1
0
forked from cerc-io/plugeth
plugeth/p2p/rlpx/rlpx_test.go
Felix Lange 7194c847b6
p2p/rlpx: reduce allocation and syscalls ()
This change significantly improves the performance of RLPx message reads
and writes. In the previous implementation, reading and writing of
message frames performed multiple reads and writes on the underlying
network connection, and allocated a new []byte buffer for every read.

In the new implementation, reads and writes re-use buffers, and perform
much fewer system calls on the underlying connection. This doubles the
theoretically achievable throughput on a single connection, as shown by
the benchmark result:

    name             old speed      new speed       delta
    Throughput-8     70.3MB/s ± 0%  155.4MB/s ± 0%  +121.11%  (p=0.000 n=9+8)

The change also removes support for the legacy, pre-EIP-8 handshake encoding.
As of May 2021, no actively maintained client sends this format.
2021-05-27 10:19:13 +02:00

454 lines
15 KiB
Go

// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package rlpx
import (
"bytes"
"crypto/ecdsa"
"encoding/hex"
"fmt"
"io"
"math/rand"
"net"
"reflect"
"strings"
"testing"
"github.com/davecgh/go-spew/spew"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/p2p/simulations/pipes"
"github.com/ethereum/go-ethereum/rlp"
"github.com/stretchr/testify/assert"
)
type message struct {
code uint64
data []byte
err error
}
func TestHandshake(t *testing.T) {
p1, p2 := createPeers(t)
p1.Close()
p2.Close()
}
// This test checks that messages can be sent and received through WriteMsg/ReadMsg.
func TestReadWriteMsg(t *testing.T) {
peer1, peer2 := createPeers(t)
defer peer1.Close()
defer peer2.Close()
testCode := uint64(23)
testData := []byte("test")
checkMsgReadWrite(t, peer1, peer2, testCode, testData)
t.Log("enabling snappy")
peer1.SetSnappy(true)
peer2.SetSnappy(true)
checkMsgReadWrite(t, peer1, peer2, testCode, testData)
}
func checkMsgReadWrite(t *testing.T, p1, p2 *Conn, msgCode uint64, msgData []byte) {
// Set up the reader.
ch := make(chan message, 1)
go func() {
var msg message
msg.code, msg.data, _, msg.err = p1.Read()
ch <- msg
}()
// Write the message.
_, err := p2.Write(msgCode, msgData)
if err != nil {
t.Fatal(err)
}
// Check it was received correctly.
msg := <-ch
assert.Equal(t, msgCode, msg.code, "wrong message code returned from ReadMsg")
assert.Equal(t, msgData, msg.data, "wrong message data returned from ReadMsg")
}
func createPeers(t *testing.T) (peer1, peer2 *Conn) {
conn1, conn2 := net.Pipe()
key1, key2 := newkey(), newkey()
peer1 = NewConn(conn1, &key2.PublicKey) // dialer
peer2 = NewConn(conn2, nil) // listener
doHandshake(t, peer1, peer2, key1, key2)
return peer1, peer2
}
func doHandshake(t *testing.T, peer1, peer2 *Conn, key1, key2 *ecdsa.PrivateKey) {
keyChan := make(chan *ecdsa.PublicKey, 1)
go func() {
pubKey, err := peer2.Handshake(key2)
if err != nil {
t.Errorf("peer2 could not do handshake: %v", err)
}
keyChan <- pubKey
}()
pubKey2, err := peer1.Handshake(key1)
if err != nil {
t.Errorf("peer1 could not do handshake: %v", err)
}
pubKey1 := <-keyChan
// Confirm the handshake was successful.
if !reflect.DeepEqual(pubKey1, &key1.PublicKey) || !reflect.DeepEqual(pubKey2, &key2.PublicKey) {
t.Fatal("unsuccessful handshake")
}
}
// This test checks the frame data of written messages.
