plugeth/les/helper_test.go
2019-07-31 11:35:57 +03:00

511 lines
18 KiB
Go

// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// This file contains some shares testing functionality, common to multiple
// different files and modules being tested.
package les
import (
"context"
"crypto/rand"
"math/big"
"sync"
"testing"
"time"
"github.com/ethereum/go-ethereum/accounts/abi/bind"
"github.com/ethereum/go-ethereum/accounts/abi/bind/backends"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/consensus/ethash"
"github.com/ethereum/go-ethereum/contracts/checkpointoracle/contract"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/eth"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/les/flowcontrol"
"github.com/ethereum/go-ethereum/light"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/params"
)
var (
bankKey, _ = crypto.GenerateKey()
bankAddr = crypto.PubkeyToAddress(bankKey.PublicKey)
bankFunds = big.NewInt(1000000000000000000)
userKey1, _ = crypto.GenerateKey()
userKey2, _ = crypto.GenerateKey()
userAddr1 = crypto.PubkeyToAddress(userKey1.PublicKey)
userAddr2 = crypto.PubkeyToAddress(userKey2.PublicKey)
testContractCode = common.Hex2Bytes("606060405260cc8060106000396000f360606040526000357c01000000000000000000000000000000000000000000000000000000009004806360cd2685146041578063c16431b914606b57603f565b005b6055600480803590602001909190505060a9565b6040518082815260200191505060405180910390f35b60886004808035906020019091908035906020019091905050608a565b005b80600060005083606481101560025790900160005b50819055505b5050565b6000600060005082606481101560025790900160005b5054905060c7565b91905056")
testContractAddr common.Address
testContractCodeDeployed = testContractCode[16:]
testContractDeployed = uint64(2)
testEventEmitterCode = common.Hex2Bytes("60606040523415600e57600080fd5b7f57050ab73f6b9ebdd9f76b8d4997793f48cf956e965ee070551b9ca0bb71584e60405160405180910390a160358060476000396000f3006060604052600080fd00a165627a7a723058203f727efcad8b5811f8cb1fc2620ce5e8c63570d697aef968172de296ea3994140029")
// Checkpoint registrar relative
registrarAddr common.Address
signerKey, _ = crypto.GenerateKey()
signerAddr = crypto.PubkeyToAddress(signerKey.PublicKey)
)
var (
// The block frequency for creating checkpoint(only used in test)
sectionSize = big.NewInt(512)
// The number of confirmations needed to generate a checkpoint(only used in test).
processConfirms = big.NewInt(4)
//
testBufLimit = uint64(1000000)
testBufRecharge = uint64(1000)
)
/*
contract test {
uint256[100] data;
function Put(uint256 addr, uint256 value) {
data[addr] = value;
}
function Get(uint256 addr) constant returns (uint256 value) {
return data[addr];
}
}
*/
// prepareTestchain pre-commits specified number customized blocks into chain.
