStorageNodes bool, output types2.StateNodeSink) error {
var err error
for _, key := range updatedKeys {
createdAcc := creations[key]
deletedAcc := deletions[key]
var storageDiffs []types2.StorageNode
if deletedAcc.Account != nil && createdAcc.Account != nil {
oldSR := deletedAcc.Account.Root
newSR := createdAcc.Account.Root
err = sdb.buildStorageNodesIncremental(
oldSR, newSR, intermediateStorageNodes,
StorageNodeAppender(&storageDiffs))
if err != nil {
return fmt.Errorf("failed building incremental storage diffs for account with leafkey %s\r\nerror: %v", key, err)
}
}
if err = output(types2.StateNode{
Removed: createdAcc.Removed,
Path: createdAcc.Path,
NodeValue: createdAcc.NodeValue,
LeafKey: createdAcc.LeafKey,
NodeHash: createdAcc.LeafNodeHash,
StorageNodes: storageDiffs,
}); err != nil {
return err
}
delete(creations, key)
delete(deletions, key)
}
return nil
}
// buildAccountCreations returns the statediff node objects for all the accounts that exist at B but not at A
// it also returns the code and codehash for created contract accounts
func (sdb *StateDiffBuilder) buildAccountCreations(accounts types2.AccountMap, intermediateStorageNodes bool, output types2.StateNodeSink, codeOutput types2.CodeSink) error {
for _, val := range accounts {
diff := types2.StateNode{
Removed: val.Removed,
Path: val.Path,
LeafKey: val.LeafKey,
NodeValue: val.NodeValue,
NodeHash: val.LeafNodeHash,
}
if !bytes.Equal(val.Account.CodeHash, nullCodeHash) {
// For contract creations, any storage node contained is a diff
var storageDiffs []types2.StorageNode
err := sdb.buildStorageNodesEventual(val.Account.Root, intermediateStorageNodes, StorageNodeAppender(&storageDiffs))
if err != nil {
return fmt.Errorf("failed building eventual storage diffs for node %x\r\nerror: %v", val.Path, err)
}
diff.StorageNodes = storageDiffs
// emit codehash => code mappings for cod
codeHash := common.BytesToHash(val.Account.CodeHash)
code, err := sdb.StateCache.ContractCode(common.Hash{}, codeHash)
if err != nil {
return fmt.Errorf("failed to retrieve code for codehash %s\r\n error: %v", codeHash.String(), err)
}
if err := codeOutput(types2.CodeAndCodeHash{
Hash: codeHash,
Code: code,
}); err != nil {
return err
}
}
if err := output(diff); err != nil {
return err
}
}
return nil
}
// buildStorageNodesEventual builds the storage diff node objects for a created account
// i.e. it returns all the storage nodes at this state, since there is no previous state
func (sdb *StateDiffBuilder) buildStorageNodesEventual(sr common.Hash, intermediateNodes bool, output types2.StorageNodeSink) error {
if bytes.Equal(sr.Bytes(), emptyContractRoot.Bytes()) {
return nil
}
log.Debug("Storage Root For Eventual Diff", "root", sr.Hex())
sTrie, err := sdb.StateCache.OpenTrie(sr)
if err != nil {
log.Info("error in build storage diff eventual", "error", err)
return err
}
it := sTrie.NodeIterator(make([]byte, 0))
err = sdb.buildStorageNodesFromTrie(it, intermediateNodes, output)
if err != nil {
return err
}
return nil
}
// buildStorageNodesFromTrie returns all the storage diff node objects in the provided node interator
// including intermediate nodes can be turned on or off
func (sdb *StateDiffBuilder) buildStorageNodesFromTrie(it trie.NodeIterator, intermediateNodes bool, output types2.StorageNodeSink) error {
for it.Next(true) {
// skip value nodes
if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) {
continue
}
node, nodeElements, err := trie_helpers.ResolveNode(it, sdb.StateCache.TrieDB())
if err != nil {
return err
}
switch node.NodeType {
case types2.Leaf:
partialPath := trie.CompactToHex(nodeElements[0].([]byte))
valueNodePath := append(node.Path, partialPath...)
