forked from cerc-io/plugeth
f9806dc872
* core: fix reorg * core: revert change for memory efficiency * core: revert changes
2377 lines
91 KiB
Go
2377 lines
91 KiB
Go
// Copyright 2014 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Package core implements the Ethereum consensus protocol.
|
|
package core
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"math/big"
|
|
"sort"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/common/mclock"
|
|
"github.com/ethereum/go-ethereum/common/prque"
|
|
"github.com/ethereum/go-ethereum/consensus"
|
|
"github.com/ethereum/go-ethereum/core/rawdb"
|
|
"github.com/ethereum/go-ethereum/core/state"
|
|
"github.com/ethereum/go-ethereum/core/state/snapshot"
|
|
"github.com/ethereum/go-ethereum/core/types"
|
|
"github.com/ethereum/go-ethereum/core/vm"
|
|
"github.com/ethereum/go-ethereum/ethdb"
|
|
"github.com/ethereum/go-ethereum/event"
|
|
"github.com/ethereum/go-ethereum/internal/syncx"
|
|
"github.com/ethereum/go-ethereum/log"
|
|
"github.com/ethereum/go-ethereum/metrics"
|
|
"github.com/ethereum/go-ethereum/params"
|
|
"github.com/ethereum/go-ethereum/trie"
|
|
lru "github.com/hashicorp/golang-lru"
|
|
)
|
|
|
|
var (
|
|
headBlockGauge = metrics.NewRegisteredGauge("chain/head/block", nil)
|
|
headHeaderGauge = metrics.NewRegisteredGauge("chain/head/header", nil)
|
|
headFastBlockGauge = metrics.NewRegisteredGauge("chain/head/receipt", nil)
|
|
headFinalizedBlockGauge = metrics.NewRegisteredGauge("chain/head/finalized", nil)
|
|
|
|
accountReadTimer = metrics.NewRegisteredTimer("chain/account/reads", nil)
|
|
accountHashTimer = metrics.NewRegisteredTimer("chain/account/hashes", nil)
|
|
accountUpdateTimer = metrics.NewRegisteredTimer("chain/account/updates", nil)
|
|
accountCommitTimer = metrics.NewRegisteredTimer("chain/account/commits", nil)
|
|
|
|
storageReadTimer = metrics.NewRegisteredTimer("chain/storage/reads", nil)
|
|
storageHashTimer = metrics.NewRegisteredTimer("chain/storage/hashes", nil)
|
|
storageUpdateTimer = metrics.NewRegisteredTimer("chain/storage/updates", nil)
|
|
storageCommitTimer = metrics.NewRegisteredTimer("chain/storage/commits", nil)
|
|
|
|
snapshotAccountReadTimer = metrics.NewRegisteredTimer("chain/snapshot/account/reads", nil)
|
|
snapshotStorageReadTimer = metrics.NewRegisteredTimer("chain/snapshot/storage/reads", nil)
|
|
snapshotCommitTimer = metrics.NewRegisteredTimer("chain/snapshot/commits", nil)
|
|
|
|
blockInsertTimer = metrics.NewRegisteredTimer("chain/inserts", nil)
|
|
blockValidationTimer = metrics.NewRegisteredTimer("chain/validation", nil)
|
|
blockExecutionTimer = metrics.NewRegisteredTimer("chain/execution", nil)
|
|
blockWriteTimer = metrics.NewRegisteredTimer("chain/write", nil)
|
|
|
|
blockReorgMeter = metrics.NewRegisteredMeter("chain/reorg/executes", nil)
|
|
blockReorgAddMeter = metrics.NewRegisteredMeter("chain/reorg/add", nil)
|
|
blockReorgDropMeter = metrics.NewRegisteredMeter("chain/reorg/drop", nil)
|
|
blockReorgInvalidatedTx = metrics.NewRegisteredMeter("chain/reorg/invalidTx", nil)
|
|
|
|
blockPrefetchExecuteTimer = metrics.NewRegisteredTimer("chain/prefetch/executes", nil)
|
|
blockPrefetchInterruptMeter = metrics.NewRegisteredMeter("chain/prefetch/interrupts", nil)
|
|
|
|
errInsertionInterrupted = errors.New("insertion is interrupted")
|
|
errChainStopped = errors.New("blockchain is stopped")
|
|
)
|
|
|
|
const (
|
|
bodyCacheLimit = 256
|
|
blockCacheLimit = 256
|
|
receiptsCacheLimit = 32
|
|
txLookupCacheLimit = 1024
|
|
maxFutureBlocks = 256
|
|
maxTimeFutureBlocks = 30
|
|
TriesInMemory = 128
|
|
|
|
// BlockChainVersion ensures that an incompatible database forces a resync from scratch.
|
|
//
|
|
// Changelog:
|
|
//
|
|
// - Version 4
|
|
// The following incompatible database changes were added:
|
|
// * the `BlockNumber`, `TxHash`, `TxIndex`, `BlockHash` and `Index` fields of log are deleted
|
|
// * the `Bloom` field of receipt is deleted
|
|
// * the `BlockIndex` and `TxIndex` fields of txlookup are deleted
|
|
// - Version 5
|
|
// The following incompatible database changes were added:
|
|
// * the `TxHash`, `GasCost`, and `ContractAddress` fields are no longer stored for a receipt
|
|
// * the `TxHash`, `GasCost`, and `ContractAddress` fields are computed by looking up the
|
|
// receipts' corresponding block
|
|
// - Version 6
|
|
// The following incompatible database changes were added:
|
|
// * Transaction lookup information stores the corresponding block number instead of block hash
|
|
// - Version 7
|
|
// The following incompatible database changes were added:
|
|
// * Use freezer as the ancient database to maintain all ancient data
|
|
// - Version 8
|
|
// The following incompatible database changes were added:
|
|
// * New scheme for contract code in order to separate the codes and trie nodes
|
|
BlockChainVersion uint64 = 8
|
|
)
|
|
|
|
// CacheConfig contains the configuration values for the trie caching/pruning
|
|
// that's resident in a blockchain.
|
|
type CacheConfig struct {
|
|
TrieCleanLimit int // Memory allowance (MB) to use for caching trie nodes in memory
|
|
TrieCleanJournal string // Disk journal for saving clean cache entries.
|
|
TrieCleanRejournal time.Duration // Time interval to dump clean cache to disk periodically
|
|
TrieCleanNoPrefetch bool // Whether to disable heuristic state prefetching for followup blocks
|
|
TrieDirtyLimit int // Memory limit (MB) at which to start flushing dirty trie nodes to disk
|
|
TrieDirtyDisabled bool // Whether to disable trie write caching and GC altogether (archive node)
|
|
TrieTimeLimit time.Duration // Time limit after which to flush the current in-memory trie to disk
|
|
SnapshotLimit int // Memory allowance (MB) to use for caching snapshot entries in memory
|
|
Preimages bool // Whether to store preimage of trie key to the disk
|
|
|
|
SnapshotWait bool // Wait for snapshot construction on startup. TODO(karalabe): This is a dirty hack for testing, nuke it
|
|
}
|
|
|
|
// defaultCacheConfig are the default caching values if none are specified by the
|
|
// user (also used during testing).
|
|
var defaultCacheConfig = &CacheConfig{
|
|
TrieCleanLimit: 256,
|
|
TrieDirtyLimit: 256,
|
|
TrieTimeLimit: 5 * time.Minute,
|
|
SnapshotLimit: 256,
|
|
SnapshotWait: true,
|
|
}
|
|
|
|
// BlockChain represents the canonical chain given a database with a genesis
|
|
// block. The Blockchain manages chain imports, reverts, chain reorganisations.
|
|
//
|
|
// Importing blocks in to the block chain happens according to the set of rules
|
|
// defined by the two stage Validator. Processing of blocks is done using the
|
|
// Processor which processes the included transaction. The validation of the state
|
|
// is done in the second part of the Validator. Failing results in aborting of
|
|
// the import.
|
|
//
|
|
// The BlockChain also helps in returning blocks from **any** chain included
|
|
// in the database as well as blocks that represents the canonical chain. It's
|
|
// important to note that GetBlock can return any block and does not need to be
|
|
// included in the canonical one where as GetBlockByNumber always represents the
|
|
// canonical chain.
|
|
type BlockChain struct {
|
|
chainConfig *params.ChainConfig // Chain & network configuration
|
|
cacheConfig *CacheConfig // Cache configuration for pruning
|
|
|
|
db ethdb.Database // Low level persistent database to store final content in
|
|
snaps *snapshot.Tree // Snapshot tree for fast trie leaf access
|
|
triegc *prque.Prque // Priority queue mapping block numbers to tries to gc
|
|
gcproc time.Duration // Accumulates canonical block processing for trie dumping
|
|
|
|
// txLookupLimit is the maximum number of blocks from head whose tx indices
|
|
// are reserved:
|
|
// * 0: means no limit and regenerate any missing indexes
|
|
// * N: means N block limit [HEAD-N+1, HEAD] and delete extra indexes
|
|
// * nil: disable tx reindexer/deleter, but still index new blocks
|
|
txLookupLimit uint64
|
|
|
|
hc *HeaderChain
|
|
rmLogsFeed event.Feed
|
|
chainFeed event.Feed
|
|
chainSideFeed event.Feed
|
|
chainHeadFeed event.Feed
|
|
logsFeed event.Feed
|
|
blockProcFeed event.Feed
|
|
scope event.SubscriptionScope
|
|
genesisBlock *types.Block
|
|
|
|
// This mutex synchronizes chain write operations.
|
|
// Readers don't need to take it, they can just read the database.
|
|
chainmu *syncx.ClosableMutex
|
|
|
|
currentBlock atomic.Value // Current head of the block chain
|
|
currentFastBlock atomic.Value // Current head of the fast-sync chain (may be above the block chain!)
|
|
currentFinalizedBlock atomic.Value // Current finalized head
|
|
|
|
stateCache state.Database // State database to reuse between imports (contains state cache)
|
|
bodyCache *lru.Cache // Cache for the most recent block bodies
|
|
bodyRLPCache *lru.Cache // Cache for the most recent block bodies in RLP encoded format
|
|
receiptsCache *lru.Cache // Cache for the most recent receipts per block
|
|
blockCache *lru.Cache // Cache for the most recent entire blocks
|
|
txLookupCache *lru.Cache // Cache for the most recent transaction lookup data.
|
|
futureBlocks *lru.Cache // future blocks are blocks added for later processing
|
|
|
|
wg sync.WaitGroup //
|
|
quit chan struct{} // shutdown signal, closed in Stop.
|
|
running int32 // 0 if chain is running, 1 when stopped
|
|
procInterrupt int32 // interrupt signaler for block processing
|
|
|
|
engine consensus.Engine
|
|
validator Validator // Block and state validator interface
|
|
prefetcher Prefetcher
|
|
processor Processor // Block transaction processor interface
|
|
forker *ForkChoice
|
|
vmConfig vm.Config
|
|
}
|
|
|
|
// NewBlockChain returns a fully initialised block chain using information
|
|
// available in the database. It initialises the default Ethereum Validator
|
|
// and Processor.
|
|
func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *params.ChainConfig, engine consensus.Engine, vmConfig vm.Config, shouldPreserve func(header *types.Header) bool, txLookupLimit *uint64) (*BlockChain, error) {
|
|
if cacheConfig == nil {
|
|
cacheConfig = defaultCacheConfig
|
|
}
|
|
bodyCache, _ := lru.New(bodyCacheLimit)
|
|
bodyRLPCache, _ := lru.New(bodyCacheLimit)
|
|
receiptsCache, _ := lru.New(receiptsCacheLimit)
|
|
blockCache, _ := lru.New(blockCacheLimit)
|
|
txLookupCache, _ := lru.New(txLookupCacheLimit)
|
|
futureBlocks, _ := lru.New(maxFutureBlocks)
|
|
|
|
bc := &BlockChain{
|
|
chainConfig: chainConfig,
|
|
cacheConfig: cacheConfig,
|
|
db: db,
|
|
triegc: prque.New(nil),
|
|
stateCache: state.NewDatabaseWithConfig(db, &trie.Config{
|
|
Cache: cacheConfig.TrieCleanLimit,
|
|
Journal: cacheConfig.TrieCleanJournal,
|
|
Preimages: cacheConfig.Preimages,
|
|
}),
|
|
quit: make(chan struct{}),
|
|
chainmu: syncx.NewClosableMutex(),
|
|
bodyCache: bodyCache,
|
|
bodyRLPCache: bodyRLPCache,
|
|
receiptsCache: receiptsCache,
|
|
blockCache: blockCache,
|
|
txLookupCache: txLookupCache,
|
|
futureBlocks: futureBlocks,
|
|
engine: engine,
|
|
vmConfig: vmConfig,
|
|
}
|
|
bc.forker = NewForkChoice(bc, shouldPreserve)
|
|
bc.validator = NewBlockValidator(chainConfig, bc, engine)
|
|
bc.prefetcher = newStatePrefetcher(chainConfig, bc, engine)
|
|
bc.processor = NewStateProcessor(chainConfig, bc, engine)
|
|
|
|
var err error
|
|
bc.hc, err = NewHeaderChain(db, chainConfig, engine, bc.insertStopped)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
bc.genesisBlock = bc.GetBlockByNumber(0)
|
|
if bc.genesisBlock == nil {
|
|
return nil, ErrNoGenesis
|
|
}
|
|
|
|
var nilBlock *types.Block
|
|
bc.currentBlock.Store(nilBlock)
|
|
bc.currentFastBlock.Store(nilBlock)
|
|
bc.currentFinalizedBlock.Store(nilBlock)
|
|
|
|
// Initialize the chain with ancient data if it isn't empty.
|
|
var txIndexBlock uint64
|
|
|
|
if bc.empty() {
|
|
rawdb.InitDatabaseFromFreezer(bc.db)
|
|
// If ancient database is not empty, reconstruct all missing
|
|
// indices in the background.
