plugeth/eth/fetcher/tx_fetcher.go
Felix Lange 2a6beb6a39
core/types: support for optional blob sidecar in BlobTx (#27841)
This PR removes the newly added txpool.Transaction wrapper type, and instead adds a way
of keeping the blob sidecar within types.Transaction. It's better this way because most
code in go-ethereum does not care about blob transactions, and probably never will. This
will start mattering especially on the client side of RPC, where all APIs are based on
types.Transaction. Users need to be able to use the same signing flows they already
have.

However, since blobs are only allowed in some places but not others, we will now need to
add checks to avoid creating invalid blocks. I'm still trying to figure out the best place
to do some of these. The way I have it currently is as follows:

- In block validation (import), txs are verified not to have a blob sidecar.
- In miner, we strip off the sidecar when committing the transaction into the block.
- In TxPool validation, txs must have a sidecar to be added into the blobpool.
  - Note there is a special case here: when transactions are re-added because of a chain
    reorg, we cannot use the transactions gathered from the old chain blocks as-is,
    because they will be missing their blobs. This was previously handled by storing the
    blobs into the 'blobpool limbo'. The code has now changed to store the full
    transaction in the limbo instead, but it might be confusing for code readers why we're
    not simply adding the types.Transaction we already have.

Code changes summary:

- txpool.Transaction removed and all uses replaced by types.Transaction again
- blobpool now stores types.Transaction instead of defining its own blobTx format for storage
- the blobpool limbo now stores types.Transaction instead of storing only the blobs
- checks to validate the presence/absence of the blob sidecar added in certain critical places
2023-08-14 10:13:34 +02:00

913 lines
33 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package fetcher
import (
"bytes"
"errors"
"fmt"
mrand "math/rand"
"sort"
"time"
mapset "github.com/deckarep/golang-set/v2"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/core/txpool"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
)
const (
// maxTxAnnounces is the maximum number of unique transaction a peer
// can announce in a short time.
maxTxAnnounces = 4096
// maxTxRetrievals is the maximum transaction number can be fetched in one
// request. The rationale to pick 256 is:
// - In eth protocol, the softResponseLimit is 2MB. Nowadays according to
// Etherscan the average transaction size is around 200B, so in theory
// we can include lots of transaction in a single protocol packet.
// - However the maximum size of a single transaction is raised to 128KB,
// so pick a middle value here to ensure we can maximize the efficiency
// of the retrieval and response size overflow won't happen in most cases.
maxTxRetrievals = 256
// maxTxUnderpricedSetSize is the size of the underpriced transaction set that
// is used to track recent transactions that have been dropped so we don't
// re-request them.
maxTxUnderpricedSetSize = 32768
// txArriveTimeout is the time allowance before an announced transaction is
// explicitly requested.
txArriveTimeout = 500 * time.Millisecond
// txGatherSlack is the interval used to collate almost-expired announces
// with network fetches.
txGatherSlack = 100 * time.Millisecond
)
var (
// txFetchTimeout is the maximum allotted time to return an explicitly
// requested transaction.
txFetchTimeout = 5 * time.Second
)
var (
txAnnounceInMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/announces/in", nil)
txAnnounceKnownMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/announces/known", nil)
txAnnounceUnderpricedMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/announces/underpriced", nil)
txAnnounceDOSMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/announces/dos", nil)
txBroadcastInMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/broadcasts/in", nil)
txBroadcastKnownMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/broadcasts/known", nil)
txBroadcastUnderpricedMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/broadcasts/underpriced", nil)
txBroadcastOtherRejectMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/broadcasts/otherreject", nil)
txRequestOutMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/request/out", nil)
txRequestFailMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/request/fail", nil)
txRequestDoneMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/request/done", nil)
txRequestTimeoutMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/request/timeout", nil)
txReplyInMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/replies/in", nil)
txReplyKnownMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/replies/known", nil)
txReplyUnderpricedMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/replies/underpriced", nil)
txReplyOtherRejectMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/replies/otherreject", nil)
txFetcherWaitingPeers = metrics.NewRegisteredGauge("eth/fetcher/transaction/waiting/peers", nil)
txFetcherWaitingHashes = metrics.NewRegisteredGauge("eth/fetcher/transaction/waiting/hashes", nil)
txFetcherQueueingPeers = metrics.NewRegisteredGauge("eth/fetcher/transaction/queueing/peers", nil)
txFetcherQueueingHashes = metrics.NewRegisteredGauge("eth/fetcher/transaction/queueing/hashes", nil)
txFetcherFetchingPeers = metrics.NewRegisteredGauge("eth/fetcher/transaction/fetching/peers", nil)
txFetcherFetchingHashes = metrics.NewRegisteredGauge("eth/fetcher/transaction/fetching/hashes", nil)
)
// txAnnounce is the notification of the availability of a batch
// of new transactions in the network.