func TestFrameReadWrite(t *testing.T) {
conn := NewConn(nil, nil)
hash := fakeHash([]byte{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})
conn.InitWithSecrets(Secrets{
AES: crypto.Keccak256(),
MAC: crypto.Keccak256(),
IngressMAC: hash,
EgressMAC: hash,
})
h := conn.session
golden := unhex(`
00828ddae471818bb0bfa6b551d1cb42
01010101010101010101010101010101
ba628a4ba590cb43f7848f41c4382885
01010101010101010101010101010101
`)
msgCode := uint64(8)
msg := []uint{1, 2, 3, 4}
msgEnc, _ := rlp.EncodeToBytes(msg)
// Check writeFrame. The frame that's written should be equal to the test vector.
buf := new(bytes.Buffer)
if err := h.writeFrame(buf, msgCode, msgEnc); err != nil {
t.Fatalf("WriteMsg error: %v", err)
}
if !bytes.Equal(buf.Bytes(), golden) {
t.Fatalf("output mismatch:\n got: %x\n want: %x", buf.Bytes(), golden)
}
// Check readFrame on the test vector.
content, err := h.readFrame(bytes.NewReader(golden))
if err != nil {
t.Fatalf("ReadMsg error: %v", err)
}
wantContent := unhex("08C401020304")
if !bytes.Equal(content, wantContent) {
t.Errorf("frame content mismatch:\ngot %x\nwant %x", content, wantContent)
}
}
type fakeHash []byte
func (fakeHash) Write(p []byte) (int, error) { return len(p), nil }
func (fakeHash) Reset() {}
func (fakeHash) BlockSize() int { return 0 }
func (h fakeHash) Size() int { return len(h) }
func (h fakeHash) Sum(b []byte) []byte { return append(b, h...) }
type handshakeAuthTest struct {
input string
wantVersion uint
wantRest []rlp.RawValue
}
var eip8HandshakeAuthTests = []handshakeAuthTest{
// (Auth₂) EIP-8 encoding
{
input: `
01b304ab7578555167be8154d5cc456f567d5ba302662433674222360f08d5f1534499d3678b513b
0fca474f3a514b18e75683032eb63fccb16c156dc6eb2c0b1593f0d84ac74f6e475f1b8d56116b84
9634a8c458705bf83a626ea0384d4d7341aae591fae42ce6bd5c850bfe0b999a694a49bbbaf3ef6c
da61110601d3b4c02ab6c30437257a6e0117792631a4b47c1d52fc0f8f89caadeb7d02770bf999cc
147d2df3b62e1ffb2c9d8c125a3984865356266bca11ce7d3a688663a51d82defaa8aad69da39ab6
d5470e81ec5f2a7a47fb865ff7cca21516f9299a07b1bc63ba56c7a1a892112841ca44b6e0034dee
70c9adabc15d76a54f443593fafdc3b27af8059703f88928e199cb122362a4b35f62386da7caad09
c001edaeb5f8a06d2b26fb6cb93c52a9fca51853b68193916982358fe1e5369e249875bb8d0d0ec3
6f917bc5e1eafd5896d46bd61ff23f1a863a8a8dcd54c7b109b771c8e61ec9c8908c733c0263440e
2aa067241aaa433f0bb053c7b31a838504b148f570c0ad62837129e547678c5190341e4f1693956c
3bf7678318e2d5b5340c9e488eefea198576344afbdf66db5f51204a6961a63ce072c8926c
`,
wantVersion: 4,
wantRest: []rlp.RawValue{},
},
// (Auth₃) RLPx v4 EIP-8 encoding with version 56, additional list elements
{
input: `
01b8044c6c312173685d1edd268aa95e1d495474c6959bcdd10067ba4c9013df9e40ff45f5bfd6f7
2471f93a91b493f8e00abc4b80f682973de715d77ba3a005a242eb859f9a211d93a347fa64b597bf
280a6b88e26299cf263b01b8dfdb712278464fd1c25840b995e84d367d743f66c0e54a586725b7bb
