1
0
forked from cerc-io/plugeth
plugeth/tests/solidity/contracts/OpCodes.sol
2019-09-26 10:30:33 +02:00

323 lines
8.8 KiB
Solidity

pragma solidity >=0.4.21 <0.6.0;
contract Test1 {
function isSameAddress(address a, address b) public returns(bool){ //Simply add the two arguments and return
if (a == b) return true;
return false;
}
}
contract OpCodes {
Test1 test1;
constructor() public { //Constructor function
test1 = new Test1(); //Create new "Test1" function
}
modifier onlyOwner(address _owner) {
require(msg.sender == _owner);
_;
}
// Add a todo to the list
function test() public {
//simple_instructions
/*assembly { pop(sub(dup1, mul(dup1, dup1))) }*/
//keywords
assembly { pop(address) return(2, byte(2,1)) }
//label_complex
/*assembly { 7 abc: 8 eq jump(abc) jumpi(eq(7, 8), abc) pop }
assembly { pop(jumpi(eq(7, 8), abc)) jump(abc) }*/
//functional
/*assembly { let x := 2 add(7, mul(6, x)) mul(7, 8) add =: x }*/
//for_statement
assembly { for { let i := 1 } lt(i, 5) { i := add(i, 1) } {} }
assembly { for { let i := 6 } gt(i, 5) { i := add(i, 1) } {} }
assembly { for { let i := 1 } slt(i, 5) { i := add(i, 1) } {} }
assembly { for { let i := 6 } sgt(i, 5) { i := add(i, 1) } {} }
//no_opcodes_in_strict
assembly { pop(callvalue()) }
//no_dup_swap_in_strict
/*assembly { swap1() }*/
//print_functional
assembly { let x := mul(sload(0x12), 7) }
//print_if
assembly { if 2 { pop(mload(0)) }}
//function_definitions_multiple_args
assembly { function f(a, d){ mstore(a, d) } function g(a, d) -> x, y {}}
//sstore
assembly { function f(a, d){ sstore(a, d) } function g(a, d) -> x, y {}}
//mstore8
assembly { function f(a, d){ mstore8(a, d) } function g(a, d) -> x, y {}}
//calldatacopy
assembly {
let a := mload(0x40)
let b := add(a, 32)
calldatacopy(a, 4, 32)
/*calldatacopy(b, add(4, 32), 32)*/
/*result := add(mload(a), mload(b))*/
}
//codecopy
assembly {
let a := mload(0x40)
let b := add(a, 32)
codecopy(a, 4, 32)
}
//codecopy
assembly {
let a := mload(0x40)
let b := add(a, 32)
extcodecopy(0, a, 4, 32)
}
//for_statement
assembly { let x := calldatasize() for { let i := 0} lt(i, x) { i := add(i, 1) } { mstore(i, 2) } }
//keccak256
assembly { pop(keccak256(0,0)) }
//returndatasize
assembly { let r := returndatasize }
//returndatacopy
assembly { returndatacopy(64, 32, 0) }
//byzantium vs const Constantinople
//staticcall
assembly { pop(staticcall(10000, 0x123, 64, 0x10, 128, 0x10)) }
/*//create2 Constantinople
assembly { pop(create2(10, 0x123, 32, 64)) }*/
//create Constantinople
assembly { pop(create(10, 0x123, 32)) }
//shift Constantinople
/*assembly { pop(shl(10, 32)) }
assembly { pop(shr(10, 32)) }
assembly { pop(sar(10, 32)) }*/
//not
assembly { pop( not(0x1f)) }
//exp
assembly { pop( exp(2, 226)) }
//mod
assembly { pop( mod(3, 9)) }
//smod
assembly { pop( smod(3, 9)) }
//div
assembly { pop( div(4, 2)) }
//sdiv
assembly { pop( sdiv(4, 2)) }
//iszero
assembly { pop(iszero(1)) }
//and
assembly { pop(and(2,3)) }
//or
assembly { pop(or(3,3)) }
//xor
assembly { pop(xor(3,3)) }
//addmod
assembly { pop(addmod(3,3,6)) }
//mulmod
assembly { pop(mulmod(3,3,3)) }
//signextend
assembly { pop(signextend(1, 10)) }
//sha3
assembly { pop(calldataload(0)) }
//blockhash
assembly { pop(blockhash(sub(number(), 1))) }
//balance
assembly { pop(balance(0x0)) }
//caller
assembly { pop(caller()) }
//codesize
assembly { pop(codesize()) }
//extcodesize
assembly { pop(extcodesize(0x1)) }
//origin
assembly { pop(origin()) }
//gas
assembly { pop(gas())}
//msize
assembly { pop(msize())}
//pc
assembly { pop(pc())}
//gasprice
assembly { pop(gasprice())}
//coinbase
