plugeth/eth/protocols/snap/sync_test.go
Péter Szilágyi be65b47645
all: update golang/x/ext and fix slice sorting fallout (#27909)
The Go authors updated golang/x/ext to change the function signature of the slices sort method. 
It's an entire shitshow now because x/ext is not tagged, so everyone's codebase just 
picked a new version that some other dep depends on, causing our code to fail building.

This PR updates the dep on our code too and does all the refactorings to follow upstream...
2023-08-12 00:04:12 +02:00

1900 lines
58 KiB
Go

// Copyright 2021 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snap
import (
"bytes"
"crypto/rand"
"encoding/binary"
"fmt"
"math/big"
"sync"
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/light"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
"github.com/ethereum/go-ethereum/trie/triedb/pathdb"
"github.com/ethereum/go-ethereum/trie/trienode"
"golang.org/x/crypto/sha3"
"golang.org/x/exp/slices"
)
func TestHashing(t *testing.T) {
t.Parallel()
var bytecodes = make([][]byte, 10)
for i := 0; i < len(bytecodes); i++ {
buf := make([]byte, 100)
rand.Read(buf)
bytecodes[i] = buf
}
var want, got string
var old = func() {
hasher := sha3.NewLegacyKeccak256()
for i := 0; i < len(bytecodes); i++ {
hasher.Reset()
hasher.Write(bytecodes[i])
hash := hasher.Sum(nil)
got = fmt.Sprintf("%v\n%v", got, hash)
}
}
var new = func() {
hasher := sha3.NewLegacyKeccak256().(crypto.KeccakState)
var hash = make([]byte, 32)
for i := 0; i < len(bytecodes); i++ {
hasher.Reset()
hasher.Write(bytecodes[i])
hasher.Read(hash)
want = fmt.Sprintf("%v\n%v", want, hash)
}
}
old()
new()
if want != got {
t.Errorf("want\n%v\ngot\n%v\n", want, got)
}
}
func BenchmarkHashing(b *testing.B) {
var bytecodes = make([][]byte, 10000)
for i := 0; i < len(bytecodes); i++ {
buf := make([]byte, 100)
rand.Read(buf)
bytecodes[i] = buf
}
var old = func() {
hasher := sha3.NewLegacyKeccak256()
for i := 0; i < len(bytecodes); i++ {
hasher.Reset()
hasher.Write(bytecodes[i])
hasher.Sum(nil)
}
}
var new = func() {
hasher := sha3.NewLegacyKeccak256().(crypto.KeccakState)
var hash = make([]byte, 32)
for i := 0; i < len(bytecodes); i++ {
hasher.Reset()
hasher.Write(bytecodes[i])
hasher.Read(hash)
}
}
b.Run("old", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
old()
}
})
b.Run("new", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
new()
}
})
}
type (
accountHandlerFunc func(t *testPeer, requestId uint64, root common.Hash, origin common.Hash, limit common.Hash, cap uint64) error
storageHandlerFunc func(t *testPeer, requestId uint64, root common.Hash, accounts []common.Hash, origin, limit []byte, max uint64) error
trieHandlerFunc func(t *testPeer, requestId uint64, root common.Hash, paths []TrieNodePathSet, cap uint64) error
codeHandlerFunc func(t *testPeer, id uint64, hashes []common.Hash, max uint64) error
)
type testPeer struct {
id string
test *testing.T
remote *Syncer
logger log.Logger
accountTrie *trie.Trie
accountValues []*kv
storageTries map[common.Hash]*trie.Trie
storageValues map[common.Hash][]*kv
accountRequestHandler accountHandlerFunc
storageRequestHandler storageHandlerFunc
trieRequestHandler trieHandlerFunc
codeRequestHandler codeHandlerFunc
term func()
// counters
nAccountRequests int
nStorageRequests int
nBytecodeRequests int
nTrienodeRequests int
}
func newTestPeer(id string, t *testing.T, term func()) *testPeer {
peer := &testPeer{
id: id,
test: t,
logger: log.New("id", id),
accountRequestHandler: defaultAccountRequestHandler,
trieRequestHandler: defaultTrieRequestHandler,
storageRequestHandler: defaultStorageRequestHandler,
codeRequestHandler: defaultCodeRequestHandler,
term: term,
}
//stderrHandler := log.StreamHandler(os.Stderr, log.TerminalFormat(true))
//peer.logger.SetHandler(stderrHandler)
return peer
}
func (t *testPeer) setStorageTries(tries map[common.Hash]*trie.Trie) {
t.storageTries = make(map[common.Hash]*trie.Trie)
for root, trie := range tries {
t.storageTries[root] = trie.Copy()
}
}
func (t *testPeer) ID() string { return t.id }
func (t *testPeer) Log() log.Logger { return t.logger }
func (t *testPeer) Stats() string {
return fmt.Sprintf(`Account requests: %d