f12acca27170ae3283c1073adda4b6d79f27656993aefccf16e0d0409fe07db2dc398a1b7e8ee93b
cd181485fd332f381d6a050fba4c7641a5112ac1b0b61168d20f01b479e19adf7fdbfa0905f63352
bfc7e23cf3357657455119d879c78d3cf8c8c06375f3f7d4861aa02a122467e069acaf513025ff19
6641f6d2810ce493f51bee9c966b15c5043505350392b57645385a18c78f14669cc4d960446c1757
1b7c5d725021babbcd786957f3d17089c084907bda22c2b2675b4378b114c601d858802a55345a15
116bc61da4193996187ed70d16730e9ae6b3bb8787ebcaea1871d850997ddc08b4f4ea668fbf3740
7ac044b55be0908ecb94d4ed172ece66fd31bfdadf2b97a8bc690163ee11f5b575a4b44e36e2bfb2
f0fce91676fd64c7773bac6a003f481fddd0bae0a1f31aa27504e2a533af4cef3b623f4791b2cca6
d490
`,
wantVersion: 56,
wantRest: []rlp.RawValue{{0x01}, {0x02}, {0xC2, 0x04, 0x05}},
},
}
type handshakeAckTest struct {
input string
wantVersion uint
wantRest []rlp.RawValue
}
var eip8HandshakeRespTests = []handshakeAckTest{
// (Ack₂) EIP-8 encoding
{
input: `
01ea0451958701280a56482929d3b0757da8f7fbe5286784beead59d95089c217c9b917788989470
b0e330cc6e4fb383c0340ed85fab836ec9fb8a49672712aeabbdfd1e837c1ff4cace34311cd7f4de
05d59279e3524ab26ef753a0095637ac88f2b499b9914b5f64e143eae548a1066e14cd2f4bd7f814
c4652f11b254f8a2d0191e2f5546fae6055694aed14d906df79ad3b407d94692694e259191cde171
ad542fc588fa2b7333313d82a9f887332f1dfc36cea03f831cb9a23fea05b33deb999e85489e645f
6aab1872475d488d7bd6c7c120caf28dbfc5d6833888155ed69d34dbdc39c1f299be1057810f34fb
e754d021bfca14dc989753d61c413d261934e1a9c67ee060a25eefb54e81a4d14baff922180c395d
3f998d70f46f6b58306f969627ae364497e73fc27f6d17ae45a413d322cb8814276be6ddd13b885b
201b943213656cde498fa0e9ddc8e0b8f8a53824fbd82254f3e2c17e8eaea009c38b4aa0a3f306e8
797db43c25d68e86f262e564086f59a2fc60511c42abfb3057c247a8a8fe4fb3ccbadde17514b7ac
8000cdb6a912778426260c47f38919a91f25f4b5ffb455d6aaaf150f7e5529c100ce62d6d92826a7
1778d809bdf60232ae21ce8a437eca8223f45ac37f6487452ce626f549b3b5fdee26afd2072e4bc7
5833c2464c805246155289f4
`,
wantVersion: 4,
wantRest: []rlp.RawValue{},
},
// (Ack₃) EIP-8 encoding with version 57, additional list elements
{
input: `
01f004076e58aae772bb101ab1a8e64e01ee96e64857ce82b1113817c6cdd52c09d26f7b90981cd7
ae835aeac72e1573b8a0225dd56d157a010846d888dac7464baf53f2ad4e3d584531fa203658fab0
3a06c9fd5e35737e417bc28c1cbf5e5dfc666de7090f69c3b29754725f84f75382891c561040ea1d
dc0d8f381ed1b9d0d4ad2a0ec021421d847820d6fa0ba66eaf58175f1b235e851c7e2124069fbc20
2888ddb3ac4d56bcbd1b9b7eab59e78f2e2d400905050f4a92dec1c4bdf797b3fc9b2f8e84a482f3
d800386186712dae00d5c386ec9387a5e9c9a1aca5a573ca91082c7d68421f388e79127a5177d4f8
590237364fd348c9611fa39f78dcdceee3f390f07991b7b47e1daa3ebcb6ccc9607811cb17ce51f1
c8c2c5098dbdd28fca547b3f58c01a424ac05f869f49c6a34672ea2cbbc558428aa1fe48bbfd6115
8b1b735a65d99f21e70dbc020bfdface9f724a0d1fb5895db971cc81aa7608baa0920abb0a565c9c
436e2fd13323428296c86385f2384e408a31e104670df0791d93e743a3a5194ee6b076fb6323ca59