encodedPath := trie.HexToCompact(valueNodePath)
leafKey := encodedPath[1:]
if err := output(types2.StorageNode{
NodeType: node.NodeType,
Path: node.Path,
NodeValue: node.NodeValue,
LeafKey: leafKey,
}); err != nil {
return err
}
case types2.Extension, types2.Branch:
if intermediateNodes {
if err := output(types2.StorageNode{
NodeType: node.NodeType,
Path: node.Path,
NodeValue: node.NodeValue,
}); err != nil {
return err
}
}
default:
return fmt.Errorf("unexpected node type %s", node.NodeType)
}
}
return it.Error()
}
// buildRemovedAccountStorageNodes builds the "removed" diffs for all the storage nodes for a destroyed account
func (sdb *StateDiffBuilder) buildRemovedAccountStorageNodes(sr common.Hash, intermediateNodes bool, output types2.StorageNodeSink) error {
if bytes.Equal(sr.Bytes(), emptyContractRoot.Bytes()) {
return nil
}
log.Debug("Storage Root For Removed Diffs", "root", sr.Hex())
sTrie, err := sdb.StateCache.OpenTrie(sr)
if err != nil {
log.Info("error in build removed account storage diffs", "error", err)
return err
}
it := sTrie.NodeIterator(make([]byte, 0))
err = sdb.buildRemovedStorageNodesFromTrie(it, intermediateNodes, output)
if err != nil {
return err
}
return nil
}
// buildRemovedStorageNodesFromTrie returns diffs for all the storage nodes in the provided node interator
// including intermediate nodes can be turned on or off
func (sdb *StateDiffBuilder) buildRemovedStorageNodesFromTrie(it trie.NodeIterator, intermediateNodes bool, output types2.StorageNodeSink) error {
for it.Next(true) {
// skip value nodes
if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) {
continue
}
node, nodeElements, err := trie_helpers.ResolveNode(it, sdb.StateCache.TrieDB())
if err != nil {
return err
}
switch node.NodeType {
case types2.Leaf:
partialPath := trie.CompactToHex(nodeElements[0].([]byte))
valueNodePath := append(node.Path, partialPath...)
encodedPath := trie.HexToCompact(valueNodePath)
leafKey := encodedPath[1:]
if err := output(types2.StorageNode{
NodeType: types2.Removed,
Path: node.Path,
NodeValue: []byte{},
LeafKey: leafKey,
}); err != nil {
return err
}
case types2.Extension, types2.Branch:
if intermediateNodes {
if err := output(types2.StorageNode{
NodeType: types2.Removed,
Path: node.Path,
NodeValue: []byte{},
}); err != nil {
return err
}
}
default:
return fmt.Errorf("unexpected node type %s", node.NodeType)
}
}
return it.Error()
}
// buildStorageNodesIncremental builds the storage diff node objects for all nodes that exist in a different state at B than A
func (sdb *StateDiffBuilder) buildStorageNodesIncremental(oldSR common.Hash, newSR common.Hash, intermediateNodes bool, output types2.StorageNodeSink) error {
if bytes.Equal(newSR.Bytes(), oldSR.Bytes()) {
return nil
}
log.Trace("Storage Roots for Incremental Diff", "old", oldSR.Hex(), "new", newSR.Hex())
oldTrie, err := sdb.StateCache.OpenTrie(oldSR)
if err != nil {
return err
}
newTrie, err := sdb.StateCache.OpenTrie(newSR)
if err != nil {
return err
}
diffSlotsAtB, diffPathsAtB, err := sdb.createdAndUpdatedStorage(
oldTrie.NodeIterator([]byte{}), newTrie.NodeIterator([]byte{}),
intermediateNodes, output)
if err != nil {
return err
}
err = sdb.deletedOrUpdatedStorage(oldTrie.NodeIterator([]byte{}), newTrie.NodeIterator([]byte{}),
diffSlotsAtB, diffPathsAtB, intermediateNodes, output)
if err != nil {
return err
}
return nil
}
func (sdb *StateDiffBuilder) createdAndUpdatedStorage(a, b trie.NodeIterator, intermediateNodes bool, output types2.StorageNodeSink) (map[string]bool, map[string]bool, error) {
diffPathsAtB := make(map[string]bool)
diffSlotsAtB := make(map[string]bool)
it, _ := trie.NewDifferenceIterator(a, b)
for it.Next(true) {
// skip value nodes
if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) {
continue
}
node, nodeElements, err := trie_helpers.ResolveNode(it, sdb.StateCache.TrieDB())
if err != nil {
return nil, nil, err
}
switch node.NodeType {
case types2.Leaf:
partialPath := trie.CompactToHex(nodeElements[0].([]byte))
valueNodePath := append(node.Path, partialPath...)