Storage requests: %d
Bytecode requests: %d
Trienode requests: %d
`, t.nAccountRequests, t.nStorageRequests, t.nBytecodeRequests, t.nTrienodeRequests)
}
func (t *testPeer) RequestAccountRange(id uint64, root, origin, limit common.Hash, bytes uint64) error {
t.logger.Trace("Fetching range of accounts", "reqid", id, "root", root, "origin", origin, "limit", limit, "bytes", common.StorageSize(bytes))
t.nAccountRequests++
go t.accountRequestHandler(t, id, root, origin, limit, bytes)
return nil
}
func (t *testPeer) RequestTrieNodes(id uint64, root common.Hash, paths []TrieNodePathSet, bytes uint64) error {
t.logger.Trace("Fetching set of trie nodes", "reqid", id, "root", root, "pathsets", len(paths), "bytes", common.StorageSize(bytes))
t.nTrienodeRequests++
go t.trieRequestHandler(t, id, root, paths, bytes)
return nil
}
func (t *testPeer) RequestStorageRanges(id uint64, root common.Hash, accounts []common.Hash, origin, limit []byte, bytes uint64) error {
t.nStorageRequests++
if len(accounts) == 1 && origin != nil {
t.logger.Trace("Fetching range of large storage slots", "reqid", id, "root", root, "account", accounts[0], "origin", common.BytesToHash(origin), "limit", common.BytesToHash(limit), "bytes", common.StorageSize(bytes))
} else {
t.logger.Trace("Fetching ranges of small storage slots", "reqid", id, "root", root, "accounts", len(accounts), "first", accounts[0], "bytes", common.StorageSize(bytes))
}
go t.storageRequestHandler(t, id, root, accounts, origin, limit, bytes)
return nil
}
func (t *testPeer) RequestByteCodes(id uint64, hashes []common.Hash, bytes uint64) error {
t.nBytecodeRequests++
t.logger.Trace("Fetching set of byte codes", "reqid", id, "hashes", len(hashes), "bytes", common.StorageSize(bytes))
go t.codeRequestHandler(t, id, hashes, bytes)
return nil
}
// defaultTrieRequestHandler is a well-behaving handler for trie healing requests
func defaultTrieRequestHandler(t *testPeer, requestId uint64, root common.Hash, paths []TrieNodePathSet, cap uint64) error {
// Pass the response
var nodes [][]byte
for _, pathset := range paths {
switch len(pathset) {
case 1:
blob, _, err := t.accountTrie.GetNode(pathset[0])
if err != nil {
t.logger.Info("Error handling req", "error", err)
break
}
nodes = append(nodes, blob)
default:
account := t.storageTries[(common.BytesToHash(pathset[0]))]
for _, path := range pathset[1:] {
blob, _, err := account.GetNode(path)
if err != nil {
t.logger.Info("Error handling req", "error", err)
break
}
nodes = append(nodes, blob)
}
}
}
t.remote.OnTrieNodes(t, requestId, nodes)
return nil
}
// defaultAccountRequestHandler is a well-behaving handler for AccountRangeRequests
func defaultAccountRequestHandler(t *testPeer, id uint64, root common.Hash, origin common.Hash, limit common.Hash, cap uint64) error {
keys, vals, proofs := createAccountRequestResponse(t, root, origin, limit, cap)
if err := t.remote.OnAccounts(t, id, keys, vals, proofs); err != nil {
t.test.Errorf("Remote side rejected our delivery: %v", err)
t.term()
return err
}
return nil
}
func createAccountRequestResponse(t *testPeer, root common.Hash, origin common.Hash, limit common.Hash, cap uint64) (keys []common.Hash, vals [][]byte, proofs [][]byte) {
var size uint64
if limit == (common.Hash{}) {
limit = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
}
for _, entry := range t.accountValues {
if size > cap {
break
}
if bytes.Compare(origin[:], entry.k) <= 0 {
keys = append(keys, common.BytesToHash(entry.k))
vals = append(vals, entry.v)
size += uint64(32 + len(entry.v))
}
// If we've exceeded the request threshold, abort
if bytes.Compare(entry.k, limit[:]) >= 0 {
break
}
}
// Unless we send the entire trie, we need to supply proofs
// Actually, we need to supply proofs either way! This seems to be an implementation
// quirk in go-ethereum
proof := light.NewNodeSet()
if err := t.accountTrie.Prove(origin[:], proof); err != nil {
t.logger.Error("Could not prove inexistence of origin", "origin", origin, "error", err)
}
if len(keys) > 0 {
lastK := (keys[len(keys)-1])[:]
if err := t.accountTrie.Prove(lastK, proof); err != nil {
t.logger.Error("Could not prove last item", "error", err)