func prepareTestchain(n int, backend *backends.SimulatedBackend) {
var (
ctx = context.Background()
signer = types.HomesteadSigner{}
)
for i := 0; i < n; i++ {
switch i {
case 0:
// deploy checkpoint contract
registrarAddr, _, _, _ = contract.DeployCheckpointOracle(bind.NewKeyedTransactor(bankKey), backend, []common.Address{signerAddr}, sectionSize, processConfirms, big.NewInt(1))
// bankUser transfers some ether to user1
nonce, _ := backend.PendingNonceAt(ctx, bankAddr)
tx, _ := types.SignTx(types.NewTransaction(nonce, userAddr1, big.NewInt(10000), params.TxGas, nil, nil), signer, bankKey)
backend.SendTransaction(ctx, tx)
case 1:
bankNonce, _ := backend.PendingNonceAt(ctx, bankAddr)
userNonce1, _ := backend.PendingNonceAt(ctx, userAddr1)
// bankUser transfers more ether to user1
tx1, _ := types.SignTx(types.NewTransaction(bankNonce, userAddr1, big.NewInt(1000), params.TxGas, nil, nil), signer, bankKey)
backend.SendTransaction(ctx, tx1)
// user1 relays ether to user2
tx2, _ := types.SignTx(types.NewTransaction(userNonce1, userAddr2, big.NewInt(1000), params.TxGas, nil, nil), signer, userKey1)
backend.SendTransaction(ctx, tx2)
// user1 deploys a test contract
tx3, _ := types.SignTx(types.NewContractCreation(userNonce1+1, big.NewInt(0), 200000, big.NewInt(0), testContractCode), signer, userKey1)
backend.SendTransaction(ctx, tx3)
testContractAddr = crypto.CreateAddress(userAddr1, userNonce1+1)
// user1 deploys a event contract
tx4, _ := types.SignTx(types.NewContractCreation(userNonce1+2, big.NewInt(0), 200000, big.NewInt(0), testEventEmitterCode), signer, userKey1)
backend.SendTransaction(ctx, tx4)
case 2:
// bankUser transfer some ether to signer
bankNonce, _ := backend.PendingNonceAt(ctx, bankAddr)
tx1, _ := types.SignTx(types.NewTransaction(bankNonce, signerAddr, big.NewInt(1000000000), params.TxGas, nil, nil), signer, bankKey)
backend.SendTransaction(ctx, tx1)
// invoke test contract
data := common.Hex2Bytes("C16431B900000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000001")
tx2, _ := types.SignTx(types.NewTransaction(bankNonce+1, testContractAddr, big.NewInt(0), 100000, nil, data), signer, bankKey)
backend.SendTransaction(ctx, tx2)
case 3:
// invoke test contract
bankNonce, _ := backend.PendingNonceAt(ctx, bankAddr)
data := common.Hex2Bytes("C16431B900000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000002")
tx, _ := types.SignTx(types.NewTransaction(bankNonce, testContractAddr, big.NewInt(0), 100000, nil, data), signer, bankKey)
backend.SendTransaction(ctx, tx)
}
backend.Commit()
}
}
// testIndexers creates a set of indexers with specified params for testing purpose.
func testIndexers(db ethdb.Database, odr light.OdrBackend, config *light.IndexerConfig) []*core.ChainIndexer {
var indexers [3]*core.ChainIndexer
indexers[0] = light.NewChtIndexer(db, odr, config.ChtSize, config.ChtConfirms)
indexers[1] = eth.NewBloomIndexer(db, config.BloomSize, config.BloomConfirms)
indexers[2] = light.NewBloomTrieIndexer(db, odr, config.BloomSize, config.BloomTrieSize)
// make bloomTrieIndexer as a child indexer of bloom indexer.
indexers[1].AddChildIndexer(indexers[2])
return indexers[:]
}
// newTestProtocolManager creates a new protocol manager for testing purposes,
// with the given number of blocks already known, potential notification
// channels for different events and relative chain indexers array.
func newTestProtocolManager(lightSync bool, blocks int, odr *LesOdr, indexers []*core.ChainIndexer, peers *peerSet, db ethdb.Database, ulcServers []string, ulcFraction int, testCost uint64, clock mclock.Clock) (*ProtocolManager, *backends.SimulatedBackend, error) {
var (
evmux = new(event.TypeMux)
engine = ethash.NewFaker()
gspec = core.Genesis{
Config: params.AllEthashProtocolChanges,
Alloc: core.GenesisAlloc{bankAddr: {Balance: bankFunds}},
}
pool txPool
chain BlockChain
exitCh = make(chan struct{})
)
gspec.MustCommit(db)
if peers == nil {
peers = newPeerSet()
}
// create a simulation backend and pre-commit several customized block to the database.
simulation := backends.NewSimulatedBackendWithDatabase(db, gspec.Alloc, 100000000)
prepareTestchain(blocks, simulation)
// initialize empty chain for light client or pre-committed chain for server.
