package p2p import ( // "bytes" "crypto/ecdsa" "crypto/rand" "fmt" // "io" "github.com/ethereum/go-ethereum/crypto" "github.com/obscuren/ecies" "github.com/obscuren/secp256k1-go" ) var ( sskLen int = 16 // ecies.MaxSharedKeyLength(pubKey) / 2 sigLen int = 65 // elliptic S256 keyLen int = 32 // ECDSA msgLen int = sigLen + 3*keyLen + 1 // 162 resLen int = 65 // ) // aesSecret, macSecret, egressMac, ingress type secretRW struct { aesSecret, macSecret, egressMac, ingressMac []byte } type cryptoId struct { prvKey *ecdsa.PrivateKey pubKey *ecdsa.PublicKey pubKeyDER []byte } func newCryptoId(id ClientIdentity) (self *cryptoId, err error) { // will be at server init var prvKeyDER []byte = id.PrivKey() if prvKeyDER == nil { err = fmt.Errorf("no private key for client") return } // initialise ecies private key via importing DER encoded keys (known via our own clientIdentity) var prvKey = crypto.ToECDSA(prvKeyDER) if prvKey == nil { err = fmt.Errorf("invalid private key for client") return } self = &cryptoId{ prvKey: prvKey, // initialise public key from the imported private key pubKey: &prvKey.PublicKey, // to be created at server init shared between peers and sessions // for reuse, call wth ReadAt, no reset seek needed } self.pubKeyDER = id.Pubkey() return } // initAuth is called by peer if it initiated the connection func (self *cryptoId) initAuth(remotePubKeyDER, sessionToken []byte) (auth []byte, initNonce []byte, remotePubKey *ecdsa.PublicKey, err error) { // session init, common to both parties remotePubKey = crypto.ToECDSAPub(remotePubKeyDER) if remotePubKey == nil { err = fmt.Errorf("invalid remote public key") return } var tokenFlag byte if sessionToken == nil { // no session token found means we need to generate shared secret. // ecies shared secret is used as initial session token for new peers // generate shared key from prv and remote pubkey if sessionToken, err = ecies.ImportECDSA(self.prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil { return } fmt.Printf("secret generated: %v %x", len(sessionToken), sessionToken) // tokenFlag = 0x00 // redundant } else { // for known peers, we use stored token from the previous session tokenFlag = 0x01 } //E(remote-pubk, S(ecdhe-random, ecdh-shared-secret^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x0) // E(remote-pubk, S(ecdhe-random, token^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x1) // allocate msgLen long message, var msg []byte = make([]byte, msgLen) // generate sskLen long nonce initNonce = msg[msgLen-keyLen-1 : msgLen-1] // nonce = msg[msgLen-sskLen-1 : msgLen-1] if _, err = rand.Read(initNonce); err != nil { return } // create known message // ecdh-shared-secret^nonce for new peers // token^nonce for old peers var sharedSecret = Xor(sessionToken, initNonce) // generate random keypair to use for signing var ecdsaRandomPrvKey *ecdsa.PrivateKey if ecdsaRandomPrvKey, err = crypto.GenerateKey(); err != nil { return } // sign shared secret (message known to both parties): shared-secret var signature []byte // signature = sign(ecdhe-random, shared-secret) // uses secp256k1.Sign if signature, err = crypto.Sign(sharedSecret, ecdsaRandomPrvKey); err != nil { return } fmt.Printf("signature generated: %v %x", len(signature), signature) // message // signed-shared-secret || H(ecdhe-random-pubk) || pubk || nonce || 0x0 copy(msg, signature) // copy signed-shared-secret // H(ecdhe-random-pubk) copy(msg[sigLen:sigLen+keyLen], crypto.Sha3(crypto.FromECDSAPub(&ecdsaRandomPrvKey.PublicKey))) // pubkey copied to the correct segment. copy(msg[sigLen+keyLen:sigLen+2*keyLen], self.pubKeyDER) // nonce is already in the slice // stick tokenFlag byte to the end msg[msgLen-1] = tokenFlag fmt.Printf("plaintext message generated: %v %x", len(msg), msg) // encrypt using remote-pubk // auth = eciesEncrypt(remote-pubk, msg) if auth, err = crypto.Encrypt(remotePubKey, msg); err != nil { return } fmt.Printf("encrypted message generated: %v %x\n used pubkey: %x\n", len(auth), auth, crypto.FromECDSAPub(remotePubKey)) return } // verifyAuth is called by peer if it accepted (but not initiated) the connection func (self *cryptoId) verifyAuth(auth, sessionToken []byte, remotePubKey *ecdsa.PublicKey) (authResp []byte, respNonce []byte, initNonce []byte, remoteRandomPubKey *ecdsa.PublicKey, err error) { var msg []byte fmt.Printf("encrypted message received: %v %x\n used pubkey: %x\n", len(auth), auth, crypto.FromECDSAPub(self.pubKey)) // they prove that msg is meant for me, // I prove I possess private key