}
}
for _, blob := range proof.NodeList() {
proofs = append(proofs, blob)
}
return keys, vals, proofs
}
// defaultStorageRequestHandler is a well-behaving storage request handler
func defaultStorageRequestHandler(t *testPeer, requestId uint64, root common.Hash, accounts []common.Hash, bOrigin, bLimit []byte, max uint64) error {
hashes, slots, proofs := createStorageRequestResponse(t, root, accounts, bOrigin, bLimit, max)
if err := t.remote.OnStorage(t, requestId, hashes, slots, proofs); err != nil {
t.test.Errorf("Remote side rejected our delivery: %v", err)
t.term()
}
return nil
}
func defaultCodeRequestHandler(t *testPeer, id uint64, hashes []common.Hash, max uint64) error {
var bytecodes [][]byte
for _, h := range hashes {
bytecodes = append(bytecodes, getCodeByHash(h))
}
if err := t.remote.OnByteCodes(t, id, bytecodes); err != nil {
t.test.Errorf("Remote side rejected our delivery: %v", err)
t.term()
}
return nil
}
func createStorageRequestResponse(t *testPeer, root common.Hash, accounts []common.Hash, origin, limit []byte, max uint64) (hashes [][]common.Hash, slots [][][]byte, proofs [][]byte) {
var size uint64
for _, account := range accounts {
// The first account might start from a different origin and end sooner
var originHash common.Hash
if len(origin) > 0 {
originHash = common.BytesToHash(origin)
}
var limitHash = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
if len(limit) > 0 {
limitHash = common.BytesToHash(limit)
}
var (
keys []common.Hash
vals [][]byte
abort bool
)
for _, entry := range t.storageValues[account] {
if size >= max {
abort = true
break
}
if bytes.Compare(entry.k, originHash[:]) < 0 {
continue
}
keys = append(keys, common.BytesToHash(entry.k))
vals = append(vals, entry.v)
size += uint64(32 + len(entry.v))
if bytes.Compare(entry.k, limitHash[:]) >= 0 {
break
}
}
if len(keys) > 0 {
hashes = append(hashes, keys)
slots = append(slots, vals)
}
// Generate the Merkle proofs for the first and last storage slot, but
// only if the response was capped. If the entire storage trie included
// in the response, no need for any proofs.
if originHash != (common.Hash{}) || (abort && len(keys) > 0) {
// If we're aborting, we need to prove the first and last item
// This terminates the response (and thus the loop)
proof := light.NewNodeSet()
stTrie := t.storageTries[account]
// Here's a potential gotcha: when constructing the proof, we cannot
// use the 'origin' slice directly, but must use the full 32-byte
// hash form.
if err := stTrie.Prove(originHash[:], proof); err != nil {
t.logger.Error("Could not prove inexistence of origin", "origin", originHash, "error", err)
}
if len(keys) > 0 {
lastK := (keys[len(keys)-1])[:]
if err := stTrie.Prove(lastK, proof); err != nil {
t.logger.Error("Could not prove last item", "error", err)
}
}
for _, blob := range proof.NodeList() {
proofs = append(proofs, blob)
}
break
}
}
return hashes, slots, proofs
}
// createStorageRequestResponseAlwaysProve tests a cornercase, where the peer always
// supplies the proof for the last account, even if it is 'complete'.
func createStorageRequestResponseAlwaysProve(t *testPeer, root common.Hash, accounts []common.Hash, bOrigin, bLimit []byte, max uint64) (hashes [][]common.Hash, slots [][][]byte, proofs [][]byte) {
var size uint64
max = max * 3 / 4
var origin common.Hash
if len(bOrigin) > 0 {
origin = common.BytesToHash(bOrigin)
}
var exit bool
for i, account := range accounts {
var keys []common.Hash
var vals [][]byte
for _, entry := range t.storageValues[account] {
if bytes.Compare(entry.k, origin[:]) < 0 {
exit = true
}
keys = append(keys, common.BytesToHash(entry.k))
vals = append(vals, entry.v)
size += uint64(32 + len(entry.v))
if size > max {
exit = true
}
}
if i == len(accounts)-1 {
exit = true
}
hashes = append(hashes, keys)
slots = append(slots, vals)
if exit {
// If we're aborting, we need to prove the first and last item
// This terminates the response (and thus the loop)
proof := light.NewNodeSet()
stTrie := t.storageTries[account]
// Here's a potential gotcha: when constructing the proof, we cannot
// use the 'origin' slice directly, but must use the full 32-byte
// hash form.