if lightSync {
chain, _ = light.NewLightChain(odr, gspec.Config, engine, nil)
} else {
chain = simulation.Blockchain()
config := core.DefaultTxPoolConfig
config.Journal = ""
pool = core.NewTxPool(config, gspec.Config, simulation.Blockchain())
}
// Create contract registrar
indexConfig := light.TestServerIndexerConfig
if lightSync {
indexConfig = light.TestClientIndexerConfig
}
config := &params.CheckpointOracleConfig{
Address: crypto.CreateAddress(bankAddr, 0),
Signers: []common.Address{signerAddr},
Threshold: 1,
}
var reg *checkpointOracle
if indexers != nil {
getLocal := func(index uint64) params.TrustedCheckpoint {
chtIndexer := indexers[0]
sectionHead := chtIndexer.SectionHead(index)
return params.TrustedCheckpoint{
SectionIndex: index,
SectionHead: sectionHead,
CHTRoot: light.GetChtRoot(db, index, sectionHead),
BloomRoot: light.GetBloomTrieRoot(db, index, sectionHead),
}
}
reg = newCheckpointOracle(config, getLocal)
}
pm, err := NewProtocolManager(gspec.Config, nil, indexConfig, ulcServers, ulcFraction, lightSync, NetworkId, evmux, peers, chain, pool, db, odr, nil, reg, exitCh, new(sync.WaitGroup), func() bool { return true })
if err != nil {
return nil, nil, err
}
// Registrar initialization could failed if checkpoint contract is not specified.
if pm.reg != nil {
pm.reg.start(simulation)
}
// Set up les server stuff.
if !lightSync {
srv := &LesServer{lesCommons: lesCommons{protocolManager: pm, chainDb: db}}
pm.server = srv
pm.servingQueue = newServingQueue(int64(time.Millisecond*10), 1)
pm.servingQueue.setThreads(4)
srv.defParams = flowcontrol.ServerParams{
BufLimit: testBufLimit,
MinRecharge: testBufRecharge,
}
srv.testCost = testCost
srv.fcManager = flowcontrol.NewClientManager(nil, clock)
}
pm.Start(1000)
return pm, simulation, nil
}
// newTestProtocolManagerMust creates a new protocol manager for testing purposes,
// with the given number of blocks already known, potential notification channels
// for different events and relative chain indexers array. In case of an error, the
// constructor force-fails the test.
func newTestProtocolManagerMust(t *testing.T, lightSync bool, blocks int, odr *LesOdr, indexers []*core.ChainIndexer, peers *peerSet, db ethdb.Database, ulcServers []string, ulcFraction int) (*ProtocolManager, *backends.SimulatedBackend) {
pm, backend, err := newTestProtocolManager(lightSync, blocks, odr, indexers, peers, db, ulcServers, ulcFraction, 0, &mclock.System{})
if err != nil {
t.Fatalf("Failed to create protocol manager: %v", err)
}
return pm, backend
}
// testPeer is a simulated peer to allow testing direct network calls.
type testPeer struct {
net p2p.MsgReadWriter // Network layer reader/writer to simulate remote messaging
app *p2p.MsgPipeRW // Application layer reader/writer to simulate the local side
*peer
}
// newTestPeer creates a new peer registered at the given protocol manager.