if i can read it if msg, err = crypto.Decrypt(self.prvKey, auth); err != nil { return } fmt.Printf("\nplaintext message retrieved: %v %x\n", len(msg), msg) var tokenFlag byte if sessionToken == nil { // no session token found means we need to generate shared secret. // ecies shared secret is used as initial session token for new peers // generate shared key from prv and remote pubkey if sessionToken, err = ecies.ImportECDSA(self.prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil { return } fmt.Printf("secret generated: %v %x", len(sessionToken), sessionToken) // tokenFlag = 0x00 // redundant } else { // for known peers, we use stored token from the previous session tokenFlag = 0x01 } // the initiator nonce is read off the end of the message initNonce = msg[msgLen-keyLen-1 : msgLen-1] // I prove that i own prv key (to derive shared secret, and read nonce off encrypted msg) and that I own shared secret // they prove they own the private key belonging to ecdhe-random-pubk // we can now reconstruct the signed message and recover the peers pubkey var signedMsg = Xor(sessionToken, initNonce) var remoteRandomPubKeyDER []byte if remoteRandomPubKeyDER, err = secp256k1.RecoverPubkey(signedMsg, msg[:sigLen]); err != nil { return } // convert to ECDSA standard remoteRandomPubKey = crypto.ToECDSAPub(remoteRandomPubKeyDER) if remoteRandomPubKey == nil { err = fmt.Errorf("invalid remote public key") return } // now we find ourselves a long task too, fill it random var resp = make([]byte, resLen) // generate keyLen long nonce respNonce = msg[resLen-keyLen-1 : msgLen-1] if _, err = rand.Read(respNonce); err != nil { return } // generate random keypair for session var ecdsaRandomPrvKey *ecdsa.PrivateKey if ecdsaRandomPrvKey, err = crypto.GenerateKey(); err != nil { return } // responder auth message // E(remote-pubk, ecdhe-random-pubk || nonce || 0x0) copy(resp[:keyLen], crypto.FromECDSAPub(&ecdsaRandomPrvKey.PublicKey)) // nonce is already in the slice resp[resLen-1] = tokenFlag // encrypt using remote-pubk // auth = eciesEncrypt(remote-pubk, msg) // why not encrypt with ecdhe-random-remote if authResp, err = crypto.Encrypt(remotePubKey, resp); err != nil { return } return } func (self *cryptoId) verifyAuthResp(auth []byte) (respNonce []byte, remoteRandomPubKey *ecdsa.PublicKey, tokenFlag bool, err error) { var msg []byte // they prove that msg is meant for me, // I prove I possess private key if i can read it if msg, err = crypto.Decrypt(self.prvKey, auth); err != nil { return } respNonce = msg[resLen-keyLen-1 : resLen-1] var remoteRandomPubKeyDER = msg[:keyLen] remoteRandomPubKey = crypto.ToECDSAPub(remoteRandomPubKeyDER) if remoteRandomPubKey == nil { err = fmt.Errorf("invalid ecdh random remote public key") return } if msg[resLen-1] == 0x01 { tokenFlag = true } return } func (self *cryptoId) newSession(initNonce, respNonce, auth []byte, remoteRandomPubKey *ecdsa.PublicKey) (sessionToken []byte, rw *secretRW, err error) { // 3) Now we can trust ecdhe-random-pubk to derive new keys //ecdhe-shared-secret = ecdh.agree(ecdhe-random, remote-ecdhe-random-pubk) var dhSharedSecret []byte dhSharedSecret, err = ecies.ImportECDSA(self.prvKey).GenerateShared(ecies.ImportECDSAPublic(remoteRandomPubKey), sskLen, sskLen) if err != nil { return } // shared-secret = crypto.Sha3(ecdhe-shared-secret || crypto.Sha3(nonce || initiator-nonce)) var sharedSecret = crypto.Sha3(append(dhSharedSecret, crypto.Sha3(append(respNonce, initNonce...))...)) // token = crypto.Sha3(shared-secret) sessionToken = crypto.Sha3(sharedSecret) // aes-secret = crypto.Sha3(ecdhe-shared-secret || shared-secret) var aesSecret = crypto.Sha3(append(dhSharedSecret, sharedSecret...)) // # destroy shared-secret // mac-secret = crypto.Sha3(ecdhe-shared-secret || aes-secret) var macSecret = crypto.Sha3(append(dhSharedSecret, aesSecret...)) // # destroy ecdhe-shared-secret // egress-mac = crypto.Sha3(mac-secret^nonce || auth) var egressMac = crypto.Sha3(append(Xor(macSecret, respNonce), auth...)) // # destroy nonce // ingress-mac = crypto.Sha3(mac-secret^initiator-nonce || auth), var ingressMac = crypto.Sha3(append(Xor(macSecret, initNonce), auth...)) // # destroy remote-nonce rw = &secretRW{ aesSecret: aesSecret, macSecret: macSecret, egressMac: egressMac, ingressMac: ingressMac, } return } // should use cipher.xorBytes from crypto/cipher/xor.go for fast xor func Xor(one, other []byte) (xor []byte) { xor = make([]byte, len(one)) for i := 0; i < len(one); i++ { xor[i] = one[i] ^ other[i] } return }