|
|
frozen, _ := bc.db.Ancients()
|
|
if frozen > 0 {
|
|
txIndexBlock = frozen
|
|
}
|
|
}
|
|
if err := bc.loadLastState(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Make sure the state associated with the block is available
|
|
head := bc.CurrentBlock()
|
|
if _, err := state.New(head.Root(), bc.stateCache, bc.snaps); err != nil {
|
|
// Head state is missing, before the state recovery, find out the
|
|
// disk layer point of snapshot(if it's enabled). Make sure the
|
|
// rewound point is lower than disk layer.
|
|
var diskRoot common.Hash
|
|
if bc.cacheConfig.SnapshotLimit > 0 {
|
|
diskRoot = rawdb.ReadSnapshotRoot(bc.db)
|
|
}
|
|
if diskRoot != (common.Hash{}) {
|
|
log.Warn("Head state missing, repairing", "number", head.Number(), "hash", head.Hash(), "snaproot", diskRoot)
|
|
|
|
snapDisk, err := bc.setHeadBeyondRoot(head.NumberU64(), diskRoot, true)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// Chain rewound, persist old snapshot number to indicate recovery procedure
|
|
if snapDisk != 0 {
|
|
rawdb.WriteSnapshotRecoveryNumber(bc.db, snapDisk)
|
|
}
|
|
} else {
|
|
log.Warn("Head state missing, repairing", "number", head.Number(), "hash", head.Hash())
|
|
if _, err := bc.setHeadBeyondRoot(head.NumberU64(), common.Hash{}, true); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
}
|
|
|
|
// Ensure that a previous crash in SetHead doesn't leave extra ancients
|
|
if frozen, err := bc.db.Ancients(); err == nil && frozen > 0 {
|
|
var (
|
|
needRewind bool
|
|
low uint64
|
|
)
|
|
// The head full block may be rolled back to a very low height due to
|
|
// blockchain repair. If the head full block is even lower than the ancient
|
|
// chain, truncate the ancient store.
|
|
fullBlock := bc.CurrentBlock()
|
|
if fullBlock != nil && fullBlock.Hash() != bc.genesisBlock.Hash() && fullBlock.NumberU64() < frozen-1 {
|
|
needRewind = true
|
|
low = fullBlock.NumberU64()
|
|
}
|
|
// In fast sync, it may happen that ancient data has been written to the
|
|
// ancient store, but the LastFastBlock has not been updated, truncate the
|
|
// extra data here.
|
|
fastBlock := bc.CurrentFastBlock()
|
|
if fastBlock != nil && fastBlock.NumberU64() < frozen-1 {
|
|
needRewind = true
|
|
if fastBlock.NumberU64() < low || low == 0 {
|
|
low = fastBlock.NumberU64()
|
|
}
|
|
}
|
|
if needRewind {
|
|
log.Error("Truncating ancient chain", "from", bc.CurrentHeader().Number.Uint64(), "to", low)
|
|
if err := bc.SetHead(low); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
}
|
|
// The first thing the node will do is reconstruct the verification data for
|
|
// the head block (ethash cache or clique voting snapshot). Might as well do
|
|
// it in advance.
|
|
bc.engine.VerifyHeader(bc, bc.CurrentHeader(), true)
|
|
|
|
// Check the current state of the block hashes and make sure that we do not have any of the bad blocks in our chain
|
|
for hash := range BadHashes {
|
|
if header := bc.GetHeaderByHash(hash); header != nil {
|
|
// get the canonical block corresponding to the offending header's number
|
|
headerByNumber := bc.GetHeaderByNumber(header.Number.Uint64())
|
|
// make sure the headerByNumber (if present) is in our current canonical chain
|
|
if headerByNumber != nil && headerByNumber.Hash() == header.Hash() {
|
|
log.Error("Found bad hash, rewinding chain", "number", header.Number, "hash", header.ParentHash)
|
|
if err := bc.SetHead(header.Number.Uint64() - 1); err != nil {
|
|
return nil, err
|
|
}
|
|
log.Error("Chain rewind was successful, resuming normal operation")
|
|
}
|
|
}
|
|
}
|
|
|
|
// Load any existing snapshot, regenerating it if loading failed
|
|
if bc.cacheConfig.SnapshotLimit > 0 {
|
|
// If the chain was rewound past the snapshot persistent layer (causing
|
|
// a recovery block number to be persisted to disk), check if we're still
|
|
// in recovery mode and in that case, don't invalidate the snapshot on a
|
|
// head mismatch.
|
|
var recover bool
|
|
|
|
head := bc.CurrentBlock()
|
|
if layer := rawdb.ReadSnapshotRecoveryNumber(bc.db); layer != nil && *layer > head.NumberU64() {
|
|
log.Warn("Enabling snapshot recovery", "chainhead", head.NumberU64(), "diskbase", *layer)
|
|
recover = true
|
|
}
|
|
bc.snaps, _ = snapshot.New(bc.db, bc.stateCache.TrieDB(), bc.cacheConfig.SnapshotLimit, head.Root(), !bc.cacheConfig.SnapshotWait, true, recover)
|
|
}
|
|
|
|
// Start future block processor.
|
|
bc.wg.Add(1)
|
|
go bc.updateFutureBlocks()
|
|
|
|
// Start tx indexer/unindexer.
|
|
if txLookupLimit != nil {
|
|
bc.txLookupLimit = *txLookupLimit
|
|
|
|
bc.wg.Add(1)
|
|
go bc.maintainTxIndex(txIndexBlock)
|
|
}
|
|
|
|
// If periodic cache journal is required, spin it up.
|
|
if bc.cacheConfig.TrieCleanRejournal > 0 {
|
|
if bc.cacheConfig.TrieCleanRejournal < time.Minute {
|
|
log.Warn("Sanitizing invalid trie cache journal time", "provided", bc.cacheConfig.TrieCleanRejournal, "updated", time.Minute)
|
|
bc.cacheConfig.TrieCleanRejournal = time.Minute
|
|
}
|
|
triedb := bc.stateCache.TrieDB()
|
|
bc.wg.Add(1)
|
|
go func() {
|
|
defer bc.wg.Done()
|
|
triedb.SaveCachePeriodically(bc.cacheConfig.TrieCleanJournal, bc.cacheConfig.TrieCleanRejournal, bc.quit)
|
|
}()
|
|
}
|
|
return bc, nil
|
|
}
|
|
|
|
// empty returns an indicator whether the blockchain is empty.
|
|
// Note, it's a special case that we connect a non-empty ancient
|
|
// database with an empty node, so that we can plugin the ancient
|
|
// into node seamlessly.
|
|
func (bc *BlockChain) empty() bool {
|
|
genesis := bc.genesisBlock.Hash()
|
|
for _, hash := range []common.Hash{rawdb.ReadHeadBlockHash(bc.db), rawdb.ReadHeadHeaderHash(bc.db), rawdb.ReadHeadFastBlockHash(bc.db)} {
|
|
if hash != genesis {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// loadLastState loads the last known chain state from the database. This method
|
|
// assumes that the chain manager mutex is held.
|
|
func (bc *BlockChain) loadLastState() error {
|
|
// Restore the last known head block
|
|
head := rawdb.ReadHeadBlockHash(bc.db)
|
|
if head == (common.Hash{}) {
|
|
// Corrupt or empty database, init from scratch
|
|
log.Warn("Empty database, resetting chain")
|
|
return bc.Reset()
|
|
}
|
|
// Make sure the entire head block is available
|
|
currentBlock := bc.GetBlockByHash(head)
|
|
if currentBlock == nil {
|
|
// Corrupt or empty database, init from scratch
|
|
log.Warn("Head block missing, resetting chain", "hash", head)
|
|
return bc.Reset()
|
|
}
|
|
// Everything seems to be fine, set as the head block
|
|
bc.currentBlock.Store(currentBlock)
|
|
headBlockGauge.Update(int64(currentBlock.NumberU64()))
|
|
|
|
// Restore the last known head header
|
|
currentHeader := currentBlock.Header()
|
|
if head := rawdb.ReadHeadHeaderHash(bc.db); head != (common.Hash{}) {
|
|
if header := bc.GetHeaderByHash(head); header != nil {
|
|
currentHeader = header
|
|
}
|
|
}
|
|
bc.hc.SetCurrentHeader(currentHeader)
|
|
|
|
// Restore the last known head fast block
|
|
bc.currentFastBlock.Store(currentBlock)
|
|
headFastBlockGauge.Update(int64(currentBlock.NumberU64()))
|
|
|
|
if head := rawdb.ReadHeadFastBlockHash(bc.db); head != (common.Hash{}) {
|
|
if block := bc.GetBlockByHash(head); block != nil {
|
|
bc.currentFastBlock.Store(block)
|
|
headFastBlockGauge.Update(int64(block.NumberU64()))
|
|
}
|
|
}
|
|
|
|
// Restore the last known finalized block
|
|
if head := rawdb.ReadFinalizedBlockHash(bc.db); head != (common.Hash{}) {
|
|
if block := bc.GetBlockByHash(head); block != nil {
|
|
bc.currentFinalizedBlock.Store(block)
|
|
headFinalizedBlockGauge.Update(int64(block.NumberU64()))
|
|
}
|
|
}
|
|
// Issue a status log for the user
|
|
currentFastBlock := bc.CurrentFastBlock()
|
|
currentFinalizedBlock := bc.CurrentFinalizedBlock()
|
|
|
|
headerTd := bc.GetTd(currentHeader.Hash(), currentHeader.Number.Uint64())
|
|
blockTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64())
|
|
fastTd := bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64())
|
|
|
|
log.Info("Loaded most recent local header", "number", currentHeader.Number, "hash", currentHeader.Hash(), "td", headerTd, "age", common.PrettyAge(time.Unix(int64(currentHeader.Time), 0)))
|
|
log.Info("Loaded most recent local full block", "number", currentBlock.Number(), "hash", currentBlock.Hash(), "td", blockTd, "age", common.PrettyAge(time.Unix(int64(currentBlock.Time()), 0)))
|
|
log.Info("Loaded most recent local fast block", "number", currentFastBlock.Number(), "hash", currentFastBlock.Hash(), "td", fastTd, "age", common.PrettyAge(time.Unix(int64(currentFastBlock.Time()), 0)))
|
|
|
|
if currentFinalizedBlock != nil {
|
|
finalTd := bc.GetTd(currentFinalizedBlock.Hash(), currentFinalizedBlock.NumberU64())
|
|
log.Info("Loaded most recent local finalized block", "number", currentFinalizedBlock.Number(), "hash", currentFinalizedBlock.Hash(), "td", finalTd, "age", common.PrettyAge(time.Unix(int64(currentFinalizedBlock.Time()), 0)))
|
|
}
|
|
if pivot := rawdb.ReadLastPivotNumber(bc.db); pivot != nil {
|
|
log.Info("Loaded last fast-sync pivot marker", "number", *pivot)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// SetHead rewinds the local chain to a new head. Depending on whether the node
|
|
// was fast synced or full synced and in which state, the method will try to
|
|
// delete minimal data from disk whilst retaining chain consistency.
|
|
func (bc *BlockChain) SetHead(head uint64) error {
|
|
_, err := bc.setHeadBeyondRoot(head, common.Hash{}, false)
|
|
return err
|
|
}
|
|
|
|
// SetFinalized sets the finalized block.
|
|
func (bc *BlockChain) SetFinalized(block *types.Block) {
|
|
bc.currentFinalizedBlock.Store(block)
|
|
rawdb.WriteFinalizedBlockHash(bc.db, block.Hash())
|
|
headFinalizedBlockGauge.Update(int64(block.NumberU64()))
|
|
}
|
|
|
|
// setHeadBeyondRoot rewinds the local chain to a new head with the extra condition
|
|
// that the rewind must pass the specified state root. This method is meant to be
|
|
// used when rewinding with snapshots enabled to ensure that we go back further than
|
|
// persistent disk layer. Depending on whether the node was fast synced or full, and
|
|
// in which state, the method will try to delete minimal data from disk whilst
|
|
// retaining chain consistency.
|
|
//
|
|
// The method returns the block number where the requested root cap was found.
|
|
func (bc *BlockChain) setHeadBeyondRoot(head uint64, root common.Hash, repair bool) (uint64, error) {
|
|
if !bc.chainmu.TryLock() {
|
|
return 0, errChainStopped
|
|
}
|
|
defer bc.chainmu.Unlock()
|
|
|
|
// Track the block number of the requested root hash
|
|
var rootNumber uint64 // (no root == always 0)
|
|
|
|
// Retrieve the last pivot block to short circuit rollbacks beyond it and the
|
|
// current freezer limit to start nuking id underflown
|
|
pivot := rawdb.ReadLastPivotNumber(bc.db)
|
|
frozen, _ := bc.db.Ancients()
|
|
|
|
updateFn := func(db ethdb.KeyValueWriter, header *types.Header) (uint64, bool) {
|
|
// Rewind the blockchain, ensuring we don't end up with a stateless head
|
|
// block. Note, depth equality is permitted to allow using SetHead as a
|
|
// chain reparation mechanism without deleting any data!
|
|
if currentBlock := bc.CurrentBlock(); currentBlock != nil && header.Number.Uint64() <= currentBlock.NumberU64() {
|
|
newHeadBlock := bc.GetBlock(header.Hash(), header.Number.Uint64())
|
|
if newHeadBlock == nil {
|
|
log.Error("Gap in the chain, rewinding to genesis", "number", header.Number, "hash", header.Hash())
|
|
newHeadBlock = bc.genesisBlock
|
|
} else {
|
|
// Block exists, keep rewinding until we find one with state,
|
|
// keeping rewinding until we exceed the optional threshold
|
|
// root hash
|
|
beyondRoot := (root == common.Hash{}) // Flag whether we're beyond the requested root (no root, always true)
|
|
|
|
for {
|
|
// If a root threshold was requested but not yet crossed, check
|
|
if root != (common.Hash{}) && !beyondRoot && newHeadBlock.Root() == root {
|
|
beyondRoot, rootNumber = true, newHeadBlock.NumberU64()
|
|
}
|
|
if _, err := state.New(newHeadBlock.Root(), bc.stateCache, bc.snaps); err != nil {
|
|
log.Trace("Block state missing, rewinding further", "number", newHeadBlock.NumberU64(), "hash", newHeadBlock.Hash())
|
|
if pivot == nil || newHeadBlock.NumberU64() > *pivot {
|
|
parent := bc.GetBlock(newHeadBlock.ParentHash(), newHeadBlock.NumberU64()-1)
|
|
if parent != nil {
|
|
newHeadBlock = parent
|
|
continue
|
|
}
|
|
log.Error("Missing block in the middle, aiming genesis", "number", newHeadBlock.NumberU64()-1, "hash", newHeadBlock.ParentHash())
|
|
newHeadBlock = bc.genesisBlock
|
|
} else {
|
|
log.Trace("Rewind passed pivot, aiming genesis", "number", newHeadBlock.NumberU64(), "hash", newHeadBlock.Hash(), "pivot", *pivot)
|
|
newHeadBlock = bc.genesisBlock
|
|
}
|
|
}
|
|
if beyondRoot || newHeadBlock.NumberU64() == 0 {
|
|
if newHeadBlock.NumberU64() == 0 {
|
|
// Recommit the genesis state into disk in case the rewinding destination
|
|
// is genesis block and the relevant state is gone. In the future this
|
|
// rewinding destination can be the earliest block stored in the chain
|
|
// if the historical chain pruning is enabled. In that case the logic
|
|
// needs to be improved here.