func newTestPeer(t *testing.T, name string, version int, pm *ProtocolManager, shake bool, testCost uint64) (*testPeer, <-chan error) {
// Create a message pipe to communicate through
app, net := p2p.MsgPipe()
// Generate a random id and create the peer
var id enode.ID
rand.Read(id[:])
peer := pm.newPeer(version, NetworkId, p2p.NewPeer(id, name, nil), net)
// Start the peer on a new thread
errc := make(chan error, 1)
go func() {
select {
case pm.newPeerCh <- peer:
errc <- pm.handle(peer)
case <-pm.quitSync:
errc <- p2p.DiscQuitting
}
}()
tp := &testPeer{
app: app,
net: net,
peer: peer,
}
// Execute any implicitly requested handshakes and return
if shake {
var (
genesis = pm.blockchain.Genesis()
head = pm.blockchain.CurrentHeader()
td = pm.blockchain.GetTd(head.Hash(), head.Number.Uint64())
)
tp.handshake(t, td, head.Hash(), head.Number.Uint64(), genesis.Hash(), testCost)
}
return tp, errc
}
func newTestPeerPair(name string, version int, pm, pm2 *ProtocolManager) (*peer, <-chan error, *peer, <-chan error) {
// Create a message pipe to communicate through
app, net := p2p.MsgPipe()
// Generate a random id and create the peer
var id enode.ID
rand.Read(id[:])
peer := pm.newPeer(version, NetworkId, p2p.NewPeer(id, name, nil), net)
peer2 := pm2.newPeer(version, NetworkId, p2p.NewPeer(id, name, nil), app)
// Start the peer on a new thread
errc := make(chan error, 1)
errc2 := make(chan error, 1)
go func() {
select {
case pm.newPeerCh <- peer:
errc <- pm.handle(peer)
case <-pm.quitSync:
errc <- p2p.DiscQuitting
}
}()
go func() {
select {
case pm2.newPeerCh <- peer2:
errc2 <- pm2.handle(peer2)
case <-pm2.quitSync:
errc2 <- p2p.DiscQuitting
}
}()
return peer, errc, peer2, errc2
}
// handshake simulates a trivial handshake that expects the same state from the
// remote side as we are simulating locally.
func (p *testPeer) handshake(t *testing.T, td *big.Int, head common.Hash, headNum uint64, genesis common.Hash, testCost uint64) {
var expList keyValueList
expList = expList.add("protocolVersion", uint64(p.version))
expList = expList.add("networkId", uint64(NetworkId))
expList = expList.add("headTd", td)
expList = expList.add("headHash", head)
expList = expList.add("headNum", headNum)
expList = expList.add("genesisHash", genesis)
sendList := make(keyValueList, len(expList))
copy(sendList, expList)
expList = expList.add("serveHeaders", nil)
expList = expList.add("serveChainSince", uint64(0))
expList = expList.add("serveStateSince", uint64(0))
expList = expList.add("serveRecentState", uint64(core.TriesInMemory-4))
expList = expList.add("txRelay", nil)
expList = expList.add("flowControl/BL", testBufLimit)
expList = expList.add("flowControl/MRR", testBufRecharge)
expList = expList.add("flowControl/MRC", testCostList(testCost))
if err := p2p.ExpectMsg(p.app, StatusMsg, expList); err != nil {
t.Fatalf("status recv: %v", err)
}
if err := p2p.Send(p.app, StatusMsg, sendList); err != nil {
t.Fatalf("status send: %v", err)
}
p.fcParams = flowcontrol.ServerParams{
BufLimit: testBufLimit,
MinRecharge: testBufRecharge,
}
}
// close terminates the local side of the peer, notifying the remote protocol
// manager of termination.
func (p *testPeer) close() {
p.app.Close()
}
// TestEntity represents a network entity for testing with necessary auxiliary fields.
type TestEntity struct {
db ethdb.Database
rPeer *peer
tPeer *testPeer
peers *peerSet
pm *ProtocolManager
backend *backends.SimulatedBackend
// Indexers
chtIndexer *core.ChainIndexer
bloomIndexer *core.ChainIndexer
bloomTrieIndexer *core.ChainIndexer
}
// newServerEnv creates a server testing environment with a connected test peer for testing purpose.
func newServerEnv(t *testing.T, blocks int, protocol int, waitIndexers func(*core.ChainIndexer, *core.ChainIndexer, *core.ChainIndexer)) (*TestEntity, func()) {
db := rawdb.NewMemoryDatabase()
indexers := testIndexers(db, nil, light.TestServerIndexerConfig)
pm, b := newTestProtocolManagerMust(t, false, blocks, nil, indexers, nil, db, nil, 0)
peer, _ := newTestPeer(t, "peer", protocol, pm, true, 0)
cIndexer, bIndexer, btIndexer := indexers[0], indexers[1], indexers[2]
cIndexer.Start(pm.blockchain.(*core.BlockChain))
bIndexer.Start(pm.blockchain.(*core.BlockChain))
// Wait until indexers generate enough index data.
