// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Contains a batch of utility type declarations used by the tests. As the node // operates on unique types, a lot of them are needed to check various features. package statediff import ( "bytes" "fmt" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/statediff/trie_helpers" types2 "github.com/ethereum/go-ethereum/statediff/types" "github.com/ethereum/go-ethereum/trie" ) var ( nullHashBytes = common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000000000") emptyNode, _ = rlp.EncodeToBytes(&[]byte{}) emptyContractRoot = crypto.Keccak256Hash(emptyNode) nullCodeHash = crypto.Keccak256Hash([]byte{}).Bytes() ) // Builder interface exposes the method for building a state diff between two blocks type Builder interface { BuildStateDiffObject(args Args, params Params) (types2.StateObject, error) WriteStateDiffObject(args types2.StateRoots, params Params, output types2.StateNodeSink, codeOutput types2.CodeSink) error } type StateDiffBuilder struct { StateCache state.Database } type IterPair struct { Older, Newer trie.NodeIterator } // convenience func StateNodeAppender(nodes *[]types2.StateNode) types2.StateNodeSink { return func(node types2.StateNode) error { *nodes = append(*nodes, node) return nil } } func StorageNodeAppender(nodes *[]types2.StorageNode) types2.StorageNodeSink { return func(node types2.StorageNode) error { *nodes = append(*nodes, node) return nil } } func CodeMappingAppender(codeAndCodeHashes *[]types2.CodeAndCodeHash) types2.CodeSink { return func(c types2.CodeAndCodeHash) error { *codeAndCodeHashes = append(*codeAndCodeHashes, c) return nil } } // NewBuilder is used to create a statediff builder func NewBuilder(stateCache state.Database) Builder { return &StateDiffBuilder{ StateCache: stateCache, // state cache is safe for concurrent reads } } // BuildStateDiffObject builds a statediff object from two blocks and the provided parameters func (sdb *StateDiffBuilder) BuildStateDiffObject(args Args, params Params) (types2.StateObject, error) { var stateNodes []types2.StateNode var codeAndCodeHashes []types2.CodeAndCodeHash err := sdb.WriteStateDiffObject( types2.StateRoots{OldStateRoot: args.OldStateRoot, NewStateRoot: args.NewStateRoot}, params, StateNodeAppender(&stateNodes), CodeMappingAppender(&codeAndCodeHashes)) if err != nil { return types2.StateObject{}, err } return types2.StateObject{ BlockHash: args.BlockHash, BlockNumber: args.BlockNumber, Nodes: stateNodes, CodeAndCodeHashes: codeAndCodeHashes, }, nil } // WriteStateDiffObject writes a statediff object to output callback func (sdb *StateDiffBuilder) WriteStateDiffObject(args types2.StateRoots, params Params, output types2.StateNodeSink, codeOutput types2.CodeSink) error { // Load tries for old and new states oldTrie, err := sdb.StateCache.OpenTrie(args.OldStateRoot) if err != nil { return fmt.Errorf("error creating trie for oldStateRoot: %v", err) } newTrie, err := sdb.StateCache.OpenTrie(args.NewStateRoot) if err != nil { return fmt.Errorf("error creating trie for newStateRoot: %v", err) } // we do two state trie iterations: // one for new/updated nodes, // one for deleted/updated nodes; // prepare 2 iterator instances for each task iterPairs := []IterPair{ { Older: oldTrie.NodeIterator([]byte{}), Newer: newTrie.NodeIterator([]byte{}), }, { Older: oldTrie.NodeIterator([]byte{}), Newer: newTrie.NodeIterator([]byte{}), }, } if !params.IntermediateStateNodes { return sdb.BuildStateDiffWithoutIntermediateStateNodes(iterPairs, params, output, codeOutput) } else { return sdb.BuildStateDiffWithIntermediateStateNodes(iterPairs, params, output, codeOutput) } } func (sdb *StateDiffBuilder) BuildStateDiffWithIntermediateStateNodes(iterPairs []IterPair, params Params, output types2.StateNodeSink, codeOutput types2.CodeSink) error { // collect a slice of all the nodes that were touched and exist