|
|
if !bc.HasState(bc.genesisBlock.Root()) {
|
|
if err := CommitGenesisState(bc.db, bc.genesisBlock.Hash()); err != nil {
|
|
log.Crit("Failed to commit genesis state", "err", err)
|
|
}
|
|
log.Debug("Recommitted genesis state to disk")
|
|
}
|
|
}
|
|
log.Debug("Rewound to block with state", "number", newHeadBlock.NumberU64(), "hash", newHeadBlock.Hash())
|
|
break
|
|
}
|
|
log.Debug("Skipping block with threshold state", "number", newHeadBlock.NumberU64(), "hash", newHeadBlock.Hash(), "root", newHeadBlock.Root())
|
|
newHeadBlock = bc.GetBlock(newHeadBlock.ParentHash(), newHeadBlock.NumberU64()-1) // Keep rewinding
|
|
}
|
|
}
|
|
rawdb.WriteHeadBlockHash(db, newHeadBlock.Hash())
|
|
|
|
// Degrade the chain markers if they are explicitly reverted.
|
|
// In theory we should update all in-memory markers in the
|
|
// last step, however the direction of SetHead is from high
|
|
// to low, so it's safe to update in-memory markers directly.
|
|
bc.currentBlock.Store(newHeadBlock)
|
|
headBlockGauge.Update(int64(newHeadBlock.NumberU64()))
|
|
}
|
|
// Rewind the fast block in a simpleton way to the target head
|
|
if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock != nil && header.Number.Uint64() < currentFastBlock.NumberU64() {
|
|
newHeadFastBlock := bc.GetBlock(header.Hash(), header.Number.Uint64())
|
|
// If either blocks reached nil, reset to the genesis state
|
|
if newHeadFastBlock == nil {
|
|
newHeadFastBlock = bc.genesisBlock
|
|
}
|
|
rawdb.WriteHeadFastBlockHash(db, newHeadFastBlock.Hash())
|
|
|
|
// Degrade the chain markers if they are explicitly reverted.
|
|
// In theory we should update all in-memory markers in the
|
|
// last step, however the direction of SetHead is from high
|
|
// to low, so it's safe the update in-memory markers directly.
|
|
bc.currentFastBlock.Store(newHeadFastBlock)
|
|
headFastBlockGauge.Update(int64(newHeadFastBlock.NumberU64()))
|
|
}
|
|
head := bc.CurrentBlock().NumberU64()
|
|
|
|
// If setHead underflown the freezer threshold and the block processing
|
|
// intent afterwards is full block importing, delete the chain segment
|
|
// between the stateful-block and the sethead target.
|
|
var wipe bool
|
|
if head+1 < frozen {
|
|
wipe = pivot == nil || head >= *pivot
|
|
}
|
|
return head, wipe // Only force wipe if full synced
|
|
}
|
|
// Rewind the header chain, deleting all block bodies until then
|
|
delFn := func(db ethdb.KeyValueWriter, hash common.Hash, num uint64) {
|
|
// Ignore the error here since light client won't hit this path
|
|
frozen, _ := bc.db.Ancients()
|
|
if num+1 <= frozen {
|
|
// Truncate all relative data(header, total difficulty, body, receipt
|
|
// and canonical hash) from ancient store.
|
|
if err := bc.db.TruncateHead(num); err != nil {
|
|
log.Crit("Failed to truncate ancient data", "number", num, "err", err)
|
|
}
|
|
// Remove the hash <-> number mapping from the active store.
|
|
rawdb.DeleteHeaderNumber(db, hash)
|
|
} else {
|
|
// Remove relative body and receipts from the active store.
|
|
// The header, total difficulty and canonical hash will be
|
|
// removed in the hc.SetHead function.
|
|
rawdb.DeleteBody(db, hash, num)
|
|
rawdb.DeleteReceipts(db, hash, num)
|
|
}
|
|
// Todo(rjl493456442) txlookup, bloombits, etc
|
|
}
|
|
// If SetHead was only called as a chain reparation method, try to skip
|
|
// touching the header chain altogether, unless the freezer is broken
|
|
if repair {
|
|
if target, force := updateFn(bc.db, bc.CurrentBlock().Header()); force {
|
|
bc.hc.SetHead(target, updateFn, delFn)
|
|
}
|
|
} else {
|
|
// Rewind the chain to the requested head and keep going backwards until a
|
|
// block with a state is found or fast sync pivot is passed
|
|
log.Warn("Rewinding blockchain", "target", head)
|
|
bc.hc.SetHead(head, updateFn, delFn)
|
|
}
|
|
// Clear out any stale content from the caches
|
|
bc.bodyCache.Purge()
|
|
bc.bodyRLPCache.Purge()
|
|
bc.receiptsCache.Purge()
|
|
bc.blockCache.Purge()
|
|
bc.txLookupCache.Purge()
|
|
bc.futureBlocks.Purge()
|
|
|
|
return rootNumber, bc.loadLastState()
|
|
}
|
|
|
|
// SnapSyncCommitHead sets the current head block to the one defined by the hash
|
|
// irrelevant what the chain contents were prior.
|
|
func (bc *BlockChain) SnapSyncCommitHead(hash common.Hash) error {
|
|
// Make sure that both the block as well at its state trie exists
|
|
block := bc.GetBlockByHash(hash)
|
|
if block == nil {
|
|
return fmt.Errorf("non existent block [%x..]", hash[:4])
|
|
}
|
|
if _, err := trie.NewSecure(block.Root(), bc.stateCache.TrieDB()); err != nil {
|
|
return err
|
|
}
|
|
|
|
// If all checks out, manually set the head block.
|
|
if !bc.chainmu.TryLock() {
|
|
return errChainStopped
|
|
}
|
|
bc.currentBlock.Store(block)
|
|
headBlockGauge.Update(int64(block.NumberU64()))
|
|
bc.chainmu.Unlock()
|
|
|
|
// Destroy any existing state snapshot and regenerate it in the background,
|
|
// also resuming the normal maintenance of any previously paused snapshot.
|
|
if bc.snaps != nil {
|
|
bc.snaps.Rebuild(block.Root())
|
|
}
|
|
log.Info("Committed new head block", "number", block.Number(), "hash", hash)
|
|
return nil
|
|
}
|
|
|
|
// Reset purges the entire blockchain, restoring it to its genesis state.
|
|
func (bc *BlockChain) Reset() error {
|
|
return bc.ResetWithGenesisBlock(bc.genesisBlock)
|
|
}
|
|
|
|
// ResetWithGenesisBlock purges the entire blockchain, restoring it to the
|
|
// specified genesis state.
|
|
func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) error {
|
|
// Dump the entire block chain and purge the caches
|
|
if err := bc.SetHead(0); err != nil {
|
|
return err
|
|
}
|
|
if !bc.chainmu.TryLock() {
|
|
return errChainStopped
|
|
}
|
|
defer bc.chainmu.Unlock()
|
|
|
|
// Prepare the genesis block and reinitialise the chain
|
|
batch := bc.db.NewBatch()
|
|
rawdb.WriteTd(batch, genesis.Hash(), genesis.NumberU64(), genesis.Difficulty())
|
|
rawdb.WriteBlock(batch, genesis)
|
|
if err := batch.Write(); err != nil {
|
|
log.Crit("Failed to write genesis block", "err", err)
|
|
}
|
|
bc.writeHeadBlock(genesis)
|
|
|
|
// Last update all in-memory chain markers
|
|
bc.genesisBlock = genesis
|
|
bc.currentBlock.Store(bc.genesisBlock)
|
|
headBlockGauge.Update(int64(bc.genesisBlock.NumberU64()))
|
|
bc.hc.SetGenesis(bc.genesisBlock.Header())
|
|
bc.hc.SetCurrentHeader(bc.genesisBlock.Header())
|
|
bc.currentFastBlock.Store(bc.genesisBlock)
|
|
headFastBlockGauge.Update(int64(bc.genesisBlock.NumberU64()))
|
|
return nil
|
|
}
|
|
|
|
// Export writes the active chain to the given writer.
|
|
func (bc *BlockChain) Export(w io.Writer) error {
|
|
return bc.ExportN(w, uint64(0), bc.CurrentBlock().NumberU64())
|
|
}
|
|
|
|
// ExportN writes a subset of the active chain to the given writer.
|
|
func (bc *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error {
|
|
if !bc.chainmu.TryLock() {
|
|
return errChainStopped
|
|
}
|
|
defer bc.chainmu.Unlock()
|
|
|
|
if first > last {
|
|
return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last)
|
|
}
|
|
log.Info("Exporting batch of blocks", "count", last-first+1)
|
|
|
|
start, reported := time.Now(), time.Now()
|
|
for nr := first; nr <= last; nr++ {
|
|
block := bc.GetBlockByNumber(nr)
|
|
if block == nil {
|
|
return fmt.Errorf("export failed on #%d: not found", nr)
|
|
}
|
|
if err := block.EncodeRLP(w); err != nil {
|
|
return err
|
|
}
|
|
if time.Since(reported) >= statsReportLimit {
|
|
log.Info("Exporting blocks", "exported", block.NumberU64()-first, "elapsed", common.PrettyDuration(time.Since(start)))
|
|
reported = time.Now()
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// writeHeadBlock injects a new head block into the current block chain. This method
|
|
// assumes that the block is indeed a true head. It will also reset the head
|
|
// header and the head fast sync block to this very same block if they are older
|
|
// or if they are on a different side chain.
|
|
//
|
|
// Note, this function assumes that the `mu` mutex is held!
|
|
func (bc *BlockChain) writeHeadBlock(block *types.Block) {
|
|
// Add the block to the canonical chain number scheme and mark as the head
|
|
batch := bc.db.NewBatch()
|
|
rawdb.WriteHeadHeaderHash(batch, block.Hash())
|
|
rawdb.WriteHeadFastBlockHash(batch, block.Hash())
|
|
rawdb.WriteCanonicalHash(batch, block.Hash(), block.NumberU64())
|
|
rawdb.WriteTxLookupEntriesByBlock(batch, block)
|
|
rawdb.WriteHeadBlockHash(batch, block.Hash())
|
|
|
|
// Flush the whole batch into the disk, exit the node if failed
|
|
if err := batch.Write(); err != nil {
|
|
log.Crit("Failed to update chain indexes and markers", "err", err)
|
|
}
|
|
// Update all in-memory chain markers in the last step
|
|
bc.hc.SetCurrentHeader(block.Header())
|
|
|
|
bc.currentFastBlock.Store(block)
|
|
headFastBlockGauge.Update(int64(block.NumberU64()))
|
|
|
|
bc.currentBlock.Store(block)
|
|
headBlockGauge.Update(int64(block.NumberU64()))
|
|
}
|
|
|
|
// Stop stops the blockchain service. If any imports are currently in progress
|
|
// it will abort them using the procInterrupt.
|
|
func (bc *BlockChain) Stop() {
|
|
if !atomic.CompareAndSwapInt32(&bc.running, 0, 1) {
|
|
return
|
|
}
|
|
|
|
// Unsubscribe all subscriptions registered from blockchain.
|
|
bc.scope.Close()
|
|
|
|
// Signal shutdown to all goroutines.
|
|
close(bc.quit)
|
|
bc.StopInsert()
|
|
|
|
// Now wait for all chain modifications to end and persistent goroutines to exit.
|
|
//
|
|
// Note: Close waits for the mutex to become available, i.e. any running chain
|
|
// modification will have exited when Close returns. Since we also called StopInsert,
|
|
// the mutex should become available quickly. It cannot be taken again after Close has
|
|
// returned.
|
|
bc.chainmu.Close()
|
|
bc.wg.Wait()
|
|
|
|
// Ensure that the entirety of the state snapshot is journalled to disk.
|
|
var snapBase common.Hash
|
|
if bc.snaps != nil {
|
|
var err error
|
|
if snapBase, err = bc.snaps.Journal(bc.CurrentBlock().Root()); err != nil {
|
|
log.Error("Failed to journal state snapshot", "err", err)
|
|
}
|
|
}
|
|
|
|
// Ensure the state of a recent block is also stored to disk before exiting.
