go-ethereum/p2p/crypto.go
zelig 714b955d6e fix crash
- add session token check and fallback to shared secret in responder call too
- use explicit length for the types of new messages
- fix typo resp[resLen-1] = tokenFlag
2015-02-06 00:00:34 +01:00

267 lines
9.3 KiB
Go

package p2p
import (
// "bytes"
"crypto/ecdsa"
"crypto/rand"
"fmt"
// "io"
"github.com/ethereum/go-ethereum/crypto"
"github.com/obscuren/ecies"
"github.com/obscuren/secp256k1-go"
)
var (
sskLen int = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
sigLen int = 65 // elliptic S256
keyLen int = 32 // ECDSA
msgLen int = sigLen + 3*keyLen + 1 // 162
resLen int = 65 //
)
// aesSecret, macSecret, egressMac, ingress
type secretRW struct {
aesSecret, macSecret, egressMac, ingressMac []byte
}
type cryptoId struct {
prvKey *ecdsa.PrivateKey
pubKey *ecdsa.PublicKey
pubKeyDER []byte
}
func newCryptoId(id ClientIdentity) (self *cryptoId, err error) {
// will be at server init
var prvKeyDER []byte = id.PrivKey()
if prvKeyDER == nil {
err = fmt.Errorf("no private key for client")
return
}
// initialise ecies private key via importing DER encoded keys (known via our own clientIdentity)
var prvKey = crypto.ToECDSA(prvKeyDER)
if prvKey == nil {
err = fmt.Errorf("invalid private key for client")
return
}
self = &cryptoId{
prvKey: prvKey,
// initialise public key from the imported private key
pubKey: &prvKey.PublicKey,
// to be created at server init shared between peers and sessions
// for reuse, call wth ReadAt, no reset seek needed
}
self.pubKeyDER = id.Pubkey()
return
}
// initAuth is called by peer if it initiated the connection
func (self *cryptoId) initAuth(remotePubKeyDER, sessionToken []byte) (auth []byte, initNonce []byte, remotePubKey *ecdsa.PublicKey, err error) {
// session init, common to both parties
remotePubKey = crypto.ToECDSAPub(remotePubKeyDER)
if remotePubKey == nil {
err = fmt.Errorf("invalid remote public key")
return
}
var tokenFlag byte
if sessionToken == nil {
// no session token found means we need to generate shared secret.
// ecies shared secret is used as initial session token for new peers
// generate shared key from prv and remote pubkey
if sessionToken, err = ecies.ImportECDSA(self.prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil {
return
}
fmt.Printf("secret generated: %v %x", len(sessionToken), sessionToken)
// tokenFlag = 0x00 // redundant
} else {
// for known peers, we use stored token from the previous session
tokenFlag = 0x01
}
//E(remote-pubk, S(ecdhe-random, ecdh-shared-secret^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x0)
// E(remote-pubk, S(ecdhe-random, token^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x1)
// allocate msgLen long message,
var msg []byte = make([]byte, msgLen)
// generate sskLen long nonce
initNonce = msg[msgLen-keyLen-1 : msgLen-1]
// nonce = msg[msgLen-sskLen-1 : msgLen-1]
if _, err = rand.Read(initNonce); err != nil {
return
}
// create known message
// ecdh-shared-secret^nonce for new peers
// token^nonce for old peers
var sharedSecret = Xor(sessionToken, initNonce)
// generate random keypair to use for signing
var ecdsaRandomPrvKey *ecdsa.PrivateKey
if ecdsaRandomPrvKey, err = crypto.GenerateKey(); err != nil {
return
}
// sign shared secret (message known to both parties): shared-secret
var signature []byte
// signature = sign(ecdhe-random, shared-secret)
// uses secp256k1.Sign
if signature, err = crypto.Sign(sharedSecret, ecdsaRandomPrvKey); err != nil {
return
}
fmt.Printf("signature generated: %v %x", len(signature), signature)
// message
// signed-shared-secret || H(ecdhe-random-pubk) || pubk || nonce || 0x0
copy(msg, signature) // copy signed-shared-secret
// H(ecdhe-random-pubk)
copy(msg[sigLen:sigLen+keyLen], crypto.Sha3(crypto.FromECDSAPub(&ecdsaRandomPrvKey.PublicKey)))
// pubkey copied to the correct segment.
copy(msg[sigLen+keyLen:sigLen+2*keyLen], self.pubKeyDER)
// nonce is already in the slice
// stick tokenFlag byte to the end
msg[msgLen-1] = tokenFlag
fmt.Printf("plaintext message generated: %v %x", len(msg), msg)
// encrypt using remote-pubk
// auth = eciesEncrypt(remote-pubk, msg)
if auth, err = crypto.Encrypt(remotePubKey, msg); err != nil {
return
}
fmt.Printf("encrypted message generated: %v %x\n used pubkey: %x\n", len(auth), auth, crypto.FromECDSAPub(remotePubKey))
return
}
// verifyAuth is called by peer if it accepted (but not initiated) the connection
func (self *cryptoId) verifyAuth(auth, sessionToken []byte, remotePubKey *ecdsa.PublicKey) (authResp []byte, respNonce []byte, initNonce []byte, remoteRandomPubKey *ecdsa.PublicKey, err error) {
var msg []byte
fmt.Printf("encrypted message received: %v %x\n used pubkey: %x\n", len(auth), auth, crypto.FromECDSAPub(self.pubKey))
// they prove that msg is meant for me,
// I prove I possess private key if i can read it
if msg, err = crypto.Decrypt(self.prvKey, auth); err != nil {
return
}
fmt.Printf("\nplaintext message retrieved: %v %x\n", len(msg), msg)
var tokenFlag byte
if sessionToken == nil {
// no session token found means we need to generate shared secret.
