forked from cerc-io/plugeth
237 lines
9.0 KiB
Go
237 lines
9.0 KiB
Go
// Copyright 2023 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
package txpool
|
|
|
|
import (
|
|
"crypto/ecdsa"
|
|
"math/big"
|
|
"testing"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/core/rawdb"
|
|
"github.com/ethereum/go-ethereum/core/state"
|
|
"github.com/ethereum/go-ethereum/core/types"
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"github.com/ethereum/go-ethereum/event"
|
|
)
|
|
|
|
func pricedValuedTransaction(nonce uint64, value int64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
|
|
tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(value), gaslimit, gasprice, nil), types.HomesteadSigner{}, key)
|
|
return tx
|
|
}
|
|
|
|
func count(t *testing.T, pool *TxPool) (pending int, queued int) {
|
|
t.Helper()
|
|
pending, queued = pool.stats()
|
|
if err := validatePoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
return pending, queued
|
|
}
|
|
|
|
func fillPool(t testing.TB, pool *TxPool) {
|
|
t.Helper()
|
|
// Create a number of test accounts, fund them and make transactions
|
|
executableTxs := types.Transactions{}
|
|
nonExecutableTxs := types.Transactions{}
|
|
for i := 0; i < 384; i++ {
|
|
key, _ := crypto.GenerateKey()
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), big.NewInt(10000000000))
|
|
// Add executable ones
|
|
for j := 0; j < int(pool.config.AccountSlots); j++ {
|
|
executableTxs = append(executableTxs, pricedTransaction(uint64(j), 100000, big.NewInt(300), key))
|
|
}
|
|
}
|
|
// Import the batch and verify that limits have been enforced
|
|
pool.AddRemotesSync(executableTxs)
|
|
pool.AddRemotesSync(nonExecutableTxs)
|
|
pending, queued := pool.Stats()
|
|
slots := pool.all.Slots()
|
|
// sanity-check that the test prerequisites are ok (pending full)
|
|
if have, want := pending, slots; have != want {
|
|
t.Fatalf("have %d, want %d", have, want)
|
|
}
|
|
if have, want := queued, 0; have != want {
|
|
t.Fatalf("have %d, want %d", have, want)
|
|
}
|
|
|
|
t.Logf("pool.config: GlobalSlots=%d, GlobalQueue=%d\n", pool.config.GlobalSlots, pool.config.GlobalQueue)
|
|
t.Logf("pending: %d queued: %d, all: %d\n", pending, queued, slots)
|
|
}
|
|
|
|
// Tests that if a batch high-priced of non-executables arrive, they do not kick out
|
|
// executable transactions
|
|
func TestTransactionFutureAttack(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create the pool to test the limit enforcement with
|
|
statedb, _ := state.New(types.EmptyRootHash, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := newTestBlockChain(1000000, statedb, new(event.Feed))
|
|
config := testTxPoolConfig
|
|
config.GlobalQueue = 100
|
|
config.GlobalSlots = 100
|
|
pool := NewTxPool(config, eip1559Config, blockchain)
|
|
defer pool.Stop()
|
|
fillPool(t, pool)
|
|
pending, _ := pool.Stats()
|
|
// Now, future transaction attack starts, let's add a bunch of expensive non-executables, and see if the pending-count drops
|
|
{
|
|
key, _ := crypto.GenerateKey()
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), big.NewInt(100000000000))
|
|
futureTxs := types.Transactions{}
|
|
for j := 0; j < int(pool.config.GlobalSlots+pool.config.GlobalQueue); j++ {
|
|
futureTxs = append(futureTxs, pricedTransaction(1000+uint64(j), 100000, big.NewInt(500), key))
|
|
}
|
|
for i := 0; i < 5; i++ {
|
|
pool.AddRemotesSync(futureTxs)
|
|
newPending, newQueued := count(t, pool)
|
|
t.Logf("pending: %d queued: %d, all: %d\n", newPending, newQueued, pool.all.Slots())
|
|
}
|
|
}
|
|
newPending, _ := pool.Stats()
|
|
// Pending should not have been touched
|
|
if have, want := newPending, pending; have < want {
|
|
t.Errorf("wrong pending-count, have %d, want %d (GlobalSlots: %d)",
|
|
have, want, pool.config.GlobalSlots)
|
|
}
|
|
}
|
|
|
|
// Tests that if a batch high-priced of non-executables arrive, they do not kick out
|
|
// executable transactions
|
|
func TestTransactionFuture1559(t *testing.T) {
|
|
t.Parallel()
|
|
// Create the pool to test the pricing enforcement with
|
|
statedb, _ := state.New(types.EmptyRootHash, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := newTestBlockChain(1000000, statedb, new(event.Feed))
|
|
pool := NewTxPool(testTxPoolConfig, eip1559Config, blockchain)
|
|
defer pool.Stop()
|
|
|
|
// Create a number of test accounts, fund them and make transactions
|
|
fillPool(t, pool)
|
|
pending, _ := pool.Stats()
|
|
|