|
|
// We're writing three different states to catch different restart scenarios:
|
|
// - HEAD: So we don't need to reprocess any blocks in the general case
|
|
// - HEAD-1: So we don't do large reorgs if our HEAD becomes an uncle
|
|
// - HEAD-127: So we have a hard limit on the number of blocks reexecuted
|
|
if !bc.cacheConfig.TrieDirtyDisabled {
|
|
triedb := bc.stateCache.TrieDB()
|
|
|
|
for _, offset := range []uint64{0, 1, TriesInMemory - 1} {
|
|
if number := bc.CurrentBlock().NumberU64(); number > offset {
|
|
recent := bc.GetBlockByNumber(number - offset)
|
|
|
|
log.Info("Writing cached state to disk", "block", recent.Number(), "hash", recent.Hash(), "root", recent.Root())
|
|
if err := triedb.Commit(recent.Root(), true, nil); err != nil {
|
|
log.Error("Failed to commit recent state trie", "err", err)
|
|
}
|
|
}
|
|
}
|
|
if snapBase != (common.Hash{}) {
|
|
log.Info("Writing snapshot state to disk", "root", snapBase)
|
|
if err := triedb.Commit(snapBase, true, nil); err != nil {
|
|
log.Error("Failed to commit recent state trie", "err", err)
|
|
}
|
|
}
|
|
for !bc.triegc.Empty() {
|
|
triedb.Dereference(bc.triegc.PopItem().(common.Hash))
|
|
}
|
|
if size, _ := triedb.Size(); size != 0 {
|
|
log.Error("Dangling trie nodes after full cleanup")
|
|
}
|
|
}
|
|
// Ensure all live cached entries be saved into disk, so that we can skip
|
|
// cache warmup when node restarts.
|
|
if bc.cacheConfig.TrieCleanJournal != "" {
|
|
triedb := bc.stateCache.TrieDB()
|
|
triedb.SaveCache(bc.cacheConfig.TrieCleanJournal)
|
|
}
|
|
log.Info("Blockchain stopped")
|
|
}
|
|
|
|
// StopInsert interrupts all insertion methods, causing them to return
|
|
// errInsertionInterrupted as soon as possible. Insertion is permanently disabled after
|
|
// calling this method.
|
|
func (bc *BlockChain) StopInsert() {
|
|
atomic.StoreInt32(&bc.procInterrupt, 1)
|
|
}
|
|
|
|
// insertStopped returns true after StopInsert has been called.
|
|
func (bc *BlockChain) insertStopped() bool {
|
|
return atomic.LoadInt32(&bc.procInterrupt) == 1
|
|
}
|
|
|
|
func (bc *BlockChain) procFutureBlocks() {
|
|
blocks := make([]*types.Block, 0, bc.futureBlocks.Len())
|
|
for _, hash := range bc.futureBlocks.Keys() {
|
|
if block, exist := bc.futureBlocks.Peek(hash); exist {
|
|
blocks = append(blocks, block.(*types.Block))
|
|
}
|
|
}
|
|
if len(blocks) > 0 {
|
|
sort.Slice(blocks, func(i, j int) bool {
|
|
return blocks[i].NumberU64() < blocks[j].NumberU64()
|
|
})
|
|
// Insert one by one as chain insertion needs contiguous ancestry between blocks
|
|
for i := range blocks {
|
|
bc.InsertChain(blocks[i : i+1])
|
|
}
|
|
}
|
|
}
|
|
|
|
// WriteStatus status of write
|
|
type WriteStatus byte
|
|
|
|
const (
|
|
NonStatTy WriteStatus = iota
|
|
CanonStatTy
|
|
SideStatTy
|
|
)
|
|
|
|
// InsertReceiptChain attempts to complete an already existing header chain with
|
|
// transaction and receipt data.
|
|
func (bc *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts, ancientLimit uint64) (int, error) {
|
|
// We don't require the chainMu here since we want to maximize the
|
|
// concurrency of header insertion and receipt insertion.
|
|
bc.wg.Add(1)
|
|
defer bc.wg.Done()
|
|
|
|
var (
|
|
ancientBlocks, liveBlocks types.Blocks
|
|
ancientReceipts, liveReceipts []types.Receipts
|
|
)
|
|
// Do a sanity check that the provided chain is actually ordered and linked
|
|
for i := 0; i < len(blockChain); i++ {
|
|
if i != 0 {
|
|
if blockChain[i].NumberU64() != blockChain[i-1].NumberU64()+1 || blockChain[i].ParentHash() != blockChain[i-1].Hash() {
|
|
log.Error("Non contiguous receipt insert", "number", blockChain[i].Number(), "hash", blockChain[i].Hash(), "parent", blockChain[i].ParentHash(),
|
|
"prevnumber", blockChain[i-1].Number(), "prevhash", blockChain[i-1].Hash())
|
|
return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x..], item %d is #%d [%x..] (parent [%x..])", i-1, blockChain[i-1].NumberU64(),
|
|
blockChain[i-1].Hash().Bytes()[:4], i, blockChain[i].NumberU64(), blockChain[i].Hash().Bytes()[:4], blockChain[i].ParentHash().Bytes()[:4])
|
|
}
|
|
}
|
|
if blockChain[i].NumberU64() <= ancientLimit {
|
|
ancientBlocks, ancientReceipts = append(ancientBlocks, blockChain[i]), append(ancientReceipts, receiptChain[i])
|
|
} else {
|
|
liveBlocks, liveReceipts = append(liveBlocks, blockChain[i]), append(liveReceipts, receiptChain[i])
|
|
}
|
|
}
|
|
|
|
var (
|
|
stats = struct{ processed, ignored int32 }{}
|
|
start = time.Now()
|
|
size = int64(0)
|
|
)
|
|
|
|
// updateHead updates the head fast sync block if the inserted blocks are better
|
|
// and returns an indicator whether the inserted blocks are canonical.
|
|
updateHead := func(head *types.Block) bool {
|
|
if !bc.chainmu.TryLock() {
|
|
return false
|
|
}
|
|
defer bc.chainmu.Unlock()
|
|
|
|
// Rewind may have occurred, skip in that case.
|
|
if bc.CurrentHeader().Number.Cmp(head.Number()) >= 0 {
|
|
reorg, err := bc.forker.ReorgNeeded(bc.CurrentFastBlock().Header(), head.Header())
|
|
if err != nil {
|
|
log.Warn("Reorg failed", "err", err)
|
|
return false
|
|
} else if !reorg {
|
|
return false
|
|
}
|
|
rawdb.WriteHeadFastBlockHash(bc.db, head.Hash())
|
|
bc.currentFastBlock.Store(head)
|
|
headFastBlockGauge.Update(int64(head.NumberU64()))
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// writeAncient writes blockchain and corresponding receipt chain into ancient store.
|
|
//
|
|
// this function only accepts canonical chain data. All side chain will be reverted
|
|
// eventually.
|
|
writeAncient := func(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) {
|
|
first := blockChain[0]
|
|
last := blockChain[len(blockChain)-1]
|
|
|
|
// Ensure genesis is in ancients.
|
|
if first.NumberU64() == 1 {
|
|
if frozen, _ := bc.db.Ancients(); frozen == 0 {
|
|
b := bc.genesisBlock
|
|
td := bc.genesisBlock.Difficulty()
|
|
writeSize, err := rawdb.WriteAncientBlocks(bc.db, []*types.Block{b}, []types.Receipts{nil}, td)
|
|
size += writeSize
|
|
if err != nil {
|
|
log.Error("Error writing genesis to ancients", "err", err)
|
|
return 0, err
|
|
}
|
|
log.Info("Wrote genesis to ancients")
|
|
}
|
|
}
|
|
// Before writing the blocks to the ancients, we need to ensure that
|
|
// they correspond to the what the headerchain 'expects'.
|
|
// We only check the last block/header, since it's a contiguous chain.
|
|
if !bc.HasHeader(last.Hash(), last.NumberU64()) {
|
|
return 0, fmt.Errorf("containing header #%d [%x..] unknown", last.Number(), last.Hash().Bytes()[:4])
|
|
}
|
|
|
|
// Write all chain data to ancients.
|
|
td := bc.GetTd(first.Hash(), first.NumberU64())
|
|
writeSize, err := rawdb.WriteAncientBlocks(bc.db, blockChain, receiptChain, td)
|
|
size += writeSize
|
|
if err != nil {
|
|
log.Error("Error importing chain data to ancients", "err", err)
|
|
return 0, err
|
|
}
|
|
|
|
// Write tx indices if any condition is satisfied:
|
|
// * If user requires to reserve all tx indices(txlookuplimit=0)
|
|
// * If all ancient tx indices are required to be reserved(txlookuplimit is even higher than ancientlimit)
|
|
// * If block number is large enough to be regarded as a recent block
|
|
// It means blocks below the ancientLimit-txlookupLimit won't be indexed.
|
|
//
|
|
// But if the `TxIndexTail` is not nil, e.g. Geth is initialized with
|
|
// an external ancient database, during the setup, blockchain will start
|
|
// a background routine to re-indexed all indices in [ancients - txlookupLimit, ancients)
|
|
// range. In this case, all tx indices of newly imported blocks should be
|
|
// generated.
|
|
var batch = bc.db.NewBatch()
|
|
for i, block := range blockChain {
|
|
if bc.txLookupLimit == 0 || ancientLimit <= bc.txLookupLimit || block.NumberU64() >= ancientLimit-bc.txLookupLimit {
|
|
rawdb.WriteTxLookupEntriesByBlock(batch, block)
|
|
} else if rawdb.ReadTxIndexTail(bc.db) != nil {
|
|
rawdb.WriteTxLookupEntriesByBlock(batch, block)
|
|
}
|
|
stats.processed++
|
|
|
|
if batch.ValueSize() > ethdb.IdealBatchSize || i == len(blockChain)-1 {
|
|
size += int64(batch.ValueSize())
|
|
if err = batch.Write(); err != nil {
|
|
fastBlock := bc.CurrentFastBlock().NumberU64()
|
|
if err := bc.db.TruncateHead(fastBlock + 1); err != nil {
|
|
log.Error("Can't truncate ancient store after failed insert", "err", err)
|
|
}
|
|
return 0, err
|
|
}
|
|
batch.Reset()
|
|
}
|
|
}
|
|
|
|
// Sync the ancient store explicitly to ensure all data has been flushed to disk.
|
|
if err := bc.db.Sync(); err != nil {
|
|
return 0, err
|
|
}
|
|
// Update the current fast block because all block data is now present in DB.
|
|
previousFastBlock := bc.CurrentFastBlock().NumberU64()
|
|
if !updateHead(blockChain[len(blockChain)-1]) {
|
|
// We end up here if the header chain has reorg'ed, and the blocks/receipts
|
|
// don't match the canonical chain.
|
|
if err := bc.db.TruncateHead(previousFastBlock + 1); err != nil {
|
|
log.Error("Can't truncate ancient store after failed insert", "err", err)
|
|
}
|
|
return 0, errSideChainReceipts
|
|
}
|
|
|
|
// Delete block data from the main database.
|
|
batch.Reset()
|
|
canonHashes := make(map[common.Hash]struct{})
|
|
for _, block := range blockChain {
|
|
canonHashes[block.Hash()] = struct{}{}
|
|
if block.NumberU64() == 0 {
|
|
continue
|
|
}
|
|
rawdb.DeleteCanonicalHash(batch, block.NumberU64())
|
|
rawdb.DeleteBlockWithoutNumber(batch, block.Hash(), block.NumberU64())
|
|
}
|
|
// Delete side chain hash-to-number mappings.
|
|
for _, nh := range rawdb.ReadAllHashesInRange(bc.db, first.NumberU64(), last.NumberU64()) {
|
|
if _, canon := canonHashes[nh.Hash]; !canon {
|
|
rawdb.DeleteHeader(batch, nh.Hash, nh.Number)
|
|
}
|
|
}
|
|
if err := batch.Write(); err != nil {
|
|
return 0, err
|
|
}
|
|
return 0, nil
|
|
}
|
|
|
|
// writeLive writes blockchain and corresponding receipt chain into active store.
|
|
writeLive := func(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) {
|
|
skipPresenceCheck := false
|
|
batch := bc.db.NewBatch()
|
|
for i, block := range blockChain {
|
|
// Short circuit insertion if shutting down or processing failed
|
|
if bc.insertStopped() {
|
|
return 0, errInsertionInterrupted
|
|
}
|
|
// Short circuit if the owner header is unknown
|
|
if !bc.HasHeader(block.Hash(), block.NumberU64()) {
|
|
return i, fmt.Errorf("containing header #%d [%x..] unknown", block.Number(), block.Hash().Bytes()[:4])
|
|
}
|
|
if !skipPresenceCheck {
|
|
// Ignore if the entire data is already known
|
|
if bc.HasBlock(block.Hash(), block.NumberU64()) {
|
|
stats.ignored++
|
|
continue
|
|
} else {
|
|
// If block N is not present, neither are the later blocks.
|
|
// This should be true, but if we are mistaken, the shortcut
|
|
// here will only cause overwriting of some existing data
|
|
skipPresenceCheck = true
|
|
}
|
|
}
|
|
// Write all the data out into the database
|
|
rawdb.WriteBody(batch, block.Hash(), block.NumberU64(), block.Body())
|
|
rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receiptChain[i])
|
|
rawdb.WriteTxLookupEntriesByBlock(batch, block) // Always write tx indices for live blocks, we assume they are needed
|
|
|
|
// Write everything belongs to the blocks into the database. So that
|
|
// we can ensure all components of body is completed(body, receipts,
|
|
// tx indexes)
|
|
if batch.ValueSize() >= ethdb.IdealBatchSize {
|
|
if err := batch.Write(); err != nil {
|
|
return 0, err
|
|
}
|
|
size += int64(batch.ValueSize())
|
|
batch.Reset()
|
|
}
|
|
stats.processed++
|
|
}
|
|
// Write everything belongs to the blocks into the database. So that
|
|
// we can ensure all components of body is completed(body, receipts,
|
|
// tx indexes)
|
|
if batch.ValueSize() > 0 {
|
|
size += int64(batch.ValueSize())
|
|
if err := batch.Write(); err != nil {
|
|
return 0, err
|
|
}
|
|
}
|
|
updateHead(blockChain[len(blockChain)-1])
|
|
return 0, nil
|
|
}
|
|
|
|
// Write downloaded chain data and corresponding receipt chain data
|
|
if len(ancientBlocks) > 0 {
|
|
if n, err := writeAncient(ancientBlocks, ancientReceipts); err != nil {
|
|
if err == errInsertionInterrupted {
|
|
return 0, nil
|
|
}
|
|
return n, err
|
|
}
|
|
}
|
|
// Write the tx index tail (block number from where we index) before write any live blocks
|
|
if len(liveBlocks) > 0 && liveBlocks[0].NumberU64() == ancientLimit+1 {
|
|
// The tx index tail can only be one of the following two options:
|
|
// * 0: all ancient blocks have been indexed
|
|
// * ancient-limit: the indices of blocks before ancient-limit are ignored
|
|
if tail := rawdb.ReadTxIndexTail(bc.db); tail == nil {
|
|
if bc.txLookupLimit == 0 || ancientLimit <= bc.txLookupLimit {
|
|
rawdb.WriteTxIndexTail(bc.db, 0)
|
|
} else {
|
|
rawdb.WriteTxIndexTail(bc.db, ancientLimit-bc.txLookupLimit)
|
|
}
|
|
}
|
|
}
|
|
if len(liveBlocks) > 0 {
|
|
if n, err := writeLive(liveBlocks, liveReceipts); err != nil {
|
|
if err == errInsertionInterrupted {
|
|
return 0, nil
|
|
}
|
|
return n, err
|
|
}
|
|
}
|
|
|
|
head := blockChain[len(blockChain)-1]
|
|
context := []interface{}{
|
|
"count", stats.processed, "elapsed", common.PrettyDuration(time.Since(start)),
|
|
"number", head.Number(), "hash", head.Hash(), "age", common.PrettyAge(time.Unix(int64(head.Time()), 0)),
|
|
"size", common.StorageSize(size),
|
|
}
|
|
if stats.ignored > 0 {
|
|
context = append(context, []interface{}{"ignored", stats.ignored}...)