if err := stTrie.Prove(origin[:], proof); err != nil {
t.logger.Error("Could not prove inexistence of origin", "origin", origin,
"error", err)
}
if len(keys) > 0 {
lastK := (keys[len(keys)-1])[:]
if err := stTrie.Prove(lastK, proof); err != nil {
t.logger.Error("Could not prove last item", "error", err)
}
}
for _, blob := range proof.NodeList() {
proofs = append(proofs, blob)
}
break
}
}
return hashes, slots, proofs
}
// emptyRequestAccountRangeFn is a rejects AccountRangeRequests
func emptyRequestAccountRangeFn(t *testPeer, requestId uint64, root common.Hash, origin common.Hash, limit common.Hash, cap uint64) error {
t.remote.OnAccounts(t, requestId, nil, nil, nil)
return nil
}
func nonResponsiveRequestAccountRangeFn(t *testPeer, requestId uint64, root common.Hash, origin common.Hash, limit common.Hash, cap uint64) error {
return nil
}
func emptyTrieRequestHandler(t *testPeer, requestId uint64, root common.Hash, paths []TrieNodePathSet, cap uint64) error {
t.remote.OnTrieNodes(t, requestId, nil)
return nil
}
func nonResponsiveTrieRequestHandler(t *testPeer, requestId uint64, root common.Hash, paths []TrieNodePathSet, cap uint64) error {
return nil
}
func emptyStorageRequestHandler(t *testPeer, requestId uint64, root common.Hash, accounts []common.Hash, origin, limit []byte, max uint64) error {
t.remote.OnStorage(t, requestId, nil, nil, nil)
return nil
}
func nonResponsiveStorageRequestHandler(t *testPeer, requestId uint64, root common.Hash, accounts []common.Hash, origin, limit []byte, max uint64) error {
return nil
}
func proofHappyStorageRequestHandler(t *testPeer, requestId uint64, root common.Hash, accounts []common.Hash, origin, limit []byte, max uint64) error {
hashes, slots, proofs := createStorageRequestResponseAlwaysProve(t, root, accounts, origin, limit, max)
if err := t.remote.OnStorage(t, requestId, hashes, slots, proofs); err != nil {
t.test.Errorf("Remote side rejected our delivery: %v", err)
t.term()
}
return nil
}
//func emptyCodeRequestHandler(t *testPeer, id uint64, hashes []common.Hash, max uint64) error {
// var bytecodes [][]byte
// t.remote.OnByteCodes(t, id, bytecodes)
// return nil
//}
func corruptCodeRequestHandler(t *testPeer, id uint64, hashes []common.Hash, max uint64) error {
var bytecodes [][]byte
for _, h := range hashes {
// Send back the hashes
bytecodes = append(bytecodes, h[:])
}
if err := t.remote.OnByteCodes(t, id, bytecodes); err != nil {
t.logger.Info("remote error on delivery (as expected)", "error", err)
// Mimic the real-life handler, which drops a peer on errors
t.remote.Unregister(t.id)
}
return nil
}
func cappedCodeRequestHandler(t *testPeer, id uint64, hashes []common.Hash, max uint64) error {
var bytecodes [][]byte
for _, h := range hashes[:1] {
bytecodes = append(bytecodes, getCodeByHash(h))
}
// Missing bytecode can be retrieved again, no error expected
if err := t.remote.OnByteCodes(t, id, bytecodes); err != nil {
t.test.Errorf("Remote side rejected our delivery: %v", err)
t.term()
}
return nil
}
// starvingStorageRequestHandler is somewhat well-behaving storage handler, but it caps the returned results to be very small
func starvingStorageRequestHandler(t *testPeer, requestId uint64, root common.Hash, accounts []common.Hash, origin, limit []byte, max uint64) error {
return defaultStorageRequestHandler(t, requestId, root, accounts, origin, limit, 500)
}
func starvingAccountRequestHandler(t *testPeer, requestId uint64, root common.Hash, origin common.Hash, limit common.Hash, cap uint64) error {
return defaultAccountRequestHandler(t, requestId, root, origin, limit, 500)
}
//func misdeliveringAccountRequestHandler(t *testPeer, requestId uint64, root common.Hash, origin common.Hash, cap uint64) error {
// return defaultAccountRequestHandler(t, requestId-1, root, origin, 500)
//}
func corruptAccountRequestHandler(t *testPeer, requestId uint64, root common.Hash, origin common.Hash, limit common.Hash, cap uint64) error {
hashes, accounts, proofs := createAccountRequestResponse(t, root, origin, limit, cap)
if len(proofs) > 0 {
proofs = proofs[1:]
}
if err := t.remote.OnAccounts(t, requestId, hashes, accounts, proofs); err != nil {
t.logger.Info("remote error on delivery (as expected)", "error", err)
// Mimic the real-life handler, which drops a peer on errors
t.remote.Unregister(t.id)
}
return nil
}
// corruptStorageRequestHandler doesn't provide good proofs
func corruptStorageRequestHandler(t *testPeer, requestId uint64, root common.Hash, accounts []common.Hash, origin, limit []byte, max uint64) error {
hashes, slots, proofs := createStorageRequestResponse(t, root, accounts, origin, limit, max)
if len(proofs) > 0 {
proofs = proofs[1:]
}
if err := t.remote.OnStorage(t, requestId, hashes, slots, proofs); err != nil {
t.logger.Info("remote error on delivery (as expected)", "error", err)
// Mimic the real-life handler, which drops a peer on errors