if waitIndexers != nil {
waitIndexers(cIndexer, bIndexer, btIndexer)
}
return &TestEntity{
db: db,
tPeer: peer,
pm: pm,
backend: b,
chtIndexer: cIndexer,
bloomIndexer: bIndexer,
bloomTrieIndexer: btIndexer,
}, func() {
peer.close()
// Note bloom trie indexer will be closed by it parent recursively.
cIndexer.Close()
bIndexer.Close()
b.Close()
}
}
// newClientServerEnv creates a client/server arch environment with a connected les server and light client pair
// for testing purpose.
func newClientServerEnv(t *testing.T, blocks int, protocol int, waitIndexers func(*core.ChainIndexer, *core.ChainIndexer, *core.ChainIndexer), newPeer bool) (*TestEntity, *TestEntity, func()) {
db, ldb := rawdb.NewMemoryDatabase(), rawdb.NewMemoryDatabase()
peers, lPeers := newPeerSet(), newPeerSet()
dist := newRequestDistributor(lPeers, make(chan struct{}), &mclock.System{})
rm := newRetrieveManager(lPeers, dist, nil)
odr := NewLesOdr(ldb, light.TestClientIndexerConfig, rm)
indexers := testIndexers(db, nil, light.TestServerIndexerConfig)
lIndexers := testIndexers(ldb, odr, light.TestClientIndexerConfig)
cIndexer, bIndexer, btIndexer := indexers[0], indexers[1], indexers[2]
lcIndexer, lbIndexer, lbtIndexer := lIndexers[0], lIndexers[1], lIndexers[2]
odr.SetIndexers(lcIndexer, lbtIndexer, lbIndexer)
pm, b := newTestProtocolManagerMust(t, false, blocks, nil, indexers, peers, db, nil, 0)
lpm, lb := newTestProtocolManagerMust(t, true, 0, odr, lIndexers, lPeers, ldb, nil, 0)
startIndexers := func(clientMode bool, pm *ProtocolManager) {
if clientMode {
lcIndexer.Start(pm.blockchain.(*light.LightChain))
lbIndexer.Start(pm.blockchain.(*light.LightChain))
} else {
cIndexer.Start(pm.blockchain.(*core.BlockChain))
bIndexer.Start(pm.blockchain.(*core.BlockChain))
}
}
startIndexers(false, pm)
startIndexers(true, lpm)
// Execute wait until function if it is specified.
if waitIndexers != nil {
waitIndexers(cIndexer, bIndexer, btIndexer)
}
var (
peer, lPeer *peer
err1, err2 <-chan error
)
if newPeer {
peer, err1, lPeer, err2 = newTestPeerPair("peer", protocol, pm, lpm)
select {
case <-time.After(time.Millisecond * 100):
case err := <-err1:
t.Fatalf("peer 1 handshake error: %v", err)
case err := <-err2:
t.Fatalf("peer 2 handshake error: %v", err)
}
}
return &TestEntity{
db: db,
pm: pm,
rPeer: peer,
peers: peers,
backend: b,
chtIndexer: cIndexer,
bloomIndexer: bIndexer,
bloomTrieIndexer: btIndexer,
}, &TestEntity{
db: ldb,
pm: lpm,
rPeer: lPeer,
peers: lPeers,
backend: lb,
chtIndexer: lcIndexer,
bloomIndexer: lbIndexer,
bloomTrieIndexer: lbtIndexer,
}, func() {
// Note bloom trie indexers will be closed by their parents recursively.
cIndexer.Close()
bIndexer.Close()
lcIndexer.Close()
lbIndexer.Close()
b.Close()
lb.Close()
}
}