at B (B-A) // a map of their leafkey to all the accounts that were touched and exist at B // and a slice of all the paths for the nodes in both of the above sets diffAccountsAtB, diffPathsAtB, err := sdb.createdAndUpdatedStateWithIntermediateNodes( iterPairs[0].Older, iterPairs[0].Newer, params.watchedAddressesLeafPaths, output) if err != nil { return fmt.Errorf("error collecting createdAndUpdatedNodes: %v", err) } // collect a slice of all the nodes that existed at a path in A that doesn't exist in B // a map of their leafkey to all the accounts that were touched and exist at A diffAccountsAtA, err := sdb.deletedOrUpdatedState( iterPairs[1].Older, iterPairs[1].Newer, diffAccountsAtB, diffPathsAtB, params.watchedAddressesLeafPaths, params.IntermediateStateNodes, params.IntermediateStorageNodes, output) if err != nil { return fmt.Errorf("error collecting deletedOrUpdatedNodes: %v", err) } // collect and sort the leafkey keys for both account mappings into a slice createKeys := trie_helpers.SortKeys(diffAccountsAtB) deleteKeys := trie_helpers.SortKeys(diffAccountsAtA) // and then find the intersection of these keys // these are the leafkeys for the accounts which exist at both A and B but are different // this also mutates the passed in createKeys and deleteKeys, removing the intersection keys // and leaving the truly created or deleted keys in place updatedKeys := trie_helpers.FindIntersection(createKeys, deleteKeys) // build the diff nodes for the updated accounts using the mappings at both A and B as directed by the keys found as the intersection of the two err = sdb.buildAccountUpdates( diffAccountsAtB, diffAccountsAtA, updatedKeys, params.IntermediateStorageNodes, output) if err != nil { return fmt.Errorf("error building diff for updated accounts: %v", err) } // build the diff nodes for created accounts err = sdb.buildAccountCreations(diffAccountsAtB, params.IntermediateStorageNodes, output, codeOutput) if err != nil { return fmt.Errorf("error building diff for created accounts: %v", err) } return nil } func (sdb *StateDiffBuilder) BuildStateDiffWithoutIntermediateStateNodes(iterPairs []IterPair, params Params, output types2.StateNodeSink, codeOutput types2.CodeSink) error { // collect a map of their leafkey to all the accounts that were touched and exist at B // and a slice of all the paths for the nodes in both of the above sets diffAccountsAtB, diffPathsAtB, err := sdb.createdAndUpdatedState( iterPairs[0].Older, iterPairs[0].Newer, params.watchedAddressesLeafPaths) if err != nil { return fmt.Errorf("error collecting createdAndUpdatedNodes: %v", err) } // collect a slice of all the nodes that existed at a path in A that doesn't exist in B // a map of their leafkey to all the accounts that were touched and exist at A diffAccountsAtA, err := sdb.deletedOrUpdatedState( iterPairs[1].Older, iterPairs[1].Newer, diffAccountsAtB, diffPathsAtB, params.watchedAddressesLeafPaths, params.IntermediateStateNodes, params.IntermediateStorageNodes, output) if err != nil { return fmt.Errorf("error collecting deletedOrUpdatedNodes: %v", err) } // collect and sort the leafkeys for both account mappings into a slice createKeys := trie_helpers.SortKeys(diffAccountsAtB) deleteKeys := trie_helpers.SortKeys(diffAccountsAtA) // and then find the intersection of these keys // these are the leafkeys for the accounts which exist at both A and B but are different // this also mutates the passed in createKeys and deleteKeys, removing in intersection keys // and leaving the truly created or deleted keys in place updatedKeys := trie_helpers.FindIntersection(createKeys, deleteKeys) // build the diff nodes for the updated accounts using the mappings at both A and B as directed by the keys found as the intersection of the two err = sdb.buildAccountUpdates( diffAccountsAtB, diffAccountsAtA, updatedKeys, params.IntermediateStorageNodes, output) if