type txAnnounce struct {
origin string // Identifier of the peer originating the notification
hashes []common.Hash // Batch of transaction hashes being announced
}
// txRequest represents an in-flight transaction retrieval request destined to
// a specific peers.
type txRequest struct {
hashes []common.Hash // Transactions having been requested
stolen map[common.Hash]struct{} // Deliveries by someone else (don't re-request)
time mclock.AbsTime // Timestamp of the request
}
// txDelivery is the notification that a batch of transactions have been added
// to the pool and should be untracked.
type txDelivery struct {
origin string // Identifier of the peer originating the notification
hashes []common.Hash // Batch of transaction hashes having been delivered
direct bool // Whether this is a direct reply or a broadcast
}
// txDrop is the notification that a peer has disconnected.
type txDrop struct {
peer string
}
// TxFetcher is responsible for retrieving new transaction based on announcements.
//
// The fetcher operates in 3 stages:
// - Transactions that are newly discovered are moved into a wait list.
// - After ~500ms passes, transactions from the wait list that have not been
// broadcast to us in whole are moved into a queueing area.
// - When a connected peer doesn't have in-flight retrieval requests, any
// transaction queued up (and announced by the peer) are allocated to the
// peer and moved into a fetching status until it's fulfilled or fails.
//
// The invariants of the fetcher are:
// - Each tracked transaction (hash) must only be present in one of the
// three stages. This ensures that the fetcher operates akin to a finite
// state automata and there's do data leak.
// - Each peer that announced transactions may be scheduled retrievals, but
// only ever one concurrently. This ensures we can immediately know what is
// missing from a reply and reschedule it.
type TxFetcher struct {
notify chan *txAnnounce
cleanup chan *txDelivery
drop chan *txDrop
quit chan struct{}
underpriced mapset.Set[common.Hash] // Transactions discarded as too cheap (don't re-fetch)
// Stage 1: Waiting lists for newly discovered transactions that might be
// broadcast without needing explicit request/reply round trips.
waitlist map[common.Hash]map[string]struct{} // Transactions waiting for an potential broadcast
waittime map[common.Hash]mclock.AbsTime // Timestamps when transactions were added to the waitlist
waitslots map[string]map[common.Hash]struct{} // Waiting announcements grouped by peer (DoS protection)
// Stage 2: Queue of transactions that waiting to be allocated to some peer
// to be retrieved directly.
announces map[string]map[common.Hash]struct{} // Set of announced transactions, grouped by origin peer
announced map[common.Hash]map[string]struct{} // Set of download locations, grouped by transaction hash
// Stage 3: Set of transactions currently being retrieved, some which may be
// fulfilled and some rescheduled. Note, this step shares 'announces' from the
// previous stage to avoid having to duplicate (need it for DoS checks).
fetching map[common.Hash]string // Transaction set currently being retrieved
requests map[string]*txRequest // In-flight transaction retrievals
alternates map[common.Hash]map[string]struct{} // In-flight transaction alternate origins if retrieval fails
// Callbacks
hasTx func(common.Hash) bool // Retrieves a tx from the local txpool
addTxs func([]*types.Transaction) []error // Insert a batch of transactions into local txpool
fetchTxs func(string, []common.Hash) error // Retrieves a set of txs from a remote peer
step chan struct{} // Notification channel when the fetcher loop iterates
clock mclock.Clock // Time wrapper to simulate in tests
rand *mrand.Rand // Randomizer to use in tests instead of map range loops (soft-random)
}
// NewTxFetcher creates a transaction fetcher to retrieve transaction
// based on hash announcements.