t.remote.Unregister(t.id)
}
return nil
}
func noProofStorageRequestHandler(t *testPeer, requestId uint64, root common.Hash, accounts []common.Hash, origin, limit []byte, max uint64) error {
hashes, slots, _ := createStorageRequestResponse(t, root, accounts, origin, limit, max)
if err := t.remote.OnStorage(t, requestId, hashes, slots, nil); err != nil {
t.logger.Info("remote error on delivery (as expected)", "error", err)
// Mimic the real-life handler, which drops a peer on errors
t.remote.Unregister(t.id)
}
return nil
}
// TestSyncBloatedProof tests a scenario where we provide only _one_ value, but
// also ship the entire trie inside the proof. If the attack is successful,
// the remote side does not do any follow-up requests
func TestSyncBloatedProof(t *testing.T) {
t.Parallel()
testSyncBloatedProof(t, rawdb.HashScheme)
testSyncBloatedProof(t, rawdb.PathScheme)
}
func testSyncBloatedProof(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems := makeAccountTrieNoStorage(100, scheme)
source := newTestPeer("source", t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
source.accountRequestHandler = func(t *testPeer, requestId uint64, root common.Hash, origin common.Hash, limit common.Hash, cap uint64) error {
var (
proofs [][]byte
keys []common.Hash
vals [][]byte
)
// The values
for _, entry := range t.accountValues {
if bytes.Compare(entry.k, origin[:]) < 0 {
continue
}
if bytes.Compare(entry.k, limit[:]) > 0 {
continue
}
keys = append(keys, common.BytesToHash(entry.k))
vals = append(vals, entry.v)
}
// The proofs
proof := light.NewNodeSet()
if err := t.accountTrie.Prove(origin[:], proof); err != nil {
t.logger.Error("Could not prove origin", "origin", origin, "error", err)
}
// The bloat: add proof of every single element
for _, entry := range t.accountValues {
if err := t.accountTrie.Prove(entry.k, proof); err != nil {
t.logger.Error("Could not prove item", "error", err)
}
}
// And remove one item from the elements
if len(keys) > 2 {
keys = append(keys[:1], keys[2:]...)
vals = append(vals[:1], vals[2:]...)
}
for _, blob := range proof.NodeList() {
proofs = append(proofs, blob)
}
if err := t.remote.OnAccounts(t, requestId, keys, vals, proofs); err != nil {
t.logger.Info("remote error on delivery (as expected)", "error", err)
t.term()
// This is actually correct, signal to exit the test successfully
}
return nil
}
syncer := setupSyncer(nodeScheme, source)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err == nil {
t.Fatal("No error returned from incomplete/cancelled sync")
}
}
func setupSyncer(scheme string, peers ...*testPeer) *Syncer {
stateDb := rawdb.NewMemoryDatabase()
syncer := NewSyncer(stateDb, scheme)
for _, peer := range peers {
syncer.Register(peer)
peer.remote = syncer
}
return syncer
}
// TestSync tests a basic sync with one peer
func TestSync(t *testing.T) {
t.Parallel()
testSync(t, rawdb.HashScheme)
testSync(t, rawdb.PathScheme)
}
func testSync(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems := makeAccountTrieNoStorage(100, scheme)
mkSource := func(name string) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
return source
}
syncer := setupSyncer(nodeScheme, mkSource("source"))
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
// TestSyncTinyTriePanic tests a basic sync with one peer, and a tiny trie. This caused a
// panic within the prover
func TestSyncTinyTriePanic(t *testing.T) {
t.Parallel()
testSyncTinyTriePanic(t, rawdb.HashScheme)
testSyncTinyTriePanic(t, rawdb.PathScheme)
}
func testSyncTinyTriePanic(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems := makeAccountTrieNoStorage(1, scheme)
mkSource := func(name string) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
return source
}
syncer := setupSyncer(nodeScheme, mkSource("source"))
done := checkStall(t, term)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
close(done)
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
// TestMultiSync tests a basic sync with multiple peers
func TestMultiSync(t *testing.T) {
t.Parallel()
testMultiSync(t, rawdb.HashScheme)
testMultiSync(t, rawdb.PathScheme)
}
func testMultiSync(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems := makeAccountTrieNoStorage(100, scheme)
mkSource := func(name string) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
return source
}
syncer := setupSyncer(nodeScheme, mkSource("sourceA"), mkSource("sourceB"))
done := checkStall(t, term)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
close(done)
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
// TestSyncWithStorage tests basic sync using accounts + storage + code
func TestSyncWithStorage(t *testing.T) {
t.Parallel()
testSyncWithStorage(t, rawdb.HashScheme)
testSyncWithStorage(t, rawdb.PathScheme)
}
func testSyncWithStorage(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems, storageTries, storageElems := makeAccountTrieWithStorage(scheme, 3, 3000, true, false)