3011b7348c16cf58f66b9633906ba54a2ee803187344b394f75dd2e663a57b956cb830dd7a908d4f
39a2336a61ef9fda549180d4ccde21514d117b6c6fd07a9102b5efe710a32af4eeacae2cb3b1dec0
35b9593b48b9d3ca4c13d245d5f04169b0b1
`,
wantVersion: 57,
wantRest: []rlp.RawValue{{0x06}, {0xC2, 0x07, 0x08}, {0x81, 0xFA}},
},
}
var (
keyA, _ = crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee")
keyB, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
)
func TestHandshakeForwardCompatibility(t *testing.T) {
var (
pubA = crypto.FromECDSAPub(&keyA.PublicKey)[1:]
pubB = crypto.FromECDSAPub(&keyB.PublicKey)[1:]
ephA, _ = crypto.HexToECDSA("869d6ecf5211f1cc60418a13b9d870b22959d0c16f02bec714c960dd2298a32d")
ephB, _ = crypto.HexToECDSA("e238eb8e04fee6511ab04c6dd3c89ce097b11f25d584863ac2b6d5b35b1847e4")
ephPubA = crypto.FromECDSAPub(&ephA.PublicKey)[1:]
ephPubB = crypto.FromECDSAPub(&ephB.PublicKey)[1:]
nonceA = unhex("7e968bba13b6c50e2c4cd7f241cc0d64d1ac25c7f5952df231ac6a2bda8ee5d6")
nonceB = unhex("559aead08264d5795d3909718cdd05abd49572e84fe55590eef31a88a08fdffd")
_, _, _, _ = pubA, pubB, ephPubA, ephPubB
authSignature = unhex("299ca6acfd35e3d72d8ba3d1e2b60b5561d5af5218eb5bc182045769eb4226910a301acae3b369fffc4a4899d6b02531e89fd4fe36a2cf0d93607ba470b50f7800")
_ = authSignature
)
makeAuth := func(test handshakeAuthTest) *authMsgV4 {
msg := &authMsgV4{Version: test.wantVersion, Rest: test.wantRest}
copy(msg.Signature[:], authSignature)
copy(msg.InitiatorPubkey[:], pubA)
copy(msg.Nonce[:], nonceA)
return msg
}
makeAck := func(test handshakeAckTest) *authRespV4 {
msg := &authRespV4{Version: test.wantVersion, Rest: test.wantRest}
copy(msg.RandomPubkey[:], ephPubB)
copy(msg.Nonce[:], nonceB)
return msg
}
// check auth msg parsing
for _, test := range eip8HandshakeAuthTests {
var h handshakeState
r := bytes.NewReader(unhex(test.input))
msg := new(authMsgV4)
ciphertext, err := h.readMsg(msg, keyB, r)
if err != nil {
t.Errorf("error for input %x:\n %v", unhex(test.input), err)
continue
}
if !bytes.Equal(ciphertext, unhex(test.input)) {
t.Errorf("wrong ciphertext for input %x:\n %x", unhex(test.input), ciphertext)
}
want := makeAuth(test)
if !reflect.DeepEqual(msg, want) {
t.Errorf("wrong msg for input %x:\ngot %s\nwant %s", unhex(test.input), spew.Sdump(msg), spew.Sdump(want))
}
}
// check auth resp parsing
for _, test := range eip8HandshakeRespTests {
var h handshakeState
input := unhex(test.input)
r := bytes.NewReader(input)
msg := new(authRespV4)
ciphertext, err := h.readMsg(msg, keyA, r)
if err != nil {
t.Errorf("error for input %x:\n %v", input, err)
continue
}
if !bytes.Equal(ciphertext, input) {
t.Errorf("wrong ciphertext for input %x:\n %x", input, err)
}
want := makeAck(test)
if !reflect.DeepEqual(msg, want) {
t.Errorf("wrong msg for input %x:\ngot %s\nwant %s", input, spew.Sdump(msg), spew.Sdump(want))
}
}
// check derivation for (Auth₂, Ack₂) on recipient side