|
// Now, future transaction attack starts, let's add a bunch of expensive non-executables, and see if the pending-count drops
|
|
{
|
|
key, _ := crypto.GenerateKey()
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), big.NewInt(100000000000))
|
|
futureTxs := types.Transactions{}
|
|
for j := 0; j < int(pool.config.GlobalSlots+pool.config.GlobalQueue); j++ {
|
|
futureTxs = append(futureTxs, dynamicFeeTx(1000+uint64(j), 100000, big.NewInt(200), big.NewInt(101), key))
|
|
}
|
|
pool.AddRemotesSync(futureTxs)
|
|
}
|
|
newPending, _ := pool.Stats()
|
|
// Pending should not have been touched
|
|
if have, want := newPending, pending; have != want {
|
|
t.Errorf("Wrong pending-count, have %d, want %d (GlobalSlots: %d)",
|
|
have, want, pool.config.GlobalSlots)
|
|
}
|
|
}
|
|
|
|
// Tests that if a batch of balance-overdraft txs arrive, they do not kick out
|
|
// executable transactions
|
|
func TestTransactionZAttack(t *testing.T) {
|
|
t.Parallel()
|
|
// Create the pool to test the pricing enforcement with
|
|
statedb, _ := state.New(types.EmptyRootHash, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := newTestBlockChain(1000000, statedb, new(event.Feed))
|
|
pool := NewTxPool(testTxPoolConfig, eip1559Config, blockchain)
|
|
defer pool.Stop()
|
|
// Create a number of test accounts, fund them and make transactions
|
|
fillPool(t, pool)
|
|
|
|
countInvalidPending := func() int {
|
|
t.Helper()
|
|
var ivpendingNum int
|
|
pendingtxs, _ := pool.Content()
|
|
for account, txs := range pendingtxs {
|
|
cur_balance := new(big.Int).Set(pool.currentState.GetBalance(account))
|
|
for _, tx := range txs {
|
|
if cur_balance.Cmp(tx.Value()) <= 0 {
|
|
ivpendingNum++
|
|
} else {
|
|
cur_balance.Sub(cur_balance, tx.Value())
|
|
}
|
|
}
|
|
}
|
|
if err := validatePoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
return ivpendingNum
|
|
}
|
|
ivPending := countInvalidPending()
|
|
t.Logf("invalid pending: %d\n", ivPending)
|
|
|
|
// Now, DETER-Z attack starts, let's add a bunch of expensive non-executables (from N accounts) along with balance-overdraft txs (from one account), and see if the pending-count drops
|
|
for j := 0; j < int(pool.config.GlobalQueue); j++ {
|
|
futureTxs := types.Transactions{}
|
|
key, _ := crypto.GenerateKey()
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), big.NewInt(100000000000))
|
|
futureTxs = append(futureTxs, pricedTransaction(1000+uint64(j), 21000, big.NewInt(500), key))
|
|
pool.AddRemotesSync(futureTxs)
|
|
}
|
|
|
|
overDraftTxs := types.Transactions{}
|
|
{
|
|
key, _ := crypto.GenerateKey()
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), big.NewInt(100000000000))
|
|
for j := 0; j < int(pool.config.GlobalSlots); j++ {
|
|
overDraftTxs = append(overDraftTxs, pricedValuedTransaction(uint64(j), 600000000000, 21000, big.NewInt(500), key))
|
|
}
|
|
}
|
|
pool.AddRemotesSync(overDraftTxs)
|
|
pool.AddRemotesSync(overDraftTxs)
|
|
pool.AddRemotesSync(overDraftTxs)
|
|
pool.AddRemotesSync(overDraftTxs)
|
|
pool.AddRemotesSync(overDraftTxs)
|
|
|
|
newPending, newQueued := count(t, pool)
|
|
newIvPending := countInvalidPending()
|
|
t.Logf("pool.all.Slots(): %d\n", pool.all.Slots())
|
|
t.Logf("pending: %d queued: %d, all: %d\n", newPending, newQueued, pool.all.Slots())
|
|
t.Logf("invalid pending: %d\n", newIvPending)
|
|
|
|
// Pending should not have been touched
|
|
if newIvPending != ivPending {
|
|
t.Errorf("Wrong invalid pending-count, have %d, want %d (GlobalSlots: %d, queued: %d)",
|
|
newIvPending, ivPending, pool.config.GlobalSlots, newQueued)
|
|
}
|
|
}
|
|
|
|
func BenchmarkFutureAttack(b *testing.B) {
|
|
// Create the pool to test the limit enforcement with
|
|
statedb, _ := state.New(types.EmptyRootHash, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := newTestBlockChain(1000000, statedb, new(event.Feed))
|
|
config := testTxPoolConfig
|
|
config.GlobalQueue = 100
|
|
config.GlobalSlots = 100
|
|
pool := NewTxPool(config, eip1559Config, blockchain)
|
|
defer pool.Stop()
|
|
fillPool(b, pool)
|
|
|
|
key, _ := crypto.GenerateKey()
|
|
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), big.NewInt(100000000000))
|
|
futureTxs := types.Transactions{}
|
|
|
|
for n := 0; n < b.N; n++ {
|
|
futureTxs = append(futureTxs, pricedTransaction(1000+uint64(n), 100000, big.NewInt(500), key))
|
|
}
|
|
b.ResetTimer()
|
|
for i := 0; i < 5; i++ {
|
|
pool.AddRemotesSync(futureTxs)
|
|
}
|
|
}
|