// ecies shared secret is used as initial session token for new peers
// generate shared key from prv and remote pubkey
if sessionToken, err = ecies.ImportECDSA(self.prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil {
return
}
fmt.Printf("secret generated: %v %x", len(sessionToken), sessionToken)
// tokenFlag = 0x00 // redundant
} else {
// for known peers, we use stored token from the previous session
tokenFlag = 0x01
}
// the initiator nonce is read off the end of the message
initNonce = msg[msgLen-keyLen-1 : msgLen-1]
// I prove that i own prv key (to derive shared secret, and read nonce off encrypted msg) and that I own shared secret
// they prove they own the private key belonging to ecdhe-random-pubk
// we can now reconstruct the signed message and recover the peers pubkey
var signedMsg = Xor(sessionToken, initNonce)
var remoteRandomPubKeyDER []byte
if remoteRandomPubKeyDER, err = secp256k1.RecoverPubkey(signedMsg, msg[:sigLen]); err != nil {
return
}
// convert to ECDSA standard
remoteRandomPubKey = crypto.ToECDSAPub(remoteRandomPubKeyDER)
if remoteRandomPubKey == nil {
err = fmt.Errorf("invalid remote public key")
return
}
// now we find ourselves a long task too, fill it random
var resp = make([]byte, resLen)
// generate keyLen long nonce
respNonce = msg[resLen-keyLen-1 : msgLen-1]
if _, err = rand.Read(respNonce); err != nil {
return
}
// generate random keypair for session
var ecdsaRandomPrvKey *ecdsa.PrivateKey
if ecdsaRandomPrvKey, err = crypto.GenerateKey(); err != nil {
return
}
// responder auth message
// E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
copy(resp[:keyLen], crypto.FromECDSAPub(&ecdsaRandomPrvKey.PublicKey))
// nonce is already in the slice
resp[resLen-1] = tokenFlag
// encrypt using remote-pubk
// auth = eciesEncrypt(remote-pubk, msg)
// why not encrypt with ecdhe-random-remote
if authResp, err = crypto.Encrypt(remotePubKey, resp); err != nil {
return
}
return
}
func (self *cryptoId) verifyAuthResp(auth []byte) (respNonce []byte, remoteRandomPubKey *ecdsa.PublicKey, tokenFlag bool, err error) {
var msg []byte
// they prove that msg is meant for me,
// I prove I possess private key if i can read it
if msg, err = crypto.Decrypt(self.prvKey, auth); err != nil {
return
}
respNonce = msg[resLen-keyLen-1 : resLen-1]
var remoteRandomPubKeyDER = msg[:keyLen]
remoteRandomPubKey = crypto.ToECDSAPub(remoteRandomPubKeyDER)
if remoteRandomPubKey == nil {
err = fmt.Errorf("invalid ecdh random remote public key")
return
}
if msg[resLen-1] == 0x01 {
tokenFlag = true
}
return
}
func (self *cryptoId) newSession(initNonce, respNonce, auth []byte, remoteRandomPubKey *ecdsa.PublicKey) (sessionToken []byte, rw *secretRW, err error) {
// 3) Now we can trust ecdhe-random-pubk to derive new keys
//ecdhe-shared-secret = ecdh.agree(ecdhe-random, remote-ecdhe-random-pubk)
var dhSharedSecret []byte
dhSharedSecret, err = ecies.ImportECDSA(self.prvKey).GenerateShared(ecies.ImportECDSAPublic(remoteRandomPubKey), sskLen, sskLen)
if err != nil {
return
}
// shared-secret = crypto.Sha3(ecdhe-shared-secret || crypto.Sha3(nonce || initiator-nonce))
var sharedSecret = crypto.Sha3(append(dhSharedSecret, crypto.Sha3(append(respNonce, initNonce...))...))
// token = crypto.Sha3(shared-secret)
sessionToken = crypto.Sha3(sharedSecret)
// aes-secret = crypto.Sha3(ecdhe-shared-secret || shared-secret)
var aesSecret = crypto.Sha3(append(dhSharedSecret, sharedSecret...))
// # destroy shared-secret
// mac-secret = crypto.Sha3(ecdhe-shared-secret || aes-secret)
var macSecret = crypto.Sha3(append(dhSharedSecret, aesSecret...))
// # destroy ecdhe-shared-secret
// egress-mac = crypto.Sha3(mac-secret^nonce || auth)
var egressMac = crypto.Sha3(append(Xor(macSecret, respNonce), auth...))
// # destroy nonce
// ingress-mac = crypto.Sha3(mac-secret^initiator-nonce || auth),
var ingressMac = crypto.Sha3(append(Xor(macSecret, initNonce), auth...))
// # destroy remote-nonce
rw = &secretRW{
aesSecret: aesSecret,
macSecret: macSecret,
egressMac: egressMac,
ingressMac: ingressMac,
}
return
}
// should use cipher.xorBytes from crypto/cipher/xor.go for fast xor
func Xor(one, other []byte) (xor []byte) {
xor = make([]byte, len(one))
for i := 0; i < len(one); i++ {
xor[i] = one[i] ^ other[i]
}
return
}