func NewTxFetcher(hasTx func(common.Hash) bool, addTxs func([]*types.Transaction) []error, fetchTxs func(string, []common.Hash) error) *TxFetcher {
return NewTxFetcherForTests(hasTx, addTxs, fetchTxs, mclock.System{}, nil)
}
// NewTxFetcherForTests is a testing method to mock out the realtime clock with
// a simulated version and the internal randomness with a deterministic one.
func NewTxFetcherForTests(
hasTx func(common.Hash) bool, addTxs func([]*types.Transaction) []error, fetchTxs func(string, []common.Hash) error,
clock mclock.Clock, rand *mrand.Rand) *TxFetcher {
return &TxFetcher{
notify: make(chan *txAnnounce),
cleanup: make(chan *txDelivery),
drop: make(chan *txDrop),
quit: make(chan struct{}),
waitlist: make(map[common.Hash]map[string]struct{}),
waittime: make(map[common.Hash]mclock.AbsTime),
waitslots: make(map[string]map[common.Hash]struct{}),
announces: make(map[string]map[common.Hash]struct{}),
announced: make(map[common.Hash]map[string]struct{}),
fetching: make(map[common.Hash]string),
requests: make(map[string]*txRequest),
alternates: make(map[common.Hash]map[string]struct{}),
underpriced: mapset.NewSet[common.Hash](),
hasTx: hasTx,
addTxs: addTxs,
fetchTxs: fetchTxs,
clock: clock,
rand: rand,
}
}
// Notify announces the fetcher of the potential availability of a new batch of
// transactions in the network.
func (f *TxFetcher) Notify(peer string, hashes []common.Hash) error {
// Keep track of all the announced transactions
txAnnounceInMeter.Mark(int64(len(hashes)))
// Skip any transaction announcements that we already know of, or that we've
// previously marked as cheap and discarded. This check is of course racy,
// because multiple concurrent notifies will still manage to pass it, but it's
// still valuable to check here because it runs concurrent to the internal
// loop, so anything caught here is time saved internally.
var (
unknowns = make([]common.Hash, 0, len(hashes))
duplicate, underpriced int64
)
for _, hash := range hashes {
switch {
case f.hasTx(hash):
duplicate++
case f.underpriced.Contains(hash):
underpriced++
default:
unknowns = append(unknowns, hash)
}
}
txAnnounceKnownMeter.Mark(duplicate)
txAnnounceUnderpricedMeter.Mark(underpriced)
// If anything's left to announce, push it into the internal loop
if len(unknowns) == 0 {
return nil
}
announce := &txAnnounce{
origin: peer,
hashes: unknowns,
}
select {
case f.notify <- announce:
return nil
case <-f.quit:
return errTerminated
}
}
// Enqueue imports a batch of received transaction into the transaction pool
// and the fetcher. This method may be called by both transaction broadcasts and
// direct request replies. The differentiation is important so the fetcher can
// re-schedule missing transactions as soon as possible.
func (f *TxFetcher) Enqueue(peer string, txs []*types.Transaction, direct bool) error {
var (
inMeter = txReplyInMeter
knownMeter = txReplyKnownMeter
underpricedMeter = txReplyUnderpricedMeter
otherRejectMeter = txReplyOtherRejectMeter
)
if !direct {
inMeter = txBroadcastInMeter
knownMeter = txBroadcastKnownMeter
underpricedMeter = txBroadcastUnderpricedMeter
otherRejectMeter = txBroadcastOtherRejectMeter
}
// Keep track of all the propagated transactions
inMeter.Mark(int64(len(txs)))
// Push all the transactions into the pool, tracking underpriced ones to avoid
// re-requesting them and dropping the peer in case of malicious transfers.
var (
added = make([]common.Hash, 0, len(txs))
)
// proceed in batches
for i := 0; i < len(txs); i += 128 {
end := i + 128
if end > len(txs) {
end = len(txs)
}
var (
duplicate int64
underpriced int64
otherreject int64
)
batch := txs[i:end]
for j, err := range f.addTxs(batch) {
// Track the transaction hash if the price is too low for us.