|
|
}
|
|
log.Info("Imported new block receipts", context...)
|
|
|
|
return 0, nil
|
|
}
|
|
|
|
var lastWrite uint64
|
|
|
|
// writeBlockWithoutState writes only the block and its metadata to the database,
|
|
// but does not write any state. This is used to construct competing side forks
|
|
// up to the point where they exceed the canonical total difficulty.
|
|
func (bc *BlockChain) writeBlockWithoutState(block *types.Block, td *big.Int) (err error) {
|
|
if bc.insertStopped() {
|
|
return errInsertionInterrupted
|
|
}
|
|
|
|
batch := bc.db.NewBatch()
|
|
rawdb.WriteTd(batch, block.Hash(), block.NumberU64(), td)
|
|
rawdb.WriteBlock(batch, block)
|
|
if err := batch.Write(); err != nil {
|
|
log.Crit("Failed to write block into disk", "err", err)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// writeKnownBlock updates the head block flag with a known block
|
|
// and introduces chain reorg if necessary.
|
|
func (bc *BlockChain) writeKnownBlock(block *types.Block) error {
|
|
current := bc.CurrentBlock()
|
|
if block.ParentHash() != current.Hash() {
|
|
if err := bc.reorg(current, block); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
bc.writeHeadBlock(block)
|
|
return nil
|
|
}
|
|
|
|
// writeBlockWithState writes block, metadata and corresponding state data to the
|
|
// database.
|
|
func (bc *BlockChain) writeBlockWithState(block *types.Block, receipts []*types.Receipt, logs []*types.Log, state *state.StateDB) error {
|
|
// Calculate the total difficulty of the block
|
|
ptd := bc.GetTd(block.ParentHash(), block.NumberU64()-1)
|
|
if ptd == nil {
|
|
return consensus.ErrUnknownAncestor
|
|
}
|
|
// Make sure no inconsistent state is leaked during insertion
|
|
externTd := new(big.Int).Add(block.Difficulty(), ptd)
|
|
|
|
// Irrelevant of the canonical status, write the block itself to the database.
|
|
//
|
|
// Note all the components of block(td, hash->number map, header, body, receipts)
|
|
// should be written atomically. BlockBatch is used for containing all components.
|
|
blockBatch := bc.db.NewBatch()
|
|
rawdb.WriteTd(blockBatch, block.Hash(), block.NumberU64(), externTd)
|
|
rawdb.WriteBlock(blockBatch, block)
|
|
rawdb.WriteReceipts(blockBatch, block.Hash(), block.NumberU64(), receipts)
|
|
rawdb.WritePreimages(blockBatch, state.Preimages())
|
|
if err := blockBatch.Write(); err != nil {
|
|
log.Crit("Failed to write block into disk", "err", err)
|
|
}
|
|
// Commit all cached state changes into underlying memory database.
|
|
root, err := state.Commit(bc.chainConfig.IsEIP158(block.Number()))
|
|
if err != nil {
|
|
return err
|
|
}
|
|
triedb := bc.stateCache.TrieDB()
|
|
|
|
// If we're running an archive node, always flush
|
|
if bc.cacheConfig.TrieDirtyDisabled {
|
|
return triedb.Commit(root, false, nil)
|
|
} else {
|
|
// Full but not archive node, do proper garbage collection
|
|
triedb.Reference(root, common.Hash{}) // metadata reference to keep trie alive
|
|
bc.triegc.Push(root, -int64(block.NumberU64()))
|
|
|
|
if current := block.NumberU64(); current > TriesInMemory {
|
|
// If we exceeded our memory allowance, flush matured singleton nodes to disk
|
|
var (
|
|
nodes, imgs = triedb.Size()
|
|
limit = common.StorageSize(bc.cacheConfig.TrieDirtyLimit) * 1024 * 1024
|
|
)
|
|
if nodes > limit || imgs > 4*1024*1024 {
|
|
triedb.Cap(limit - ethdb.IdealBatchSize)
|
|
}
|
|
// Find the next state trie we need to commit
|
|
chosen := current - TriesInMemory
|
|
|
|
// If we exceeded out time allowance, flush an entire trie to disk
|
|
if bc.gcproc > bc.cacheConfig.TrieTimeLimit {
|
|
// If the header is missing (canonical chain behind), we're reorging a low
|
|
// diff sidechain. Suspend committing until this operation is completed.
|
|
header := bc.GetHeaderByNumber(chosen)
|
|
if header == nil {
|
|
log.Warn("Reorg in progress, trie commit postponed", "number", chosen)
|
|
} else {
|
|
// If we're exceeding limits but haven't reached a large enough memory gap,
|
|
// warn the user that the system is becoming unstable.
|
|
if chosen < lastWrite+TriesInMemory && bc.gcproc >= 2*bc.cacheConfig.TrieTimeLimit {
|
|
log.Info("State in memory for too long, committing", "time", bc.gcproc, "allowance", bc.cacheConfig.TrieTimeLimit, "optimum", float64(chosen-lastWrite)/TriesInMemory)
|
|
}
|
|
// Flush an entire trie and restart the counters
|
|
triedb.Commit(header.Root, true, nil)
|
|
lastWrite = chosen
|
|
bc.gcproc = 0
|
|
}
|
|
}
|
|
// Garbage collect anything below our required write retention
|
|
for !bc.triegc.Empty() {
|
|
root, number := bc.triegc.Pop()
|
|
if uint64(-number) > chosen {
|
|
bc.triegc.Push(root, number)
|
|
break
|
|
}
|
|
triedb.Dereference(root.(common.Hash))
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// WriteBlockAndSetHead writes the given block and all associated state to the database,
|
|
// and applies the block as the new chain head.
|
|
func (bc *BlockChain) WriteBlockAndSetHead(block *types.Block, receipts []*types.Receipt, logs []*types.Log, state *state.StateDB, emitHeadEvent bool) (status WriteStatus, err error) {
|
|
if !bc.chainmu.TryLock() {
|
|
return NonStatTy, errChainStopped
|
|
}
|
|
defer bc.chainmu.Unlock()
|
|
|
|
return bc.writeBlockAndSetHead(block, receipts, logs, state, emitHeadEvent)
|
|
}
|
|
|
|
// writeBlockAndSetHead is the internal implementation of WriteBlockAndSetHead.
|
|
// This function expects the chain mutex to be held.
|
|
func (bc *BlockChain) writeBlockAndSetHead(block *types.Block, receipts []*types.Receipt, logs []*types.Log, state *state.StateDB, emitHeadEvent bool) (status WriteStatus, err error) {
|
|
if err := bc.writeBlockWithState(block, receipts, logs, state); err != nil {
|
|
return NonStatTy, err
|
|
}
|
|
currentBlock := bc.CurrentBlock()
|
|
reorg, err := bc.forker.ReorgNeeded(currentBlock.Header(), block.Header())
|
|
if err != nil {
|
|
return NonStatTy, err
|
|
}
|
|
if reorg {
|
|
// Reorganise the chain if the parent is not the head block
|
|
if block.ParentHash() != currentBlock.Hash() {
|
|
if err := bc.reorg(currentBlock, block); err != nil {
|
|
return NonStatTy, err
|
|
}
|
|
}
|
|
status = CanonStatTy
|
|
} else {
|
|
status = SideStatTy
|
|
}
|
|
// Set new head.
|
|
if status == CanonStatTy {
|
|
bc.writeHeadBlock(block)
|
|
}
|
|
bc.futureBlocks.Remove(block.Hash())
|
|
|
|
if status == CanonStatTy {
|
|
bc.chainFeed.Send(ChainEvent{Block: block, Hash: block.Hash(), Logs: logs})
|
|
if len(logs) > 0 {
|
|
bc.logsFeed.Send(logs)
|
|
}
|
|
// In theory we should fire a ChainHeadEvent when we inject
|
|
// a canonical block, but sometimes we can insert a batch of
|
|
// canonicial blocks. Avoid firing too many ChainHeadEvents,
|
|
// we will fire an accumulated ChainHeadEvent and disable fire
|
|
// event here.
|
|
if emitHeadEvent {
|
|
bc.chainHeadFeed.Send(ChainHeadEvent{Block: block})
|
|
}
|
|
} else {
|
|
bc.chainSideFeed.Send(ChainSideEvent{Block: block})
|
|
}
|
|
return status, nil
|
|
}
|
|
|
|
// addFutureBlock checks if the block is within the max allowed window to get
|
|
// accepted for future processing, and returns an error if the block is too far
|
|
// ahead and was not added.
|
|
//
|
|
// TODO after the transition, the future block shouldn't be kept. Because
|
|
// it's not checked in the Geth side anymore.
|
|
func (bc *BlockChain) addFutureBlock(block *types.Block) error {
|
|
max := uint64(time.Now().Unix() + maxTimeFutureBlocks)
|
|
if block.Time() > max {
|
|
return fmt.Errorf("future block timestamp %v > allowed %v", block.Time(), max)
|
|
}
|
|
if block.Difficulty().Cmp(common.Big0) == 0 {
|
|
// Never add PoS blocks into the future queue
|
|
return nil
|
|
}
|
|
bc.futureBlocks.Add(block.Hash(), block)
|
|
return nil
|
|
}
|
|
|
|
// InsertChain attempts to insert the given batch of blocks in to the canonical
|
|
// chain or, otherwise, create a fork. If an error is returned it will return
|
|
// the index number of the failing block as well an error describing what went
|
|
// wrong. After insertion is done, all accumulated events will be fired.
|
|
func (bc *BlockChain) InsertChain(chain types.Blocks) (int, error) {
|
|
// Sanity check that we have something meaningful to import
|
|
if len(chain) == 0 {
|
|
return 0, nil
|
|
}
|
|
bc.blockProcFeed.Send(true)
|
|
defer bc.blockProcFeed.Send(false)
|
|
|
|
// Do a sanity check that the provided chain is actually ordered and linked.
|
|
for i := 1; i < len(chain); i++ {
|
|
block, prev := chain[i], chain[i-1]
|
|
if block.NumberU64() != prev.NumberU64()+1 || block.ParentHash() != prev.Hash() {
|
|
log.Error("Non contiguous block insert",
|
|
"number", block.Number(),
|
|
"hash", block.Hash(),
|
|
"parent", block.ParentHash(),
|
|
"prevnumber", prev.Number(),
|
|
"prevhash", prev.Hash(),
|
|
)
|
|
return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x..], item %d is #%d [%x..] (parent [%x..])", i-1, prev.NumberU64(),
|
|
prev.Hash().Bytes()[:4], i, block.NumberU64(), block.Hash().Bytes()[:4], block.ParentHash().Bytes()[:4])
|
|
}
|
|
}
|
|
// Pre-checks passed, start the full block imports
|
|
if !bc.chainmu.TryLock() {
|
|
return 0, errChainStopped
|
|
}
|
|
defer bc.chainmu.Unlock()
|
|
return bc.insertChain(chain, true, true)
|
|
}
|
|
|
|
// insertChain is the internal implementation of InsertChain, which assumes that
|
|
// 1) chains are contiguous, and 2) The chain mutex is held.
|
|
//
|
|
// This method is split out so that import batches that require re-injecting
|
|
// historical blocks can do so without releasing the lock, which could lead to
|
|
// racey behaviour. If a sidechain import is in progress, and the historic state
|
|
// is imported, but then new canon-head is added before the actual sidechain
|
|
// completes, then the historic state could be pruned again
|
|
func (bc *BlockChain) insertChain(chain types.Blocks, verifySeals, setHead bool) (int, error) {
|
|
// If the chain is terminating, don't even bother starting up.
|
|
if bc.insertStopped() {
|
|
return 0, nil
|
|
}
|
|
|
|
// Start a parallel signature recovery (signer will fluke on fork transition, minimal perf loss)
|
|
senderCacher.recoverFromBlocks(types.MakeSigner(bc.chainConfig, chain[0].Number()), chain)
|
|
|
|
var (
|
|
stats = insertStats{startTime: mclock.Now()}
|
|
lastCanon *types.Block
|
|
)
|
|
// Fire a single chain head event if we've progressed the chain
|
|
defer func() {
|
|
if lastCanon != nil && bc.CurrentBlock().Hash() == lastCanon.Hash() {
|
|
bc.chainHeadFeed.Send(ChainHeadEvent{lastCanon})
|
|
}
|
|
}()
|
|
// Start the parallel header verifier
|
|
headers := make([]*types.Header, len(chain))
|
|
seals := make([]bool, len(chain))
|
|
|
|
for i, block := range chain {
|
|
headers[i] = block.Header()
|
|
seals[i] = verifySeals
|
|
}
|
|
abort, results := bc.engine.VerifyHeaders(bc, headers, seals)
|
|
defer close(abort)
|
|
|
|
// Peek the error for the first block to decide the directing import logic
|
|
it := newInsertIterator(chain, results, bc.validator)
|
|
block, err := it.next()
|
|
|
|
// Left-trim all the known blocks that don't need to build snapshot
|
|
if bc.skipBlock(err, it) {
|
|
// First block (and state) is known
|
|
// 1. We did a roll-back, and should now do a re-import
|
|
// 2. The block is stored as a sidechain, and is lying about it's stateroot, and passes a stateroot
|
|
// from the canonical chain, which has not been verified.