encodedPath := trie.HexToCompact(valueNodePath)
leafKey := encodedPath[1:]
diffSlotsAtB[common.Bytes2Hex(leafKey)] = true
if err := output(types2.StorageNode{
NodeType: node.NodeType,
Path: node.Path,
NodeValue: node.NodeValue,
LeafKey: leafKey,
}); err != nil {
return nil, nil, err
}
case types2.Extension, types2.Branch:
if intermediateNodes {
if err := output(types2.StorageNode{
NodeType: node.NodeType,
Path: node.Path,
NodeValue: node.NodeValue,
}); err != nil {
return nil, nil, err
}
}
default:
return nil, nil, fmt.Errorf("unexpected node type %s", node.NodeType)
}
diffPathsAtB[common.Bytes2Hex(node.Path)] = true
}
return diffSlotsAtB, diffPathsAtB, it.Error()
}
func (sdb *StateDiffBuilder) deletedOrUpdatedStorage(a, b trie.NodeIterator, diffSlotsAtB, diffPathsAtB map[string]bool, intermediateNodes bool, output types2.StorageNodeSink) error {
it, _ := trie.NewDifferenceIterator(b, a)
for it.Next(true) {
// skip value nodes
if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) {
continue
}
node, nodeElements, err := trie_helpers.ResolveNode(it, sdb.StateCache.TrieDB())
if err != nil {
return err
}
switch node.NodeType {
case types2.Leaf:
partialPath := trie.CompactToHex(nodeElements[0].([]byte))
valueNodePath := append(node.Path, partialPath...)
encodedPath := trie.HexToCompact(valueNodePath)
leafKey := encodedPath[1:]
// if this node's path did not show up in diffPathsAtB
// that means the node at this path was deleted (or moved) in B
if _, ok := diffPathsAtB[common.Bytes2Hex(node.Path)]; !ok {
// if this node's leaf key also did not show up in diffSlotsAtB
// that means the node was deleted
// in that case, emit an empty "removed" diff storage node
if _, ok := diffSlotsAtB[common.Bytes2Hex(leafKey)]; !ok {
if err := output(types2.StorageNode{
NodeType: types2.Removed,
Path: node.Path,
NodeValue: []byte{},
LeafKey: leafKey,
}); err != nil {
return err
}
} else {
// emit an empty "removed" diff with empty leaf key if the account was moved
if err := output(types2.StorageNode{
NodeType: types2.Removed,
Path: node.Path,
NodeValue: []byte{},
}); err != nil {
return err
}
}
}
case types2.Extension, types2.Branch:
// if this node's path did not show up in diffPathsAtB
// that means the node at this path was deleted in B
// in that case, emit an empty "removed" diff storage node
if _, ok := diffPathsAtB[common.Bytes2Hex(node.Path)]; !ok {
if intermediateNodes {
if err := output(types2.StorageNode{
NodeType: types2.Removed,
Path: node.Path,
NodeValue: []byte{},
}); err != nil {
return err
}
}
}
default:
return fmt.Errorf("unexpected node type %s", node.NodeType)
}
}
return it.Error()
}
// isValidPrefixPath is used to check if a node at currentPath is a parent | ancestor to one of the addresses the builder is configured to watch
func isValidPrefixPath(watchedAddressesLeafPaths [][]byte, currentPath []byte) bool {
for _, watchedAddressPath := range watchedAddressesLeafPaths {
if bytes.HasPrefix(watchedAddressPath, currentPath) {
return true
}
}
return false
}
// isWatchedAddress is used to check if a state account corresponds to one of the addresses the builder is configured to watch
func isWatchedAddress(watchedAddressesLeafPaths [][]byte, valueNodePath []byte) bool {
// If we aren't watching any specific addresses, we are watching everything
if len(watchedAddressesLeafPaths) == 0 {
return true
}
for _, watchedAddressPath := range watchedAddressesLeafPaths {
if bytes.Equal(watchedAddressPath, valueNodePath) {
return true
}
}
return false
}