// Avoid re-request this transaction when we receive another
// announcement.
if errors.Is(err, txpool.ErrUnderpriced) || errors.Is(err, txpool.ErrReplaceUnderpriced) {
for f.underpriced.Cardinality() >= maxTxUnderpricedSetSize {
f.underpriced.Pop()
}
f.underpriced.Add(batch[j].Hash())
}
// Track a few interesting failure types
switch {
case err == nil: // Noop, but need to handle to not count these
case errors.Is(err, txpool.ErrAlreadyKnown):
duplicate++
case errors.Is(err, txpool.ErrUnderpriced) || errors.Is(err, txpool.ErrReplaceUnderpriced):
underpriced++
default:
otherreject++
}
added = append(added, batch[j].Hash())
}
knownMeter.Mark(duplicate)
underpricedMeter.Mark(underpriced)
otherRejectMeter.Mark(otherreject)
// If 'other reject' is >25% of the deliveries in any batch, sleep a bit.
if otherreject > 128/4 {
time.Sleep(200 * time.Millisecond)
log.Warn("Peer delivering stale transactions", "peer", peer, "rejected", otherreject)
}
}
select {
case f.cleanup <- &txDelivery{origin: peer, hashes: added, direct: direct}:
return nil
case <-f.quit:
return errTerminated
}
}
// Drop should be called when a peer disconnects. It cleans up all the internal
// data structures of the given node.
func (f *TxFetcher) Drop(peer string) error {
select {
case f.drop <- &txDrop{peer: peer}:
return nil
case <-f.quit:
return errTerminated
}
}
// Start boots up the announcement based synchroniser, accepting and processing
// hash notifications and block fetches until termination requested.
func (f *TxFetcher) Start() {
go f.loop()
}
// Stop terminates the announcement based synchroniser, canceling all pending
// operations.
func (f *TxFetcher) Stop() {
close(f.quit)
}
func (f *TxFetcher) loop() {
var (
waitTimer = new(mclock.Timer)
timeoutTimer = new(mclock.Timer)
waitTrigger = make(chan struct{}, 1)
timeoutTrigger = make(chan struct{}, 1)
)
for {
select {
case ann := <-f.notify:
// Drop part of the new announcements if there are too many accumulated.
// Note, we could but do not filter already known transactions here as
// the probability of something arriving between this call and the pre-
// filter outside is essentially zero.
used := len(f.waitslots[ann.origin]) + len(f.announces[ann.origin])
if used >= maxTxAnnounces {
// This can happen if a set of transactions are requested but not
// all fulfilled, so the remainder are rescheduled without the cap
// check. Should be fine as the limit is in the thousands and the
// request size in the hundreds.
txAnnounceDOSMeter.Mark(int64(len(ann.hashes)))
break
}
want := used + len(ann.hashes)
if want > maxTxAnnounces {
txAnnounceDOSMeter.Mark(int64(want - maxTxAnnounces))
ann.hashes = ann.hashes[:want-maxTxAnnounces]
}
// All is well, schedule the remainder of the transactions
idleWait := len(f.waittime) == 0
_, oldPeer := f.announces[ann.origin]
for _, hash := range ann.hashes {
// If the transaction is already downloading, add it to the list
// of possible alternates (in case the current retrieval fails) and
// also account it for the peer.
if f.alternates[hash] != nil {
f.alternates[hash][ann.origin] = struct{}{}
// Stage 2 and 3 share the set of origins per tx
if announces := f.announces[ann.origin]; announces != nil {
announces[hash] = struct{}{}
} else {
f.announces[ann.origin] = map[common.Hash]struct{}{hash: {}}
}
continue
}
// If the transaction is not downloading, but is already queued
// from a different peer, track it for the new peer too.
if f.announced[hash] != nil {
f.announced[hash][ann.origin] = struct{}{}
// Stage 2 and 3 share the set of origins per tx
if announces := f.announces[ann.origin]; announces != nil {
announces[hash] = struct{}{}
} else {
f.announces[ann.origin] = map[common.Hash]struct{}{hash: {}}
}
continue
}
// If the transaction is already known to the fetcher, but not
// yet downloading, add the peer as an alternate origin in the
// waiting list.