|
|
// Skip all known blocks that are behind us.
|
|
var (
|
|
reorg bool
|
|
current = bc.CurrentBlock()
|
|
)
|
|
for block != nil && bc.skipBlock(err, it) {
|
|
reorg, err = bc.forker.ReorgNeeded(current.Header(), block.Header())
|
|
if err != nil {
|
|
return it.index, err
|
|
}
|
|
if reorg {
|
|
// Switch to import mode if the forker says the reorg is necessary
|
|
// and also the block is not on the canonical chain.
|
|
// In eth2 the forker always returns true for reorg decision (blindly trusting
|
|
// the external consensus engine), but in order to prevent the unnecessary
|
|
// reorgs when importing known blocks, the special case is handled here.
|
|
if block.NumberU64() > current.NumberU64() || bc.GetCanonicalHash(block.NumberU64()) != block.Hash() {
|
|
break
|
|
}
|
|
}
|
|
log.Debug("Ignoring already known block", "number", block.Number(), "hash", block.Hash())
|
|
stats.ignored++
|
|
|
|
block, err = it.next()
|
|
}
|
|
// The remaining blocks are still known blocks, the only scenario here is:
|
|
// During the fast sync, the pivot point is already submitted but rollback
|
|
// happens. Then node resets the head full block to a lower height via `rollback`
|
|
// and leaves a few known blocks in the database.
|
|
//
|
|
// When node runs a fast sync again, it can re-import a batch of known blocks via
|
|
// `insertChain` while a part of them have higher total difficulty than current
|
|
// head full block(new pivot point).
|
|
for block != nil && bc.skipBlock(err, it) {
|
|
log.Debug("Writing previously known block", "number", block.Number(), "hash", block.Hash())
|
|
if err := bc.writeKnownBlock(block); err != nil {
|
|
return it.index, err
|
|
}
|
|
lastCanon = block
|
|
|
|
block, err = it.next()
|
|
}
|
|
// Falls through to the block import
|
|
}
|
|
switch {
|
|
// First block is pruned
|
|
case errors.Is(err, consensus.ErrPrunedAncestor):
|
|
if setHead {
|
|
// First block is pruned, insert as sidechain and reorg only if TD grows enough
|
|
log.Debug("Pruned ancestor, inserting as sidechain", "number", block.Number(), "hash", block.Hash())
|
|
return bc.insertSideChain(block, it)
|
|
} else {
|
|
// We're post-merge and the parent is pruned, try to recover the parent state
|
|
log.Debug("Pruned ancestor", "number", block.Number(), "hash", block.Hash())
|
|
_, err := bc.recoverAncestors(block)
|
|
return it.index, err
|
|
}
|
|
// First block is future, shove it (and all children) to the future queue (unknown ancestor)
|
|
case errors.Is(err, consensus.ErrFutureBlock) || (errors.Is(err, consensus.ErrUnknownAncestor) && bc.futureBlocks.Contains(it.first().ParentHash())):
|
|
for block != nil && (it.index == 0 || errors.Is(err, consensus.ErrUnknownAncestor)) {
|
|
log.Debug("Future block, postponing import", "number", block.Number(), "hash", block.Hash())
|
|
if err := bc.addFutureBlock(block); err != nil {
|
|
return it.index, err
|
|
}
|
|
block, err = it.next()
|
|
}
|
|
stats.queued += it.processed()
|
|
stats.ignored += it.remaining()
|
|
|
|
// If there are any still remaining, mark as ignored
|
|
return it.index, err
|
|
|
|
// Some other error(except ErrKnownBlock) occurred, abort.
|
|
// ErrKnownBlock is allowed here since some known blocks
|
|
// still need re-execution to generate snapshots that are missing
|
|
case err != nil && !errors.Is(err, ErrKnownBlock):
|
|
bc.futureBlocks.Remove(block.Hash())
|
|
stats.ignored += len(it.chain)
|
|
bc.reportBlock(block, nil, err)
|
|
return it.index, err
|
|
}
|
|
// No validation errors for the first block (or chain prefix skipped)
|
|
var activeState *state.StateDB
|
|
defer func() {
|
|
// The chain importer is starting and stopping trie prefetchers. If a bad
|
|
// block or other error is hit however, an early return may not properly
|
|
// terminate the background threads. This defer ensures that we clean up
|
|
// and dangling prefetcher, without defering each and holding on live refs.
|
|
if activeState != nil {
|
|
activeState.StopPrefetcher()
|
|
}
|
|
}()
|
|
|
|
for ; block != nil && err == nil || errors.Is(err, ErrKnownBlock); block, err = it.next() {
|
|
// If the chain is terminating, stop processing blocks
|
|
if bc.insertStopped() {
|
|
log.Debug("Abort during block processing")
|
|
break
|
|
}
|
|
// If the header is a banned one, straight out abort
|
|
if BadHashes[block.Hash()] {
|
|
bc.reportBlock(block, nil, ErrBannedHash)
|
|
return it.index, ErrBannedHash
|
|
}
|
|
// If the block is known (in the middle of the chain), it's a special case for
|
|
// Clique blocks where they can share state among each other, so importing an
|
|
// older block might complete the state of the subsequent one. In this case,
|
|
// just skip the block (we already validated it once fully (and crashed), since
|
|
// its header and body was already in the database). But if the corresponding
|
|
// snapshot layer is missing, forcibly rerun the execution to build it.
|
|
if bc.skipBlock(err, it) {
|
|
logger := log.Debug
|
|
if bc.chainConfig.Clique == nil {
|
|
logger = log.Warn
|
|
}
|
|
logger("Inserted known block", "number", block.Number(), "hash", block.Hash(),
|
|
"uncles", len(block.Uncles()), "txs", len(block.Transactions()), "gas", block.GasUsed(),
|
|
"root", block.Root())
|
|
|
|
// Special case. Commit the empty receipt slice if we meet the known
|
|
// block in the middle. It can only happen in the clique chain. Whenever
|
|
// we insert blocks via `insertSideChain`, we only commit `td`, `header`
|
|
// and `body` if it's non-existent. Since we don't have receipts without
|
|
// reexecution, so nothing to commit. But if the sidechain will be adpoted
|
|
// as the canonical chain eventually, it needs to be reexecuted for missing
|
|
// state, but if it's this special case here(skip reexecution) we will lose
|
|
// the empty receipt entry.
|
|
if len(block.Transactions()) == 0 {
|
|
rawdb.WriteReceipts(bc.db, block.Hash(), block.NumberU64(), nil)
|
|
} else {
|
|
log.Error("Please file an issue, skip known block execution without receipt",
|
|
"hash", block.Hash(), "number", block.NumberU64())
|
|
}
|
|
if err := bc.writeKnownBlock(block); err != nil {
|
|
return it.index, err
|
|
}
|
|
stats.processed++
|
|
|
|
// We can assume that logs are empty here, since the only way for consecutive
|
|
// Clique blocks to have the same state is if there are no transactions.
|
|
lastCanon = block
|
|
continue
|
|
}
|
|
|
|
// Retrieve the parent block and it's state to execute on top
|
|
start := time.Now()
|
|
parent := it.previous()
|
|
if parent == nil {
|
|
parent = bc.GetHeader(block.ParentHash(), block.NumberU64()-1)
|
|
}
|
|
statedb, err := state.New(parent.Root, bc.stateCache, bc.snaps)
|
|
if err != nil {
|
|
return it.index, err
|
|
}
|
|
|
|
// Enable prefetching to pull in trie node paths while processing transactions
|
|
statedb.StartPrefetcher("chain")
|
|
activeState = statedb
|
|
|
|
// If we have a followup block, run that against the current state to pre-cache
|
|
// transactions and probabilistically some of the account/storage trie nodes.
|
|
var followupInterrupt uint32
|
|
if !bc.cacheConfig.TrieCleanNoPrefetch {
|
|
if followup, err := it.peek(); followup != nil && err == nil {
|
|
throwaway, _ := state.New(parent.Root, bc.stateCache, bc.snaps)
|
|
|
|
go func(start time.Time, followup *types.Block, throwaway *state.StateDB, interrupt *uint32) {
|
|
bc.prefetcher.Prefetch(followup, throwaway, bc.vmConfig, &followupInterrupt)
|
|
|
|
blockPrefetchExecuteTimer.Update(time.Since(start))
|
|
if atomic.LoadUint32(interrupt) == 1 {
|
|
blockPrefetchInterruptMeter.Mark(1)
|
|
}
|
|
}(time.Now(), followup, throwaway, &followupInterrupt)
|
|
}
|
|
}
|
|
|
|
// Process block using the parent state as reference point
|
|
substart := time.Now()
|
|
receipts, logs, usedGas, err := bc.processor.Process(block, statedb, bc.vmConfig)
|
|
if err != nil {
|
|
bc.reportBlock(block, receipts, err)
|
|
atomic.StoreUint32(&followupInterrupt, 1)
|
|
return it.index, err
|
|
}
|
|
|
|
// Update the metrics touched during block processing
|
|
accountReadTimer.Update(statedb.AccountReads) // Account reads are complete, we can mark them
|
|
storageReadTimer.Update(statedb.StorageReads) // Storage reads are complete, we can mark them
|
|
accountUpdateTimer.Update(statedb.AccountUpdates) // Account updates are complete, we can mark them
|
|
storageUpdateTimer.Update(statedb.StorageUpdates) // Storage updates are complete, we can mark them
|
|
snapshotAccountReadTimer.Update(statedb.SnapshotAccountReads) // Account reads are complete, we can mark them
|
|
snapshotStorageReadTimer.Update(statedb.SnapshotStorageReads) // Storage reads are complete, we can mark them
|
|
triehash := statedb.AccountHashes + statedb.StorageHashes // Save to not double count in validation
|
|
trieproc := statedb.SnapshotAccountReads + statedb.AccountReads + statedb.AccountUpdates
|
|
trieproc += statedb.SnapshotStorageReads + statedb.StorageReads + statedb.StorageUpdates
|
|
|
|
blockExecutionTimer.Update(time.Since(substart) - trieproc - triehash)
|
|
|
|
// Validate the state using the default validator
|
|
substart = time.Now()
|
|
if err := bc.validator.ValidateState(block, statedb, receipts, usedGas); err != nil {
|
|
bc.reportBlock(block, receipts, err)
|
|
atomic.StoreUint32(&followupInterrupt, 1)
|
|
return it.index, err
|
|
}
|
|
proctime := time.Since(start)
|
|
|
|
// Update the metrics touched during block validation
|
|
accountHashTimer.Update(statedb.AccountHashes) // Account hashes are complete, we can mark them
|
|
storageHashTimer.Update(statedb.StorageHashes) // Storage hashes are complete, we can mark them
|
|
blockValidationTimer.Update(time.Since(substart) - (statedb.AccountHashes + statedb.StorageHashes - triehash))
|
|
|
|
// Write the block to the chain and get the status.
|
|
substart = time.Now()
|
|
var status WriteStatus
|
|
if !setHead {
|
|
// Don't set the head, only insert the block
|
|
err = bc.writeBlockWithState(block, receipts, logs, statedb)
|
|
} else {
|
|
status, err = bc.writeBlockAndSetHead(block, receipts, logs, statedb, false)
|
|
}
|
|
atomic.StoreUint32(&followupInterrupt, 1)
|
|
if err != nil {
|
|
return it.index, err
|
|
}
|
|
// Update the metrics touched during block commit
|
|
accountCommitTimer.Update(statedb.AccountCommits) // Account commits are complete, we can mark them
|
|
storageCommitTimer.Update(statedb.StorageCommits) // Storage commits are complete, we can mark them
|
|
snapshotCommitTimer.Update(statedb.SnapshotCommits) // Snapshot commits are complete, we can mark them
|
|
|
|
blockWriteTimer.Update(time.Since(substart) - statedb.AccountCommits - statedb.StorageCommits - statedb.SnapshotCommits)
|
|
blockInsertTimer.UpdateSince(start)
|
|
|
|
// Report the import stats before returning the various results
|
|
stats.processed++
|
|
stats.usedGas += usedGas
|
|
|
|
dirty, _ := bc.stateCache.TrieDB().Size()
|
|
stats.report(chain, it.index, dirty, setHead)
|
|
|
|
if !setHead {
|
|
return it.index, nil // Direct block insertion of a single block
|
|
}
|
|
switch status {
|
|
case CanonStatTy:
|
|
log.Debug("Inserted new block", "number", block.Number(), "hash", block.Hash(),
|
|
"uncles", len(block.Uncles()), "txs", len(block.Transactions()), "gas", block.GasUsed(),
|
|
"elapsed", common.PrettyDuration(time.Since(start)),
|
|
"root", block.Root())
|
|
|
|
lastCanon = block
|
|
|
|
// Only count canonical blocks for GC processing time
|
|
bc.gcproc += proctime
|
|
|
|
case SideStatTy:
|
|
log.Debug("Inserted forked block", "number", block.Number(), "hash", block.Hash(),
|
|
"diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)),
|
|
"txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()),
|
|
"root", block.Root())
|
|
|
|
default:
|
|
// This in theory is impossible, but lets be nice to our future selves and leave
|
|
// a log, instead of trying to track down blocks imports that don't emit logs.