err != nil { return fmt.Errorf("error building diff for updated accounts: %v", err) } // build the diff nodes for created accounts err = sdb.buildAccountCreations(diffAccountsAtB, params.IntermediateStorageNodes, output, codeOutput) if err != nil { return fmt.Errorf("error building diff for created accounts: %v", err) } return nil } // createdAndUpdatedState returns // a mapping of their leafkeys to all the accounts that exist in a different state at B than A // and a slice of the paths for all of the nodes included in both func (sdb *StateDiffBuilder) createdAndUpdatedState(a, b trie.NodeIterator, watchedAddressesLeafPaths [][]byte) (types2.AccountMap, map[string]bool, error) { diffPathsAtB := make(map[string]bool) diffAccountsAtB := make(types2.AccountMap) watchingAddresses := len(watchedAddressesLeafPaths) > 0 it, _ := trie.NewDifferenceIterator(a, b) for it.Next(true) { // ignore node if it is not along paths of interest if watchingAddresses && !isValidPrefixPath(watchedAddressesLeafPaths, it.Path()) { continue } // skip null nodes if bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } nodePath := make([]byte, len(it.Path())) copy(nodePath, it.Path()) // if it is a value node, we index the value by leaf key if it.Leaf() { // ignore leaf node if it is not a watched address if !isWatchedAddress(watchedAddressesLeafPaths, nodePath) { continue } // created vs updated is important for leaf nodes since we need to diff their storage // so we need to map all changed accounts at B to their leafkey, since account can change pathes but not leafkey var account types.StateAccount accountRLP := make([]byte, 0) copy(accountRLP, it.LeafBlob()) if err := rlp.DecodeBytes(accountRLP, &account); err != nil { return nil, nil, fmt.Errorf("error decoding account for leaf value at leaf key %x\nerror: %v", it.LeafKey(), err) } leafKey := make([]byte, len(it.LeafKey())) copy(leafKey, it.LeafKey()) parentNodeRLP, err := sdb.StateCache.TrieDB().Node(it.Parent()) if err != nil { return nil, nil, err } leafNodeHash := crypto.Keccak256(parentNodeRLP) diffAccountsAtB[common.Bytes2Hex(leafKey)] = types2.AccountWrapper{ Removed: false, Path: nodePath, LeafKey: leafKey, Account: &account, LeafNodeHash: leafNodeHash, } } else { // add non-value-node paths to the list of diffPathsAtB diffPathsAtB[common.Bytes2Hex(nodePath)] = true } } return diffAccountsAtB, diffPathsAtB, it.Error() } // createdAndUpdatedStateWithIntermediateNodes returns // a slice of all the intermediate nodes that exist in a different state at B than A // a mapping of their leafkeys to all the accounts that exist in a different state at B than A // and a slice of the paths for all of the nodes included in both func (sdb *StateDiffBuilder) createdAndUpdatedStateWithIntermediateNodes(a, b trie.NodeIterator, watchedAddressesLeafPaths [][]byte, output types2.StateNodeSink) (types2.AccountMap, map[string]bool, error) { diffPathsAtB := make(map[string]bool) diffAccountsAtB := make(types2.AccountMap) watchingAddresses := len(watchedAddressesLeafPaths) > 0 it, _ := trie.NewDifferenceIterator(a, b) for it.Next(true) { // ignore node if it is not along paths of interest if watchingAddresses && !isValidPrefixPath(watchedAddressesLeafPaths, it.Path()) { continue } // skip null nodes if bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } nodePath := make([]byte, len(it.Path())) copy(nodePath, it.Path()) // index value nodes by leaf key if it.Leaf() { // ignore leaf node if it is not a watched address if !isWatchedAddress(watchedAddressesLeafPaths, nodePath) { continue } // created vs updated is important for leaf nodes since we need to diff their storage // so we need to map all changed accounts at B to their leafkey, since account can change paths but not leafkey var account types.StateAccount accountRLP := make([]byte, 0) copy(accountRLP, it.LeafBlob()) if err := rlp.DecodeBytes(accountRLP, &account); err != nil { return nil, nil, fmt.Errorf("error decoding account for leaf node at key %x\nerror: %v", it.LeafKey(), err) } leafKey := make([]byte, len(it.LeafKey())) copy(leafKey, it.LeafKey()) parentNodeRLP, err := sdb.StateCache.TrieDB().Node(it.Parent()) if err != nil { return nil, nil, err } leafNodeHash := crypto.Keccak256(parentNodeRLP) diffAccountsAtB[common.Bytes2Hex(leafKey)] = types2.AccountWrapper{ Removed: false, Path: nodePath, LeafKey: leafKey, Account: &account, LeafNodeHash: leafNodeHash, } } else { // trie nodes will be written to blockstore only nodeVal := make([]byte, len(it.NodeBlob())) copy(nodeVal, it.NodeBlob()) if err := output(types2.StateNode{ Removed: false, Path: nodePath, NodeValue: nodeVal, // TODO: add Hash field so we dont have to recompute hash to insert into blockstore }); err != nil { return nil, nil, err } // add non-value-node paths to the list of diffPathsAtB diffPathsAtB[common.Bytes2Hex(nodePath)] = true } } return diffAccountsAtB, diffPathsAtB, it.Error() } // deletedOrUpdatedState returns a slice of all the pathes that are emptied at B // and a mapping of their leafkeys to all the accounts that exist in a different state at A than B func (sdb *StateDiffBuilder) deletedOrUpdatedState(a, b trie.NodeIterator, diffAccountsAtB types2.AccountMap, diffPathsAtB map[string]bool, watchedAddressesLeafPaths [][]byte, intermediateStateNodes, intermediateStorageNodes bool, output types2.StateNodeSink) (types2.AccountMap, error) { diffAccountAtA := make(types2.AccountMap) watchingAddresses := len(watchedAddressesLeafPaths) > 0 it, _ := trie.NewDifferenceIterator(b, a) for it.Next(true) { // ignore node if it is not along paths of interest if watchingAddresses && !isValidPrefixPath(watchedAddressesLeafPaths, it.Path()) { continue } // skip null nodes if bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } nodePath := make([]byte, len(it.Path())) copy(nodePath, it.Path()) if it.Leaf() { // ignore leaf node if it is not a watched address if !isWatchedAddress(watchedAddressesLeafPaths, nodePath) { continue } // map all different accounts at A to their leafkey var account types.StateAccount accountRLP := make([]byte, 0) copy(accountRLP, it.LeafBlob()) if err := rlp.DecodeBytes(accountRLP, &account); err != nil { return nil, fmt.Errorf("error decoding account for leaf node at key %x\n nerror: %v", it.LeafKey(), err) } leafKey := make([]byte, len(it.LeafKey())) copy(leafKey, it.LeafKey()) parentNodeRLP, err := sdb.StateCache.TrieDB().Node(it.Parent()) if err != nil { return nil, err } leafNodeHash := crypto.Keccak256(parentNodeRLP) diffAccountAtA[common.Bytes2Hex(leafKey)] = types2.AccountWrapper{ Removed: false, Path: nodePath, LeafKey: leafKey, Account: &account, LeafNodeHash: leafNodeHash, } // if this node's path did not show up in diffPathsAtB // that means the node at this path was deleted (or moved) in B if _, ok := diffPathsAtB[common.Bytes2Hex(nodePath)]; !ok { // TODO: REMOVE THIS CONDITION // value nodes dont insert path in diffPathsAtB, this will always be !ok var diff types2.StateNode // if this node's leaf key also did not show up in diffAccountsAtB // that means the node was deleted // in that case, emit an empty "removed" diff state node // include empty "removed" diff storage nodes for all the storage slots if _, ok := diffAccountsAtB[common.Bytes2Hex(leafKey)]; !ok { diff = types2.StateNode{ Removed: true, Path: nodePath, LeafKey: leafKey, NodeValue: []byte{}, } var storageDiffs []types2.StorageNode err := sdb.buildRemovedAccountStorageNodes(account.Root, intermediateStorageNodes, StorageNodeAppender(&storageDiffs)) if err != nil { return nil, fmt.Errorf("failed building storage diffs for removed state account with key %x\r\nerror: %v", leafKey, err) } diff.StorageNodes = storageDiffs } else { // emit an empty "removed" diff with empty leaf key if the