if f.waitlist[hash] != nil {
f.waitlist[hash][ann.origin] = struct{}{}
if waitslots := f.waitslots[ann.origin]; waitslots != nil {
waitslots[hash] = struct{}{}
} else {
f.waitslots[ann.origin] = map[common.Hash]struct{}{hash: {}}
}
continue
}
// Transaction unknown to the fetcher, insert it into the waiting list
f.waitlist[hash] = map[string]struct{}{ann.origin: {}}
f.waittime[hash] = f.clock.Now()
if waitslots := f.waitslots[ann.origin]; waitslots != nil {
waitslots[hash] = struct{}{}
} else {
f.waitslots[ann.origin] = map[common.Hash]struct{}{hash: {}}
}
}
// If a new item was added to the waitlist, schedule it into the fetcher
if idleWait && len(f.waittime) > 0 {
f.rescheduleWait(waitTimer, waitTrigger)
}
// If this peer is new and announced something already queued, maybe
// request transactions from them
if !oldPeer && len(f.announces[ann.origin]) > 0 {
f.scheduleFetches(timeoutTimer, timeoutTrigger, map[string]struct{}{ann.origin: {}})
}
case <-waitTrigger:
// At least one transaction's waiting time ran out, push all expired
// ones into the retrieval queues
actives := make(map[string]struct{})
for hash, instance := range f.waittime {
if time.Duration(f.clock.Now()-instance)+txGatherSlack > txArriveTimeout {
// Transaction expired without propagation, schedule for retrieval
if f.announced[hash] != nil {
panic("announce tracker already contains waitlist item")
}
f.announced[hash] = f.waitlist[hash]
for peer := range f.waitlist[hash] {
if announces := f.announces[peer]; announces != nil {
announces[hash] = struct{}{}
} else {
f.announces[peer] = map[common.Hash]struct{}{hash: {}}
}
delete(f.waitslots[peer], hash)
if len(f.waitslots[peer]) == 0 {
delete(f.waitslots, peer)
}
actives[peer] = struct{}{}
}
delete(f.waittime, hash)
delete(f.waitlist, hash)
}
}
// If transactions are still waiting for propagation, reschedule the wait timer
if len(f.waittime) > 0 {
f.rescheduleWait(waitTimer, waitTrigger)
}
// If any peers became active and are idle, request transactions from them
if len(actives) > 0 {
f.scheduleFetches(timeoutTimer, timeoutTrigger, actives)
}
case <-timeoutTrigger:
// Clean up any expired retrievals and avoid re-requesting them from the
// same peer (either overloaded or malicious, useless in both cases). We
// could also penalize (Drop), but there's nothing to gain, and if could
// possibly further increase the load on it.
for peer, req := range f.requests {
if time.Duration(f.clock.Now()-req.time)+txGatherSlack > txFetchTimeout {
txRequestTimeoutMeter.Mark(int64(len(req.hashes)))
// Reschedule all the not-yet-delivered fetches to alternate peers
for _, hash := range req.hashes {
// Skip rescheduling hashes already delivered by someone else
if req.stolen != nil {
if _, ok := req.stolen[hash]; ok {
continue
}
}
// Move the delivery back from fetching to queued
if _, ok := f.announced[hash]; ok {
panic("announced tracker already contains alternate item")
}
if f.alternates[hash] != nil { // nil if tx was broadcast during fetch
f.announced[hash] = f.alternates[hash]
}
delete(f.announced[hash], peer)
if len(f.announced[hash]) == 0 {
delete(f.announced, hash)
}
delete(f.announces[peer], hash)
delete(f.alternates, hash)
delete(f.fetching, hash)
}
if len(f.announces[peer]) == 0 {
delete(f.announces, peer)
}
// Keep track of the request as dangling, but never expire
f.requests[peer].hashes = nil
}
}
// Schedule a new transaction retrieval
f.scheduleFetches(timeoutTimer, timeoutTrigger, nil)
// No idea if we scheduled something or not, trigger the timer if needed
// TODO(karalabe): this is kind of lame, can't we dump it into scheduleFetches somehow?