mkSource := func(name string) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
source.setStorageTries(storageTries)
source.storageValues = storageElems
return source
}
syncer := setupSyncer(nodeScheme, mkSource("sourceA"))
done := checkStall(t, term)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
close(done)
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
// TestMultiSyncManyUseless contains one good peer, and many which doesn't return anything valuable at all
func TestMultiSyncManyUseless(t *testing.T) {
t.Parallel()
testMultiSyncManyUseless(t, rawdb.HashScheme)
testMultiSyncManyUseless(t, rawdb.PathScheme)
}
func testMultiSyncManyUseless(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems, storageTries, storageElems := makeAccountTrieWithStorage(scheme, 100, 3000, true, false)
mkSource := func(name string, noAccount, noStorage, noTrieNode bool) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
source.setStorageTries(storageTries)
source.storageValues = storageElems
if !noAccount {
source.accountRequestHandler = emptyRequestAccountRangeFn
}
if !noStorage {
source.storageRequestHandler = emptyStorageRequestHandler
}
if !noTrieNode {
source.trieRequestHandler = emptyTrieRequestHandler
}
return source
}
syncer := setupSyncer(
nodeScheme,
mkSource("full", true, true, true),
mkSource("noAccounts", false, true, true),
mkSource("noStorage", true, false, true),
mkSource("noTrie", true, true, false),
)
done := checkStall(t, term)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
close(done)
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
// TestMultiSyncManyUseless contains one good peer, and many which doesn't return anything valuable at all
func TestMultiSyncManyUselessWithLowTimeout(t *testing.T) {
t.Parallel()
testMultiSyncManyUselessWithLowTimeout(t, rawdb.HashScheme)
testMultiSyncManyUselessWithLowTimeout(t, rawdb.PathScheme)
}
func testMultiSyncManyUselessWithLowTimeout(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems, storageTries, storageElems := makeAccountTrieWithStorage(scheme, 100, 3000, true, false)
mkSource := func(name string, noAccount, noStorage, noTrieNode bool) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
source.setStorageTries(storageTries)
source.storageValues = storageElems
if !noAccount {
source.accountRequestHandler = emptyRequestAccountRangeFn
}
if !noStorage {
source.storageRequestHandler = emptyStorageRequestHandler
}
if !noTrieNode {
source.trieRequestHandler = emptyTrieRequestHandler
}
return source
}
syncer := setupSyncer(
nodeScheme,
mkSource("full", true, true, true),
mkSource("noAccounts", false, true, true),
mkSource("noStorage", true, false, true),
mkSource("noTrie", true, true, false),
)
// We're setting the timeout to very low, to increase the chance of the timeout
// being triggered. This was previously a cause of panic, when a response
// arrived simultaneously as a timeout was triggered.
syncer.rates.OverrideTTLLimit = time.Millisecond
done := checkStall(t, term)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
close(done)
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
// TestMultiSyncManyUnresponsive contains one good peer, and many which doesn't respond at all
func TestMultiSyncManyUnresponsive(t *testing.T) {
t.Parallel()
testMultiSyncManyUnresponsive(t, rawdb.HashScheme)
testMultiSyncManyUnresponsive(t, rawdb.PathScheme)
}
func testMultiSyncManyUnresponsive(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems, storageTries, storageElems := makeAccountTrieWithStorage(scheme, 100, 3000, true, false)
mkSource := func(name string, noAccount, noStorage, noTrieNode bool) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
source.setStorageTries(storageTries)
source.storageValues = storageElems
if !noAccount {
source.accountRequestHandler = nonResponsiveRequestAccountRangeFn
}
if !noStorage {
source.storageRequestHandler = nonResponsiveStorageRequestHandler
}
if !noTrieNode {
source.trieRequestHandler = nonResponsiveTrieRequestHandler
}
return source
}
syncer := setupSyncer(
nodeScheme,
mkSource("full", true, true, true),
mkSource("noAccounts", false, true, true),
mkSource("noStorage", true, false, true),
mkSource("noTrie", true, true, false),
)
// We're setting the timeout to very low, to make the test run a bit faster
syncer.rates.OverrideTTLLimit = time.Millisecond
done := checkStall(t, term)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
close(done)
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
func checkStall(t *testing.T, term func()) chan struct{} {
testDone := make(chan struct{})
go func() {
select {
case <-time.After(time.Minute): // TODO(karalabe): Make tests smaller, this is too much
t.Log("Sync stalled")
term()
case <-testDone:
return
}
}()
return testDone
}
// TestSyncBoundaryAccountTrie tests sync against a few normal peers, but the
// account trie has a few boundary elements.