account was moved diff = types2.StateNode{ Removed: true, Path: nodePath, NodeValue: []byte{}, } } if err := output(diff); err != nil { return nil, err } } } else { // if this node's path did not show up in diffPathsAtB // that means the node at this path was deleted (or moved) in B // emit an empty "removed" diff to signify as such if intermediateStateNodes { if _, ok := diffPathsAtB[common.Bytes2Hex(nodePath)]; !ok { if err := output(types2.StateNode{ Path: nodePath, NodeValue: []byte{}, Removed: true, }); err != nil { return nil, err } } } // fall through, we did everything we need to do with these node types } } return diffAccountAtA, it.Error() } // buildAccountUpdates uses the account diffs maps for A => B and B => A and the known intersection of their leafkeys // to generate the statediff node objects for all of the accounts that existed at both A and B but in different states // needs to be called before building account creations and deletions as this mutates // those account maps to remove the accounts which were updated func (sdb *StateDiffBuilder) buildAccountUpdates(creations, deletions types2.AccountMap, updatedKeys []string, intermediateStorageNodes bool, output types2.StateNodeSink) error { var err error for _, key := range updatedKeys { createdAcc := creations[key] deletedAcc := deletions[key] var storageDiffs []types2.StorageNode if deletedAcc.Account != nil && createdAcc.Account != nil { oldSR := deletedAcc.Account.Root newSR := createdAcc.Account.Root err = sdb.buildStorageNodesIncremental( oldSR, newSR, intermediateStorageNodes, StorageNodeAppender(&storageDiffs)) if err != nil { return fmt.Errorf("failed building incremental storage diffs for account with leafkey %s\r\nerror: %v", key, err) } } if err = output(types2.StateNode{ Removed: createdAcc.Removed, Path: createdAcc.Path, NodeValue: createdAcc.NodeValue, LeafKey: createdAcc.LeafKey, NodeHash: createdAcc.LeafNodeHash, StorageNodes: storageDiffs, }); err != nil { return err } delete(creations, key) delete(deletions, key) } return nil } // buildAccountCreations returns the statediff node objects for all the accounts that exist at B but not at A // it also returns the code and codehash for created contract accounts func (sdb *StateDiffBuilder) buildAccountCreations(accounts types2.AccountMap, intermediateStorageNodes bool, output types2.StateNodeSink, codeOutput types2.CodeSink) error { for _, val := range accounts { diff := types2.StateNode{ Removed: val.Removed, Path: val.Path, LeafKey: val.LeafKey, NodeValue: val.NodeValue, NodeHash: val.LeafNodeHash, } if !bytes.Equal(val.Account.CodeHash, nullCodeHash) { // For contract creations, any storage node contained is a diff var storageDiffs []types2.StorageNode err := sdb.buildStorageNodesEventual(val.Account.Root, intermediateStorageNodes, StorageNodeAppender(&storageDiffs)) if err != nil { return fmt.Errorf("failed building eventual storage diffs for node %x\r\nerror: %v", val.Path, err) } diff.StorageNodes = storageDiffs // emit codehash => code mappings for cod codeHash := common.BytesToHash(val.Account.CodeHash) code, err := sdb.StateCache.ContractCode(common.Hash{}, codeHash) if err != nil { return fmt.Errorf("failed to retrieve code for codehash %s\r\n error: %v", codeHash.String(), err) } if err := codeOutput(types2.CodeAndCodeHash{ Hash: codeHash, Code: code, }); err != nil { return err } } if err := output(diff); err != nil { return err } } return nil } // buildStorageNodesEventual builds the storage diff node objects for a created account // i.e. it returns all the storage nodes at this state, since there is no previous state func (sdb *StateDiffBuilder) buildStorageNodesEventual(sr common.Hash, intermediateNodes bool, output types2.StorageNodeSink) error { if bytes.Equal(sr.Bytes(), emptyContractRoot.Bytes()) { return nil } log.Debug("Storage Root For Eventual Diff", "root", sr.Hex()) sTrie, err := sdb.StateCache.OpenTrie(sr) if err != nil { log.Info("error in build storage diff eventual", "error", err) return err } it := sTrie.NodeIterator(make([]byte, 0)) err = sdb.buildStorageNodesFromTrie(it, intermediateNodes, output) if err != nil { return err } return nil } // buildStorageNodesFromTrie returns all the storage diff node objects in the provided node interator // including intermediate nodes can be turned on or off func (sdb *StateDiffBuilder) buildStorageNodesFromTrie(it trie.NodeIterator, intermediateNodes bool, output types2.StorageNodeSink) error { for it.Next(true) { // skip value nodes if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := trie_helpers.ResolveNode(it, sdb.StateCache.TrieDB()) if err != nil { return err } switch node.NodeType { case types2.Leaf: partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] if err := output(types2.StorageNode{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, LeafKey: leafKey, }); err != nil { return err } case types2.Extension, types2.Branch: if intermediateNodes { if err := output(types2.StorageNode{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, }); err != nil { return err } } default: return fmt.Errorf("unexpected node type %s", node.NodeType) } } return it.Error() } // buildRemovedAccountStorageNodes builds the "removed" diffs for all the storage nodes for a destroyed account func (sdb *StateDiffBuilder) buildRemovedAccountStorageNodes(sr common.Hash, intermediateNodes bool, output types2.StorageNodeSink) error { if bytes.Equal(sr.Bytes(), emptyContractRoot.Bytes()) { return nil } log.Debug("Storage Root For Removed Diffs", "root", sr.Hex()) sTrie, err := sdb.StateCache.OpenTrie(sr) if err != nil { log.Info("error in build removed account storage diffs", "error", err) return err } it := sTrie.NodeIterator(make([]byte, 0)) err = sdb.buildRemovedStorageNodesFromTrie(it, intermediateNodes, output) if err != nil { return err } return nil } // buildRemovedStorageNodesFromTrie returns diffs for all the storage nodes in the provided node interator // including intermediate nodes can be turned on or off func (sdb *StateDiffBuilder) buildRemovedStorageNodesFromTrie(it trie.NodeIterator, intermediateNodes bool, output types2.StorageNodeSink) error { for it.Next(true) { // skip value nodes if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := trie_helpers.ResolveNode(it, sdb.StateCache.TrieDB()) if err != nil { return err } switch node.NodeType { case types2.Leaf: partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] if err := output(types2.StorageNode{ NodeType: types2.Removed, Path: node.Path, NodeValue: []byte{}, LeafKey: leafKey, }); err != nil { return err } case types2.Extension, types2.Branch: if intermediateNodes { if err := output(types2.StorageNode{ NodeType: types2.Removed, Path: node.Path, NodeValue: []byte{}, }); err != nil { return err } } default: return fmt.Errorf("unexpected node type %s", node.NodeType) } } return it.Error() } // buildStorageNodesIncremental builds the storage diff node objects for all nodes that exist in a different state at B than A func (sdb *StateDiffBuilder) buildStorageNodesIncremental(oldSR common.Hash, newSR common.Hash, intermediateNodes bool, output types2.StorageNodeSink) error { if bytes.Equal(newSR.Bytes(), oldSR.Bytes()) { return nil } log.Trace("Storage Roots for Incremental Diff", "old", oldSR.Hex(), "new", newSR.Hex()) oldTrie, err := sdb.StateCache.OpenTrie(oldSR) if err != nil { return err } newTrie, err := sdb.StateCache.OpenTrie(newSR) if err != nil { return err } diffSlotsAtB, diffPathsAtB, err := sdb.createdAndUpdatedStorage( oldTrie.NodeIterator([]byte{}), newTrie.NodeIterator([]byte{}), intermediateNodes, output) if err != nil { return err } err = sdb.deletedOrUpdatedStorage(oldTrie.NodeIterator([]byte{}), newTrie.NodeIterator([]byte{}), diffSlotsAtB, diffPathsAtB, intermediateNodes, output) if