assembly { pop(coinbase())}
//timestamp
assembly { pop(timestamp())}
//number
assembly { pop(number())}
//difficulty
assembly { pop(difficulty())}
//gaslimit
assembly { pop(gaslimit())}
//call
address contractAddr = address(test1);
bytes4 sig = bytes4(keccak256("isSameAddress(address,address)")); //Function signature
address a = msg.sender;
assembly {
let x := mload(0x40) //Find empty storage location using "free memory pointer"
mstore(x,sig) //Place signature at begining of empty storage
mstore(add(x,0x04),a) // first address parameter. just after signature
mstore(add(x,0x24),a) // 2nd address parameter - first padded. add 32 bytes (not 20 bytes)
mstore(0x40,add(x,0x64)) // this is missing in other examples. Set free pointer before function call. so it is used by called function.
// new free pointer position after the output values of the called function.
let success := call(
5000, //5k gas
contractAddr, //To addr
0, //No wei passed
x, // Inputs are at location x
0x44, //Inputs size two padded, so 68 bytes
x, //Store output over input
0x20) //Output is 32 bytes long
}
//callcode
assembly {
let x := mload(0x40) //Find empty storage location using "free memory pointer"
mstore(x,sig) //Place signature at begining of empty storage
mstore(add(x,0x04),a) // first address parameter. just after signature
mstore(add(x,0x24),a) // 2nd address parameter - first padded. add 32 bytes (not 20 bytes)
mstore(0x40,add(x,0x64)) // this is missing in other examples. Set free pointer before function call. so it is used by called function.
// new free pointer position after the output values of the called function.
let success := callcode(
5000, //5k gas
contractAddr, //To addr
0, //No wei passed
x, // Inputs are at location x
0x44, //Inputs size two padded, so 68 bytes
x, //Store output over input
0x20) //Output is 32 bytes long
}
//delegatecall
assembly {
let x := mload(0x40) //Find empty storage location using "free memory pointer"
mstore(x,sig) //Place signature at begining of empty storage
mstore(add(x,0x04),a) // first address parameter. just after signature
mstore(add(x,0x24),a) // 2nd address parameter - first padded. add 32 bytes (not 20 bytes)
mstore(0x40,add(x,0x64)) // this is missing in other examples. Set free pointer before function call. so it is used by called function.
// new free pointer position after the output values of the called function.
let success := delegatecall(
5000, //5k gas
contractAddr, //To addr
x, // Inputs are at location x
0x44, //Inputs size two padded, so 68 bytes
x, //Store output over input
0x20) //Output is 32 bytes long
}
uint256 _id = 0x420042;
//log0
log0(
bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20)
);
//log1
log1(
bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20),
bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20)
);
//log2
log2(
bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20),
bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20),
bytes32(uint256(msg.sender))
);
//log3
log3(
bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20),
bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20),
bytes32(uint256(msg.sender)),
bytes32(_id)
);
//log4
log4(
bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20),
bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20),
bytes32(uint256(msg.sender)),
bytes32(_id),
bytes32(_id)
);
//selfdestruct
assembly { selfdestruct(0x02) }
}
function test_revert() public {
//revert
assembly{ revert(0, 0) }
}
function test_invalid() public {
//revert
assembly{ invalid() }
}
function test_stop() public {
//revert
assembly{ stop() }
}
}