f.rescheduleTimeout(timeoutTimer, timeoutTrigger)
case delivery := <-f.cleanup:
// Independent if the delivery was direct or broadcast, remove all
// traces of the hash from internal trackers
for _, hash := range delivery.hashes {
if _, ok := f.waitlist[hash]; ok {
for peer, txset := range f.waitslots {
delete(txset, hash)
if len(txset) == 0 {
delete(f.waitslots, peer)
}
}
delete(f.waitlist, hash)
delete(f.waittime, hash)
} else {
for peer, txset := range f.announces {
delete(txset, hash)
if len(txset) == 0 {
delete(f.announces, peer)
}
}
delete(f.announced, hash)
delete(f.alternates, hash)
// If a transaction currently being fetched from a different
// origin was delivered (delivery stolen), mark it so the
// actual delivery won't double schedule it.
if origin, ok := f.fetching[hash]; ok && (origin != delivery.origin || !delivery.direct) {
stolen := f.requests[origin].stolen
if stolen == nil {
f.requests[origin].stolen = make(map[common.Hash]struct{})
stolen = f.requests[origin].stolen
}
stolen[hash] = struct{}{}
}
delete(f.fetching, hash)
}
}
// In case of a direct delivery, also reschedule anything missing
// from the original query
if delivery.direct {
// Mark the requesting successful (independent of individual status)
txRequestDoneMeter.Mark(int64(len(delivery.hashes)))
// Make sure something was pending, nuke it
req := f.requests[delivery.origin]
if req == nil {
log.Warn("Unexpected transaction delivery", "peer", delivery.origin)
break
}
delete(f.requests, delivery.origin)
// Anything not delivered should be re-scheduled (with or without
// this peer, depending on the response cutoff)
delivered := make(map[common.Hash]struct{})
for _, hash := range delivery.hashes {
delivered[hash] = struct{}{}
}
cutoff := len(req.hashes) // If nothing is delivered, assume everything is missing, don't retry!!!
for i, hash := range req.hashes {
if _, ok := delivered[hash]; ok {
cutoff = i
}
}
// Reschedule missing hashes from alternates, not-fulfilled from alt+self
for i, hash := range req.hashes {
// Skip rescheduling hashes already delivered by someone else
if req.stolen != nil {
if _, ok := req.stolen[hash]; ok {
continue
}
}
if _, ok := delivered[hash]; !ok {
if i < cutoff {
delete(f.alternates[hash], delivery.origin)
delete(f.announces[delivery.origin], hash)
if len(f.announces[delivery.origin]) == 0 {
delete(f.announces, delivery.origin)
}
}
if len(f.alternates[hash]) > 0 {
if _, ok := f.announced[hash]; ok {
panic(fmt.Sprintf("announced tracker already contains alternate item: %v", f.announced[hash]))
}
f.announced[hash] = f.alternates[hash]
}
}
delete(f.alternates, hash)
delete(f.fetching, hash)
}
// Something was delivered, try to reschedule requests
f.scheduleFetches(timeoutTimer, timeoutTrigger, nil) // Partial delivery may enable others to deliver too
}
case drop := <-f.drop:
// A peer was dropped, remove all traces of it
if _, ok := f.waitslots[drop.peer]; ok {
for hash := range f.waitslots[drop.peer] {
delete(f.waitlist[hash], drop.peer)
if len(f.waitlist[hash]) == 0 {
delete(f.waitlist, hash)
delete(f.waittime, hash)
}
}
delete(f.waitslots, drop.peer)
if len(f.waitlist) > 0 {
f.rescheduleWait(waitTimer, waitTrigger)
}
}
// Clean up any active requests
var request *txRequest
if request = f.requests[drop.peer]; request != nil {
for _, hash := range request.hashes {
// Skip rescheduling hashes already delivered by someone else
if request.stolen != nil {
if _, ok := request.stolen[hash]; ok {
continue
}
}