func TestSyncBoundaryAccountTrie(t *testing.T) {
t.Parallel()
testSyncBoundaryAccountTrie(t, rawdb.HashScheme)
testSyncBoundaryAccountTrie(t, rawdb.PathScheme)
}
func testSyncBoundaryAccountTrie(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems := makeBoundaryAccountTrie(scheme, 3000)
mkSource := func(name string) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
return source
}
syncer := setupSyncer(
nodeScheme,
mkSource("peer-a"),
mkSource("peer-b"),
)
done := checkStall(t, term)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
close(done)
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
// TestSyncNoStorageAndOneCappedPeer tests sync using accounts and no storage, where one peer is
// consistently returning very small results
func TestSyncNoStorageAndOneCappedPeer(t *testing.T) {
t.Parallel()
testSyncNoStorageAndOneCappedPeer(t, rawdb.HashScheme)
testSyncNoStorageAndOneCappedPeer(t, rawdb.PathScheme)
}
func testSyncNoStorageAndOneCappedPeer(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems := makeAccountTrieNoStorage(3000, scheme)
mkSource := func(name string, slow bool) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
if slow {
source.accountRequestHandler = starvingAccountRequestHandler
}
return source
}
syncer := setupSyncer(
nodeScheme,
mkSource("nice-a", false),
mkSource("nice-b", false),
mkSource("nice-c", false),
mkSource("capped", true),
)
done := checkStall(t, term)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
close(done)
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
// TestSyncNoStorageAndOneCodeCorruptPeer has one peer which doesn't deliver
// code requests properly.
func TestSyncNoStorageAndOneCodeCorruptPeer(t *testing.T) {
t.Parallel()
testSyncNoStorageAndOneCodeCorruptPeer(t, rawdb.HashScheme)
testSyncNoStorageAndOneCodeCorruptPeer(t, rawdb.PathScheme)
}
func testSyncNoStorageAndOneCodeCorruptPeer(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems := makeAccountTrieNoStorage(3000, scheme)
mkSource := func(name string, codeFn codeHandlerFunc) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
source.codeRequestHandler = codeFn
return source
}
// One is capped, one is corrupt. If we don't use a capped one, there's a 50%
// chance that the full set of codes requested are sent only to the
// non-corrupt peer, which delivers everything in one go, and makes the
// test moot
syncer := setupSyncer(
nodeScheme,
mkSource("capped", cappedCodeRequestHandler),
mkSource("corrupt", corruptCodeRequestHandler),
)
done := checkStall(t, term)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
close(done)
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
func TestSyncNoStorageAndOneAccountCorruptPeer(t *testing.T) {
t.Parallel()
testSyncNoStorageAndOneAccountCorruptPeer(t, rawdb.HashScheme)
testSyncNoStorageAndOneAccountCorruptPeer(t, rawdb.PathScheme)
}
func testSyncNoStorageAndOneAccountCorruptPeer(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems := makeAccountTrieNoStorage(3000, scheme)
mkSource := func(name string, accFn accountHandlerFunc) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
source.accountRequestHandler = accFn
return source
}
// One is capped, one is corrupt. If we don't use a capped one, there's a 50%
// chance that the full set of codes requested are sent only to the
// non-corrupt peer, which delivers everything in one go, and makes the
// test moot
syncer := setupSyncer(
nodeScheme,
mkSource("capped", defaultAccountRequestHandler),
mkSource("corrupt", corruptAccountRequestHandler),
)
done := checkStall(t, term)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
close(done)
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
// TestSyncNoStorageAndOneCodeCappedPeer has one peer which delivers code hashes
// one by one
func TestSyncNoStorageAndOneCodeCappedPeer(t *testing.T) {
t.Parallel()
testSyncNoStorageAndOneCodeCappedPeer(t, rawdb.HashScheme)
testSyncNoStorageAndOneCodeCappedPeer(t, rawdb.PathScheme)
}
func testSyncNoStorageAndOneCodeCappedPeer(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems := makeAccountTrieNoStorage(3000, scheme)
mkSource := func(name string, codeFn codeHandlerFunc) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
source.codeRequestHandler = codeFn
return source
}
// Count how many times it's invoked. Remember, there are only 8 unique hashes,
// so it shouldn't be more than that
var counter int
syncer := setupSyncer(
nodeScheme,
mkSource("capped", func(t *testPeer, id uint64, hashes []common.Hash, max uint64) error {
counter++
return cappedCodeRequestHandler(t, id, hashes, max)
}),
)
done := checkStall(t, term)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
close(done)
// There are only 8 unique hashes, and 3K accounts. However, the code
// deduplication is per request batch. If it were a perfect global dedup,
// we would expect only 8 requests. If there were no dedup, there would be
// 3k requests.