|
|
log.Warn("Inserted block with unknown status", "number", block.Number(), "hash", block.Hash(),
|
|
"diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)),
|
|
"txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()),
|
|
"root", block.Root())
|
|
}
|
|
}
|
|
|
|
// Any blocks remaining here? The only ones we care about are the future ones
|
|
if block != nil && errors.Is(err, consensus.ErrFutureBlock) {
|
|
if err := bc.addFutureBlock(block); err != nil {
|
|
return it.index, err
|
|
}
|
|
block, err = it.next()
|
|
|
|
for ; block != nil && errors.Is(err, consensus.ErrUnknownAncestor); block, err = it.next() {
|
|
if err := bc.addFutureBlock(block); err != nil {
|
|
return it.index, err
|
|
}
|
|
stats.queued++
|
|
}
|
|
}
|
|
stats.ignored += it.remaining()
|
|
|
|
return it.index, err
|
|
}
|
|
|
|
// insertSideChain is called when an import batch hits upon a pruned ancestor
|
|
// error, which happens when a sidechain with a sufficiently old fork-block is
|
|
// found.
|
|
//
|
|
// The method writes all (header-and-body-valid) blocks to disk, then tries to
|
|
// switch over to the new chain if the TD exceeded the current chain.
|
|
// insertSideChain is only used pre-merge.
|
|
func (bc *BlockChain) insertSideChain(block *types.Block, it *insertIterator) (int, error) {
|
|
var (
|
|
externTd *big.Int
|
|
lastBlock = block
|
|
current = bc.CurrentBlock()
|
|
)
|
|
// The first sidechain block error is already verified to be ErrPrunedAncestor.
|
|
// Since we don't import them here, we expect ErrUnknownAncestor for the remaining
|
|
// ones. Any other errors means that the block is invalid, and should not be written
|
|
// to disk.
|
|
err := consensus.ErrPrunedAncestor
|
|
for ; block != nil && errors.Is(err, consensus.ErrPrunedAncestor); block, err = it.next() {
|
|
// Check the canonical state root for that number
|
|
if number := block.NumberU64(); current.NumberU64() >= number {
|
|
canonical := bc.GetBlockByNumber(number)
|
|
if canonical != nil && canonical.Hash() == block.Hash() {
|
|
// Not a sidechain block, this is a re-import of a canon block which has it's state pruned
|
|
|
|
// Collect the TD of the block. Since we know it's a canon one,
|
|
// we can get it directly, and not (like further below) use
|
|
// the parent and then add the block on top
|
|
externTd = bc.GetTd(block.Hash(), block.NumberU64())
|
|
continue
|
|
}
|
|
if canonical != nil && canonical.Root() == block.Root() {
|
|
// This is most likely a shadow-state attack. When a fork is imported into the
|
|
// database, and it eventually reaches a block height which is not pruned, we
|
|
// just found that the state already exist! This means that the sidechain block
|
|
// refers to a state which already exists in our canon chain.
|
|
//
|
|
// If left unchecked, we would now proceed importing the blocks, without actually
|
|
// having verified the state of the previous blocks.
|
|
log.Warn("Sidechain ghost-state attack detected", "number", block.NumberU64(), "sideroot", block.Root(), "canonroot", canonical.Root())
|
|
|
|
// If someone legitimately side-mines blocks, they would still be imported as usual. However,
|
|
// we cannot risk writing unverified blocks to disk when they obviously target the pruning
|
|
// mechanism.
|
|
return it.index, errors.New("sidechain ghost-state attack")
|
|
}
|
|
}
|
|
if externTd == nil {
|
|
externTd = bc.GetTd(block.ParentHash(), block.NumberU64()-1)
|
|
}
|
|
externTd = new(big.Int).Add(externTd, block.Difficulty())
|
|
|
|
if !bc.HasBlock(block.Hash(), block.NumberU64()) {
|
|
start := time.Now()
|
|
if err := bc.writeBlockWithoutState(block, externTd); err != nil {
|
|
return it.index, err
|
|
}
|
|
log.Debug("Injected sidechain block", "number", block.Number(), "hash", block.Hash(),
|
|
"diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)),
|
|
"txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()),
|
|
"root", block.Root())
|
|
}
|
|
lastBlock = block
|
|
}
|
|
// At this point, we've written all sidechain blocks to database. Loop ended
|
|
// either on some other error or all were processed. If there was some other
|
|
// error, we can ignore the rest of those blocks.
|
|
//
|
|
// If the externTd was larger than our local TD, we now need to reimport the previous
|
|
// blocks to regenerate the required state
|
|
reorg, err := bc.forker.ReorgNeeded(current.Header(), lastBlock.Header())
|
|
if err != nil {
|
|
return it.index, err
|
|
}
|
|
if !reorg {
|
|
localTd := bc.GetTd(current.Hash(), current.NumberU64())
|
|
log.Info("Sidechain written to disk", "start", it.first().NumberU64(), "end", it.previous().Number, "sidetd", externTd, "localtd", localTd)
|
|
return it.index, err
|
|
}
|
|
// Gather all the sidechain hashes (full blocks may be memory heavy)
|
|
var (
|
|
hashes []common.Hash
|
|
numbers []uint64
|
|
)
|
|
parent := it.previous()
|
|
for parent != nil && !bc.HasState(parent.Root) {
|
|
hashes = append(hashes, parent.Hash())
|
|
numbers = append(numbers, parent.Number.Uint64())
|
|
|
|
parent = bc.GetHeader(parent.ParentHash, parent.Number.Uint64()-1)
|
|
}
|
|
if parent == nil {
|
|
return it.index, errors.New("missing parent")
|
|
}
|
|
// Import all the pruned blocks to make the state available
|
|
var (
|
|
blocks []*types.Block
|
|
memory common.StorageSize
|
|
)
|
|
for i := len(hashes) - 1; i >= 0; i-- {
|
|
// Append the next block to our batch
|
|
block := bc.GetBlock(hashes[i], numbers[i])
|
|
|
|
blocks = append(blocks, block)
|
|
memory += block.Size()
|
|
|
|
// If memory use grew too large, import and continue. Sadly we need to discard
|
|
// all raised events and logs from notifications since we're too heavy on the
|
|
// memory here.
|
|
if len(blocks) >= 2048 || memory > 64*1024*1024 {
|
|
log.Info("Importing heavy sidechain segment", "blocks", len(blocks), "start", blocks[0].NumberU64(), "end", block.NumberU64())
|
|
if _, err := bc.insertChain(blocks, false, true); err != nil {
|
|
return 0, err
|
|
}
|
|
blocks, memory = blocks[:0], 0
|
|
|
|
// If the chain is terminating, stop processing blocks
|
|
if bc.insertStopped() {
|
|
log.Debug("Abort during blocks processing")
|
|
return 0, nil
|
|
}
|
|
}
|
|
}
|
|
if len(blocks) > 0 {
|
|
log.Info("Importing sidechain segment", "start", blocks[0].NumberU64(), "end", blocks[len(blocks)-1].NumberU64())
|
|
return bc.insertChain(blocks, false, true)
|
|
}
|
|
return 0, nil
|
|
}
|
|
|
|
// recoverAncestors finds the closest ancestor with available state and re-execute
|
|
// all the ancestor blocks since that.
|
|
// recoverAncestors is only used post-merge.
|
|
// We return the hash of the latest block that we could correctly validate.
|
|
func (bc *BlockChain) recoverAncestors(block *types.Block) (common.Hash, error) {
|
|
// Gather all the sidechain hashes (full blocks may be memory heavy)
|
|
var (
|
|
hashes []common.Hash
|
|
numbers []uint64
|
|
parent = block
|
|
)
|
|
for parent != nil && !bc.HasState(parent.Root()) {
|
|
hashes = append(hashes, parent.Hash())
|
|
numbers = append(numbers, parent.NumberU64())
|
|
parent = bc.GetBlock(parent.ParentHash(), parent.NumberU64()-1)
|
|
|
|
// If the chain is terminating, stop iteration
|
|
if bc.insertStopped() {
|
|
log.Debug("Abort during blocks iteration")
|
|
return common.Hash{}, errInsertionInterrupted
|
|
}
|
|
}
|
|
if parent == nil {
|
|
return common.Hash{}, errors.New("missing parent")
|
|
}
|
|
// Import all the pruned blocks to make the state available
|
|
for i := len(hashes) - 1; i >= 0; i-- {
|
|
// If the chain is terminating, stop processing blocks
|
|
if bc.insertStopped() {
|
|
log.Debug("Abort during blocks processing")
|
|
return common.Hash{}, errInsertionInterrupted
|
|
}
|
|
var b *types.Block
|
|
if i == 0 {
|
|
b = block
|
|
} else {
|
|
b = bc.GetBlock(hashes[i], numbers[i])
|
|
}
|
|
if _, err := bc.insertChain(types.Blocks{b}, false, false); err != nil {
|
|
return b.ParentHash(), err
|
|
}
|
|
}
|
|
return block.Hash(), nil
|
|
}
|
|
|
|
// collectLogs collects the logs that were generated or removed during
|
|
// the processing of the block that corresponds with the given hash.
|
|
// These logs are later announced as deleted or reborn.
|
|
func (bc *BlockChain) collectLogs(hash common.Hash, removed bool) []*types.Log {
|
|
number := bc.hc.GetBlockNumber(hash)
|
|
if number == nil {
|
|
return nil
|
|
}
|
|
receipts := rawdb.ReadReceipts(bc.db, hash, *number, bc.chainConfig)
|
|
|
|
var logs []*types.Log
|
|
for _, receipt := range receipts {
|
|
for _, log := range receipt.Logs {
|
|
l := *log
|
|
if removed {
|
|
l.Removed = true
|
|
}
|
|
logs = append(logs, &l)
|
|
}
|
|
}
|
|
return logs
|
|
}
|
|
|
|
// mergeLogs returns a merged log slice with specified sort order.
|
|
func mergeLogs(logs [][]*types.Log, reverse bool) []*types.Log {
|
|
var ret []*types.Log
|
|
if reverse {
|
|
for i := len(logs) - 1; i >= 0; i-- {
|
|
ret = append(ret, logs[i]...)
|
|
}
|
|
} else {
|
|
for i := 0; i < len(logs); i++ {
|
|
ret = append(ret, logs[i]...)
|
|
}
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// reorg takes two blocks, an old chain and a new chain and will reconstruct the
|
|
// blocks and inserts them to be part of the new canonical chain and accumulates
|
|
// potential missing transactions and post an event about them.
|
|
// Note the new head block won't be processed here, callers need to handle it
|
|
// externally.
|
|
func (bc *BlockChain) reorg(oldBlock, newBlock *types.Block) error {
|
|
var (
|
|
newChain types.Blocks
|
|
oldChain types.Blocks
|
|
commonBlock *types.Block
|
|
|
|
deletedTxs []common.Hash
|
|
addedTxs []common.Hash
|
|
|
|
deletedLogs [][]*types.Log
|
|
rebirthLogs [][]*types.Log
|
|
)
|
|
// Reduce the longer chain to the same number as the shorter one
|
|
if oldBlock.NumberU64() > newBlock.NumberU64() {
|
|
// Old chain is longer, gather all transactions and logs as deleted ones
|
|
for ; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1) {
|
|
oldChain = append(oldChain, oldBlock)
|
|
for _, tx := range oldBlock.Transactions() {
|
|
deletedTxs = append(deletedTxs, tx.Hash())
|
|
}
|
|
|
|
// Collect deleted logs for notification
|
|
logs := bc.collectLogs(oldBlock.Hash(), true)
|
|
if len(logs) > 0 {
|
|
deletedLogs = append(deletedLogs, logs)
|
|
}
|
|
}
|
|
} else {
|
|
// New chain is longer, stash all blocks away for subsequent insertion
|
|
for ; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) {
|
|
newChain = append(newChain, newBlock)
|
|
}
|
|
}
|
|
if oldBlock == nil {
|
|
return fmt.Errorf("invalid old chain")
|
|
}
|
|
if newBlock == nil {
|
|
return fmt.Errorf("invalid new chain")
|
|
}
|
|
// Both sides of the reorg are at the same number, reduce both until the common
|
|
// ancestor is found
|
|
for {
|
|
// If the common ancestor was found, bail out
|
|
if oldBlock.Hash() == newBlock.Hash() {
|
|
commonBlock = oldBlock
|
|
break
|
|
}
|
|
// Remove an old block as well as stash away a new block
|
|
oldChain = append(oldChain, oldBlock)
|
|
for _, tx := range oldBlock.Transactions() {
|
|
deletedTxs = append(deletedTxs, tx.Hash())
|
|
}
|
|
|
|
// Collect deleted logs for notification
|
|
logs := bc.collectLogs(oldBlock.Hash(), true)
|
|
if len(logs) > 0 {
|
|
deletedLogs = append(deletedLogs, logs)
|
|
}
|
|
newChain = append(newChain, newBlock)
|
|
|
|
// Step back with both chains
|
|
oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1)
|
|
if oldBlock == nil {
|
|
return fmt.Errorf("invalid old chain")
|
|
}
|
|
newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1)
|
|
if newBlock == nil {
|
|
return fmt.Errorf("invalid new chain")
|
|
}
|
|
}
|
|
|
|
// Ensure the user sees large reorgs
|
|
if len(oldChain) > 0 && len(newChain) > 0 {
|
|
logFn := log.Info
|
|
msg := "Chain reorg detected"
|
|
if len(oldChain) > 63 {
|
|
msg = "Large chain reorg detected"
|
|
logFn = log.Warn
|
|
}
|
|
logFn(msg, "number", commonBlock.Number(), "hash", commonBlock.Hash(),
|
|
"drop", len(oldChain), "dropfrom", oldChain[0].Hash(), "add", len(newChain), "addfrom", newChain[0].Hash())
|
|
blockReorgAddMeter.Mark(int64(len(newChain)))
|
|
blockReorgDropMeter.Mark(int64(len(oldChain)))
|
|
blockReorgMeter.Mark(1)
|
|
} else if len(newChain) > 0 {
|
|
// Special case happens in the post merge stage that current head is
|
|
// the ancestor of new head while these two blocks are not consecutive
|
|
log.Info("Extend chain", "add", len(newChain), "number", newChain[0].Number(), "hash", newChain[0].Hash())
|
|
blockReorgAddMeter.Mark(int64(len(newChain)))
|
|
} else {
|
|
// len(newChain) == 0 && len(oldChain) > 0
|
|
// rewind the canonical chain to a lower point.