// Undelivered hash, reschedule if there's an alternative origin available
delete(f.alternates[hash], drop.peer)
if len(f.alternates[hash]) == 0 {
delete(f.alternates, hash)
} else {
f.announced[hash] = f.alternates[hash]
delete(f.alternates, hash)
}
delete(f.fetching, hash)
}
delete(f.requests, drop.peer)
}
// Clean up general announcement tracking
if _, ok := f.announces[drop.peer]; ok {
for hash := range f.announces[drop.peer] {
delete(f.announced[hash], drop.peer)
if len(f.announced[hash]) == 0 {
delete(f.announced, hash)
}
}
delete(f.announces, drop.peer)
}
// If a request was cancelled, check if anything needs to be rescheduled
if request != nil {
f.scheduleFetches(timeoutTimer, timeoutTrigger, nil)
f.rescheduleTimeout(timeoutTimer, timeoutTrigger)
}
case <-f.quit:
return
}
// No idea what happened, but bump some sanity metrics
txFetcherWaitingPeers.Update(int64(len(f.waitslots)))
txFetcherWaitingHashes.Update(int64(len(f.waitlist)))
txFetcherQueueingPeers.Update(int64(len(f.announces) - len(f.requests)))
txFetcherQueueingHashes.Update(int64(len(f.announced)))
txFetcherFetchingPeers.Update(int64(len(f.requests)))
txFetcherFetchingHashes.Update(int64(len(f.fetching)))
// Loop did something, ping the step notifier if needed (tests)
if f.step != nil {
f.step <- struct{}{}
}
}
}
// rescheduleWait iterates over all the transactions currently in the waitlist
// and schedules the movement into the fetcher for the earliest.
//
// The method has a granularity of 'gatherSlack', since there's not much point in
// spinning over all the transactions just to maybe find one that should trigger
// a few ms earlier.
func (f *TxFetcher) rescheduleWait(timer *mclock.Timer, trigger chan struct{}) {
if *timer != nil {
(*timer).Stop()
}
now := f.clock.Now()
earliest := now
for _, instance := range f.waittime {
if earliest > instance {
earliest = instance
if txArriveTimeout-time.Duration(now-earliest) < gatherSlack {
break
}
}
}
*timer = f.clock.AfterFunc(txArriveTimeout-time.Duration(now-earliest), func() {
trigger <- struct{}{}
})
}
// rescheduleTimeout iterates over all the transactions currently in flight and
// schedules a cleanup run when the first would trigger.
//
// The method has a granularity of 'gatherSlack', since there's not much point in
// spinning over all the transactions just to maybe find one that should trigger
// a few ms earlier.
//
// This method is a bit "flaky" "by design". In theory the timeout timer only ever
// should be rescheduled if some request is pending. In practice, a timeout will
// cause the timer to be rescheduled every 5 secs (until the peer comes through or
// disconnects). This is a limitation of the fetcher code because we don't trac
// pending requests and timed out requests separately. Without double tracking, if
// we simply didn't reschedule the timer on all-timeout then the timer would never
// be set again since len(request) > 0 => something's running.
func (f *TxFetcher) rescheduleTimeout(timer *mclock.Timer, trigger chan struct{}) {
if *timer != nil {
(*timer).Stop()
}
now := f.clock.Now()
earliest := now
for _, req := range f.requests {
// If this request already timed out, skip it altogether
if req.hashes == nil {
continue
}
if earliest > req.time {
earliest = req.time
if txFetchTimeout-time.Duration(now-earliest) < gatherSlack {
break
}
}
}
*timer = f.clock.AfterFunc(txFetchTimeout-time.Duration(now-earliest), func() {
trigger <- struct{}{}
})
}
// scheduleFetches starts a batch of retrievals for all available idle peers.