var (
hs = &handshakeState{
initiator: false,
respNonce: nonceB,
randomPrivKey: ecies.ImportECDSA(ephB),
}
authCiphertext = unhex(eip8HandshakeAuthTests[0].input)
authRespCiphertext = unhex(eip8HandshakeRespTests[0].input)
authMsg = makeAuth(eip8HandshakeAuthTests[0])
wantAES = unhex("80e8632c05fed6fc2a13b0f8d31a3cf645366239170ea067065aba8e28bac487")
wantMAC = unhex("2ea74ec5dae199227dff1af715362700e989d889d7a493cb0639691efb8e5f98")
wantFooIngressHash = unhex("0c7ec6340062cc46f5e9f1e3cf86f8c8c403c5a0964f5df0ebd34a75ddc86db5")
)
if err := hs.handleAuthMsg(authMsg, keyB); err != nil {
t.Fatalf("handleAuthMsg: %v", err)
}
derived, err := hs.secrets(authCiphertext, authRespCiphertext)
if err != nil {
t.Fatalf("secrets: %v", err)
}
if !bytes.Equal(derived.AES, wantAES) {
t.Errorf("aes-secret mismatch:\ngot %x\nwant %x", derived.AES, wantAES)
}
if !bytes.Equal(derived.MAC, wantMAC) {
t.Errorf("mac-secret mismatch:\ngot %x\nwant %x", derived.MAC, wantMAC)
}
io.WriteString(derived.IngressMAC, "foo")
fooIngressHash := derived.IngressMAC.Sum(nil)
if !bytes.Equal(fooIngressHash, wantFooIngressHash) {
t.Errorf("ingress-mac('foo') mismatch:\ngot %x\nwant %x", fooIngressHash, wantFooIngressHash)
}
}
func BenchmarkHandshakeRead(b *testing.B) {
var input = unhex(eip8HandshakeAuthTests[0].input)
for i := 0; i < b.N; i++ {
var (
h handshakeState
r = bytes.NewReader(input)
msg = new(authMsgV4)
)
if _, err := h.readMsg(msg, keyB, r); err != nil {
b.Fatal(err)
}
}
}
func BenchmarkThroughput(b *testing.B) {
pipe1, pipe2, err := pipes.TCPPipe()
if err != nil {
b.Fatal(err)
}
var (
conn1, conn2 = NewConn(pipe1, nil), NewConn(pipe2, &keyA.PublicKey)
handshakeDone = make(chan error, 1)
msgdata = make([]byte, 1024)
rand = rand.New(rand.NewSource(1337))
)
rand.Read(msgdata)
// Server side.
go func() {
defer conn1.Close()
// Perform handshake.
_, err := conn1.Handshake(keyA)
handshakeDone <- err
if err != nil {
return
}
conn1.SetSnappy(true)
// Keep sending messages until connection closed.
for {
if _, err := conn1.Write(0, msgdata); err != nil {
return
}
}
}()
// Set up client side.
defer conn2.Close()
if _, err := conn2.Handshake(keyB); err != nil {
b.Fatal("client handshake error:", err)
}
conn2.SetSnappy(true)
if err := <-handshakeDone; err != nil {
b.Fatal("server hanshake error:", err)
}
// Read N messages.
b.SetBytes(int64(len(msgdata)))
b.ReportAllocs()
for i := 0; i < b.N; i++ {
_, _, _, err := conn2.Read()
if err != nil {
b.Fatal("read error:", err)
}
}
}
func unhex(str string) []byte {
r := strings.NewReplacer("\t", "", " ", "", "\n", "")
b, err := hex.DecodeString(r.Replace(str))
if err != nil {
panic(fmt.Sprintf("invalid hex string: %q", str))
}
return b
}
func newkey() *ecdsa.PrivateKey {
key, err := crypto.GenerateKey()
if err != nil {
panic("couldn't generate key: " + err.Error())
}
return key
}