err != nil { return err } return nil } func (sdb *StateDiffBuilder) createdAndUpdatedStorage(a, b trie.NodeIterator, intermediateNodes bool, output types2.StorageNodeSink) (map[string]bool, map[string]bool, error) { diffPathsAtB := make(map[string]bool) diffSlotsAtB := make(map[string]bool) it, _ := trie.NewDifferenceIterator(a, b) for it.Next(true) { // skip value nodes if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := trie_helpers.ResolveNode(it, sdb.StateCache.TrieDB()) if err != nil { return nil, nil, err } switch node.NodeType { case types2.Leaf: partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] diffSlotsAtB[common.Bytes2Hex(leafKey)] = true if err := output(types2.StorageNode{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, LeafKey: leafKey, }); err != nil { return nil, nil, err } case types2.Extension, types2.Branch: if intermediateNodes { if err := output(types2.StorageNode{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, }); err != nil { return nil, nil, err } } default: return nil, nil, fmt.Errorf("unexpected node type %s", node.NodeType) } diffPathsAtB[common.Bytes2Hex(node.Path)] = true } return diffSlotsAtB, diffPathsAtB, it.Error() } func (sdb *StateDiffBuilder) deletedOrUpdatedStorage(a, b trie.NodeIterator, diffSlotsAtB, diffPathsAtB map[string]bool, intermediateNodes bool, output types2.StorageNodeSink) error { it, _ := trie.NewDifferenceIterator(b, a) for it.Next(true) { // skip value nodes if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := trie_helpers.ResolveNode(it, sdb.StateCache.TrieDB()) if err != nil { return err } switch node.NodeType { case types2.Leaf: partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] // if this node's path did not show up in diffPathsAtB // that means the node at this path was deleted (or moved) in B if _, ok := diffPathsAtB[common.Bytes2Hex(node.Path)]; !ok { // if this node's leaf key also did not show up in diffSlotsAtB // that means the node was deleted // in that case, emit an empty "removed" diff storage node if _, ok := diffSlotsAtB[common.Bytes2Hex(leafKey)]; !ok { if err := output(types2.StorageNode{ NodeType: types2.Removed, Path: node.Path, NodeValue: []byte{}, LeafKey: leafKey, }); err != nil { return err } } else { // emit an empty "removed" diff with empty leaf key if the account was moved if err := output(types2.StorageNode{ NodeType: types2.Removed, Path: node.Path, NodeValue: []byte{}, }); err != nil { return err } } } case types2.Extension, types2.Branch: // if this node's path did not show up in diffPathsAtB // that means the node at this path was deleted in B // in that case, emit an empty "removed" diff storage node if _, ok := diffPathsAtB[common.Bytes2Hex(node.Path)]; !ok { if intermediateNodes { if err := output(types2.StorageNode{ NodeType: types2.Removed, Path: node.Path, NodeValue: []byte{}, }); err != nil { return err } } } default: return fmt.Errorf("unexpected node type %s", node.NodeType) } } return it.Error() } // isValidPrefixPath is used to check if a node at currentPath is a parent | ancestor to one of the addresses the builder is configured to watch func isValidPrefixPath(watchedAddressesLeafPaths [][]byte, currentPath []byte) bool { for _, watchedAddressPath := range watchedAddressesLeafPaths { if bytes.HasPrefix(watchedAddressPath, currentPath) { return true } } return false } // isWatchedAddress is used to check if a state account corresponds to one of the addresses the builder is configured to watch func isWatchedAddress(watchedAddressesLeafPaths [][]byte, valueNodePath []byte) bool { // If we aren't watching any specific addresses, we are watching everything if len(watchedAddressesLeafPaths) == 0 { return true } for _, watchedAddressPath := range watchedAddressesLeafPaths { if bytes.Equal(watchedAddressPath, valueNodePath) { return true } } return false }