|
|
log.Error("Impossible reorg, please file an issue", "oldnum", oldBlock.Number(), "oldhash", oldBlock.Hash(), "oldblocks", len(oldChain), "newnum", newBlock.Number(), "newhash", newBlock.Hash(), "newblocks", len(newChain))
|
|
}
|
|
// Insert the new chain(except the head block(reverse order)),
|
|
// taking care of the proper incremental order.
|
|
for i := len(newChain) - 1; i >= 1; i-- {
|
|
// Insert the block in the canonical way, re-writing history
|
|
bc.writeHeadBlock(newChain[i])
|
|
|
|
// Collect the new added transactions.
|
|
for _, tx := range newChain[i].Transactions() {
|
|
addedTxs = append(addedTxs, tx.Hash())
|
|
}
|
|
}
|
|
|
|
// Delete useless indexes right now which includes the non-canonical
|
|
// transaction indexes, canonical chain indexes which above the head.
|
|
indexesBatch := bc.db.NewBatch()
|
|
for _, tx := range types.HashDifference(deletedTxs, addedTxs) {
|
|
rawdb.DeleteTxLookupEntry(indexesBatch, tx)
|
|
}
|
|
|
|
// Delete all hash markers that are not part of the new canonical chain.
|
|
// Because the reorg function does not handle new chain head, all hash
|
|
// markers greater than or equal to new chain head should be deleted.
|
|
number := commonBlock.NumberU64()
|
|
if len(newChain) > 1 {
|
|
number = newChain[1].NumberU64()
|
|
}
|
|
for i := number + 1; ; i++ {
|
|
hash := rawdb.ReadCanonicalHash(bc.db, i)
|
|
if hash == (common.Hash{}) {
|
|
break
|
|
}
|
|
rawdb.DeleteCanonicalHash(indexesBatch, i)
|
|
}
|
|
if err := indexesBatch.Write(); err != nil {
|
|
log.Crit("Failed to delete useless indexes", "err", err)
|
|
}
|
|
|
|
// Collect the logs
|
|
for i := len(newChain) - 1; i >= 1; i-- {
|
|
// Collect reborn logs due to chain reorg
|
|
logs := bc.collectLogs(newChain[i].Hash(), false)
|
|
if len(logs) > 0 {
|
|
rebirthLogs = append(rebirthLogs, logs)
|
|
}
|
|
}
|
|
// If any logs need to be fired, do it now. In theory we could avoid creating
|
|
// this goroutine if there are no events to fire, but realistcally that only
|
|
// ever happens if we're reorging empty blocks, which will only happen on idle
|
|
// networks where performance is not an issue either way.
|
|
if len(deletedLogs) > 0 {
|
|
bc.rmLogsFeed.Send(RemovedLogsEvent{mergeLogs(deletedLogs, true)})
|
|
}
|
|
if len(rebirthLogs) > 0 {
|
|
bc.logsFeed.Send(mergeLogs(rebirthLogs, false))
|
|
}
|
|
if len(oldChain) > 0 {
|
|
for i := len(oldChain) - 1; i >= 0; i-- {
|
|
bc.chainSideFeed.Send(ChainSideEvent{Block: oldChain[i]})
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// InsertBlockWithoutSetHead executes the block, runs the necessary verification
|
|
// upon it and then persist the block and the associate state into the database.
|
|
// The key difference between the InsertChain is it won't do the canonical chain
|
|
// updating. It relies on the additional SetCanonical call to finalize the entire
|
|
// procedure.
|
|
func (bc *BlockChain) InsertBlockWithoutSetHead(block *types.Block) error {
|
|
if !bc.chainmu.TryLock() {
|
|
return errChainStopped
|
|
}
|
|
defer bc.chainmu.Unlock()
|
|
|
|
_, err := bc.insertChain(types.Blocks{block}, true, false)
|
|
return err
|
|
}
|
|
|
|
// SetCanonical rewinds the chain to set the new head block as the specified
|
|
// block. It's possible that the state of the new head is missing, and it will
|
|
// be recovered in this function as well.
|
|
func (bc *BlockChain) SetCanonical(head *types.Block) (common.Hash, error) {
|
|
if !bc.chainmu.TryLock() {
|
|
return common.Hash{}, errChainStopped
|
|
}
|
|
defer bc.chainmu.Unlock()
|
|
|
|
// Re-execute the reorged chain in case the head state is missing.
|
|
if !bc.HasState(head.Root()) {
|
|
if latestValidHash, err := bc.recoverAncestors(head); err != nil {
|
|
return latestValidHash, err
|
|
}
|
|
log.Info("Recovered head state", "number", head.Number(), "hash", head.Hash())
|
|
}
|
|
// Run the reorg if necessary and set the given block as new head.
|
|
start := time.Now()
|
|
if head.ParentHash() != bc.CurrentBlock().Hash() {
|
|
if err := bc.reorg(bc.CurrentBlock(), head); err != nil {
|
|
return common.Hash{}, err
|
|
}
|
|
}
|
|
bc.writeHeadBlock(head)
|
|
|
|
// Emit events
|
|
logs := bc.collectLogs(head.Hash(), false)
|
|
bc.chainFeed.Send(ChainEvent{Block: head, Hash: head.Hash(), Logs: logs})
|
|
if len(logs) > 0 {
|
|
bc.logsFeed.Send(logs)
|
|
}
|
|
bc.chainHeadFeed.Send(ChainHeadEvent{Block: head})
|
|
|
|
context := []interface{}{
|
|
"number", head.Number(),
|
|
"hash", head.Hash(),
|
|
"root", head.Root(),
|
|
"elapsed", time.Since(start),
|
|
}
|
|
if timestamp := time.Unix(int64(head.Time()), 0); time.Since(timestamp) > time.Minute {
|
|
context = append(context, []interface{}{"age", common.PrettyAge(timestamp)}...)
|
|
}
|
|
log.Info("Chain head was updated", context...)
|
|
return head.Hash(), nil
|
|
}
|
|
|
|
func (bc *BlockChain) updateFutureBlocks() {
|
|
futureTimer := time.NewTicker(5 * time.Second)
|
|
defer futureTimer.Stop()
|
|
defer bc.wg.Done()
|
|
for {
|
|
select {
|
|
case <-futureTimer.C:
|
|
bc.procFutureBlocks()
|
|
case <-bc.quit:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// skipBlock returns 'true', if the block being imported can be skipped over, meaning
|
|
// that the block does not need to be processed but can be considered already fully 'done'.
|
|
func (bc *BlockChain) skipBlock(err error, it *insertIterator) bool {
|
|
// We can only ever bypass processing if the only error returned by the validator
|
|
// is ErrKnownBlock, which means all checks passed, but we already have the block
|
|
// and state.
|
|
if !errors.Is(err, ErrKnownBlock) {
|
|
return false
|
|
}
|
|
// If we're not using snapshots, we can skip this, since we have both block
|
|
// and (trie-) state
|
|
if bc.snaps == nil {
|
|
return true
|
|
}
|
|
var (
|
|
header = it.current() // header can't be nil
|
|
parentRoot common.Hash
|
|
)
|
|
// If we also have the snapshot-state, we can skip the processing.
|
|
if bc.snaps.Snapshot(header.Root) != nil {
|
|
return true
|
|
}
|
|
// In this case, we have the trie-state but not snapshot-state. If the parent
|
|
// snapshot-state exists, we need to process this in order to not get a gap
|
|
// in the snapshot layers.
|
|
// Resolve parent block
|
|
if parent := it.previous(); parent != nil {
|
|
parentRoot = parent.Root
|
|
} else if parent = bc.GetHeaderByHash(header.ParentHash); parent != nil {
|
|
parentRoot = parent.Root
|
|
}
|
|
if parentRoot == (common.Hash{}) {
|
|
return false // Theoretically impossible case
|
|
}
|
|
// Parent is also missing snapshot: we can skip this. Otherwise process.
|
|
if bc.snaps.Snapshot(parentRoot) == nil {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// maintainTxIndex is responsible for the construction and deletion of the
|
|
// transaction index.
|
|
//
|
|
// User can use flag `txlookuplimit` to specify a "recentness" block, below
|
|
// which ancient tx indices get deleted. If `txlookuplimit` is 0, it means
|
|
// all tx indices will be reserved.
|
|
//
|
|
// The user can adjust the txlookuplimit value for each launch after fast
|
|
// sync, Geth will automatically construct the missing indices and delete
|
|
// the extra indices.
|
|
func (bc *BlockChain) maintainTxIndex(ancients uint64) {
|
|
defer bc.wg.Done()
|
|
|
|
// Before starting the actual maintenance, we need to handle a special case,
|
|
// where user might init Geth with an external ancient database. If so, we
|
|
// need to reindex all necessary transactions before starting to process any
|
|
// pruning requests.
|
|
if ancients > 0 {
|
|
var from = uint64(0)
|
|
if bc.txLookupLimit != 0 && ancients > bc.txLookupLimit {
|
|
from = ancients - bc.txLookupLimit
|
|
}
|
|
rawdb.IndexTransactions(bc.db, from, ancients, bc.quit)
|
|
}
|
|
|
|
// indexBlocks reindexes or unindexes transactions depending on user configuration
|
|
indexBlocks := func(tail *uint64, head uint64, done chan struct{}) {
|
|
defer func() { done <- struct{}{} }()
|
|
|
|
// If the user just upgraded Geth to a new version which supports transaction
|
|
// index pruning, write the new tail and remove anything older.
|
|
if tail == nil {
|
|
if bc.txLookupLimit == 0 || head < bc.txLookupLimit {
|
|
// Nothing to delete, write the tail and return
|
|
rawdb.WriteTxIndexTail(bc.db, 0)
|
|
} else {
|
|
// Prune all stale tx indices and record the tx index tail
|
|
rawdb.UnindexTransactions(bc.db, 0, head-bc.txLookupLimit+1, bc.quit)
|
|
}
|
|
return
|
|
}
|
|
// If a previous indexing existed, make sure that we fill in any missing entries
|
|
if bc.txLookupLimit == 0 || head < bc.txLookupLimit {
|
|
if *tail > 0 {
|
|
// It can happen when chain is rewound to a historical point which
|
|
// is even lower than the indexes tail, recap the indexing target
|
|
// to new head to avoid reading non-existent block bodies.
|
|
end := *tail
|
|
if end > head+1 {
|
|
end = head + 1
|
|
}
|
|
rawdb.IndexTransactions(bc.db, 0, end, bc.quit)
|
|
}
|
|
return
|
|
}
|
|
// Update the transaction index to the new chain state
|
|
if head-bc.txLookupLimit+1 < *tail {
|
|
// Reindex a part of missing indices and rewind index tail to HEAD-limit
|
|
rawdb.IndexTransactions(bc.db, head-bc.txLookupLimit+1, *tail, bc.quit)
|
|
} else {
|
|
// Unindex a part of stale indices and forward index tail to HEAD-limit
|
|
rawdb.UnindexTransactions(bc.db, *tail, head-bc.txLookupLimit+1, bc.quit)
|
|
}
|
|
}
|
|
|
|
// Any reindexing done, start listening to chain events and moving the index window
|
|
var (
|
|
done chan struct{} // Non-nil if background unindexing or reindexing routine is active.
|
|
headCh = make(chan ChainHeadEvent, 1) // Buffered to avoid locking up the event feed
|
|
)
|
|
sub := bc.SubscribeChainHeadEvent(headCh)
|
|
if sub == nil {
|
|
return
|
|
}
|
|
defer sub.Unsubscribe()
|
|
|
|
for {
|
|
select {
|
|
case head := <-headCh:
|
|
if done == nil {
|
|
done = make(chan struct{})
|
|
go indexBlocks(rawdb.ReadTxIndexTail(bc.db), head.Block.NumberU64(), done)
|
|
}
|
|
case <-done:
|
|
done = nil
|
|
case <-bc.quit:
|
|
if done != nil {
|
|
log.Info("Waiting background transaction indexer to exit")
|
|
<-done
|
|
}
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// reportBlock logs a bad block error.
|
|
func (bc *BlockChain) reportBlock(block *types.Block, receipts types.Receipts, err error) {
|
|
rawdb.WriteBadBlock(bc.db, block)
|
|
|
|
var receiptString string
|
|
for i, receipt := range receipts {
|
|
receiptString += fmt.Sprintf("\t %d: cumulative: %v gas: %v contract: %v status: %v tx: %v logs: %v bloom: %x state: %x\n",
|
|
i, receipt.CumulativeGasUsed, receipt.GasUsed, receipt.ContractAddress.Hex(),
|
|
receipt.Status, receipt.TxHash.Hex(), receipt.Logs, receipt.Bloom, receipt.PostState)
|
|
}
|
|
log.Error(fmt.Sprintf(`
|
|
########## BAD BLOCK #########
|
|
Chain config: %v
|
|
|
|
Number: %v
|
|
Hash: 0x%x
|
|
%v
|
|
|
|
Error: %v
|
|
##############################
|
|
`, bc.chainConfig, block.Number(), block.Hash(), receiptString, err))
|
|
}
|
|
|
|
// InsertHeaderChain attempts to insert the given header chain in to the local
|
|
// chain, possibly creating a reorg. If an error is returned, it will return the
|
|
// index number of the failing header as well an error describing what went wrong.
|
|
//
|
|
// The verify parameter can be used to fine tune whether nonce verification
|
|
// should be done or not. The reason behind the optional check is because some
|
|
// of the header retrieval mechanisms already need to verify nonces, as well as
|
|
// because nonces can be verified sparsely, not needing to check each.
|
|
func (bc *BlockChain) InsertHeaderChain(chain []*types.Header, checkFreq int) (int, error) {
|
|
if len(chain) == 0 {
|
|
return 0, nil
|
|
}
|
|
start := time.Now()
|
|
if i, err := bc.hc.ValidateHeaderChain(chain, checkFreq); err != nil {
|
|
return i, err
|
|
}
|
|
|
|
if !bc.chainmu.TryLock() {
|
|
return 0, errChainStopped
|
|
}
|
|
defer bc.chainmu.Unlock()
|
|
_, err := bc.hc.InsertHeaderChain(chain, start, bc.forker)
|
|
return 0, err
|
|
}
|