func (f *TxFetcher) scheduleFetches(timer *mclock.Timer, timeout chan struct{}, whitelist map[string]struct{}) {
// Gather the set of peers we want to retrieve from (default to all)
actives := whitelist
if actives == nil {
actives = make(map[string]struct{})
for peer := range f.announces {
actives[peer] = struct{}{}
}
}
if len(actives) == 0 {
return
}
// For each active peer, try to schedule some transaction fetches
idle := len(f.requests) == 0
f.forEachPeer(actives, func(peer string) {
if f.requests[peer] != nil {
return // continue in the for-each
}
if len(f.announces[peer]) == 0 {
return // continue in the for-each
}
hashes := make([]common.Hash, 0, maxTxRetrievals)
f.forEachHash(f.announces[peer], func(hash common.Hash) bool {
if _, ok := f.fetching[hash]; !ok {
// Mark the hash as fetching and stash away possible alternates
f.fetching[hash] = peer
if _, ok := f.alternates[hash]; ok {
panic(fmt.Sprintf("alternate tracker already contains fetching item: %v", f.alternates[hash]))
}
f.alternates[hash] = f.announced[hash]
delete(f.announced, hash)
// Accumulate the hash and stop if the limit was reached
hashes = append(hashes, hash)
if len(hashes) >= maxTxRetrievals {
return false // break in the for-each
}
}
return true // continue in the for-each
})
// If any hashes were allocated, request them from the peer
if len(hashes) > 0 {
f.requests[peer] = &txRequest{hashes: hashes, time: f.clock.Now()}
txRequestOutMeter.Mark(int64(len(hashes)))
go func(peer string, hashes []common.Hash) {
// Try to fetch the transactions, but in case of a request
// failure (e.g. peer disconnected), reschedule the hashes.
if err := f.fetchTxs(peer, hashes); err != nil {
txRequestFailMeter.Mark(int64(len(hashes)))
f.Drop(peer)
}
}(peer, hashes)
}
})
// If a new request was fired, schedule a timeout timer
if idle && len(f.requests) > 0 {
f.rescheduleTimeout(timer, timeout)
}
}
// forEachPeer does a range loop over a map of peers in production, but during
// testing it does a deterministic sorted random to allow reproducing issues.
func (f *TxFetcher) forEachPeer(peers map[string]struct{}, do func(peer string)) {
// If we're running production, use whatever Go's map gives us
if f.rand == nil {
for peer := range peers {
do(peer)
}
return
}
// We're running the test suite, make iteration deterministic
list := make([]string, 0, len(peers))
for peer := range peers {
list = append(list, peer)
}
sort.Strings(list)
rotateStrings(list, f.rand.Intn(len(list)))
for _, peer := range list {
do(peer)
}
}
// forEachHash does a range loop over a map of hashes in production, but during
// testing it does a deterministic sorted random to allow reproducing issues.
func (f *TxFetcher) forEachHash(hashes map[common.Hash]struct{}, do func(hash common.Hash) bool) {
// If we're running production, use whatever Go's map gives us
if f.rand == nil {
for hash := range hashes {
if !do(hash) {
return
}
}
return
}
// We're running the test suite, make iteration deterministic
list := make([]common.Hash, 0, len(hashes))
for hash := range hashes {
list = append(list, hash)
}
sortHashes(list)
rotateHashes(list, f.rand.Intn(len(list)))
for _, hash := range list {
if !do(hash) {
return
}
}
}
// rotateStrings rotates the contents of a slice by n steps. This method is only
// used in tests to simulate random map iteration but keep it deterministic.
func rotateStrings(slice []string, n int) {
orig := make([]string, len(slice))
copy(orig, slice)
for i := 0; i < len(orig); i++ {
slice[i] = orig[(i+n)%len(orig)]
}
}
// sortHashes sorts a slice of hashes. This method is only used in tests in order
// to simulate random map iteration but keep it deterministic.
func sortHashes(slice []common.Hash) {
for i := 0; i < len(slice); i++ {
for j := i + 1; j < len(slice); j++ {
if bytes.Compare(slice[i][:], slice[j][:]) > 0 {
slice[i], slice[j] = slice[j], slice[i]
}
}
}
}
// rotateHashes rotates the contents of a slice by n steps. This method is only
// used in tests to simulate random map iteration but keep it deterministic.
func rotateHashes(slice []common.Hash, n int) {
orig := make([]common.Hash, len(slice))
copy(orig, slice)
for i := 0; i < len(orig); i++ {
slice[i] = orig[(i+n)%len(orig)]
}
}