// We expect somewhere below 100 requests for these 8 unique hashes. But
// the number can be flaky, so don't limit it so strictly.
if threshold := 100; counter > threshold {
t.Logf("Error, expected < %d invocations, got %d", threshold, counter)
}
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
// TestSyncBoundaryStorageTrie tests sync against a few normal peers, but the
// storage trie has a few boundary elements.
func TestSyncBoundaryStorageTrie(t *testing.T) {
t.Parallel()
testSyncBoundaryStorageTrie(t, rawdb.HashScheme)
testSyncBoundaryStorageTrie(t, rawdb.PathScheme)
}
func testSyncBoundaryStorageTrie(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems, storageTries, storageElems := makeAccountTrieWithStorage(scheme, 10, 1000, false, true)
mkSource := func(name string) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
source.setStorageTries(storageTries)
source.storageValues = storageElems
return source
}
syncer := setupSyncer(
nodeScheme,
mkSource("peer-a"),
mkSource("peer-b"),
)
done := checkStall(t, term)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
close(done)
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
// TestSyncWithStorageAndOneCappedPeer tests sync using accounts + storage, where one peer is
// consistently returning very small results
func TestSyncWithStorageAndOneCappedPeer(t *testing.T) {
t.Parallel()
testSyncWithStorageAndOneCappedPeer(t, rawdb.HashScheme)
testSyncWithStorageAndOneCappedPeer(t, rawdb.PathScheme)
}
func testSyncWithStorageAndOneCappedPeer(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems, storageTries, storageElems := makeAccountTrieWithStorage(scheme, 300, 1000, false, false)
mkSource := func(name string, slow bool) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
source.setStorageTries(storageTries)
source.storageValues = storageElems
if slow {
source.storageRequestHandler = starvingStorageRequestHandler
}
return source
}
syncer := setupSyncer(
nodeScheme,
mkSource("nice-a", false),
mkSource("slow", true),
)
done := checkStall(t, term)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
close(done)
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
// TestSyncWithStorageAndCorruptPeer tests sync using accounts + storage, where one peer is
// sometimes sending bad proofs
func TestSyncWithStorageAndCorruptPeer(t *testing.T) {
t.Parallel()
testSyncWithStorageAndCorruptPeer(t, rawdb.HashScheme)
testSyncWithStorageAndCorruptPeer(t, rawdb.PathScheme)
}
func testSyncWithStorageAndCorruptPeer(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems, storageTries, storageElems := makeAccountTrieWithStorage(scheme, 100, 3000, true, false)
mkSource := func(name string, handler storageHandlerFunc) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
source.setStorageTries(storageTries)
source.storageValues = storageElems
source.storageRequestHandler = handler
return source
}
syncer := setupSyncer(
nodeScheme,
mkSource("nice-a", defaultStorageRequestHandler),
mkSource("nice-b", defaultStorageRequestHandler),
mkSource("nice-c", defaultStorageRequestHandler),
mkSource("corrupt", corruptStorageRequestHandler),
)
done := checkStall(t, term)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
close(done)
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
func TestSyncWithStorageAndNonProvingPeer(t *testing.T) {
t.Parallel()
testSyncWithStorageAndNonProvingPeer(t, rawdb.HashScheme)
testSyncWithStorageAndNonProvingPeer(t, rawdb.PathScheme)
}
func testSyncWithStorageAndNonProvingPeer(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems, storageTries, storageElems := makeAccountTrieWithStorage(scheme, 100, 3000, true, false)
mkSource := func(name string, handler storageHandlerFunc) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
source.setStorageTries(storageTries)
source.storageValues = storageElems
source.storageRequestHandler = handler
return source
}
syncer := setupSyncer(
nodeScheme,
mkSource("nice-a", defaultStorageRequestHandler),
mkSource("nice-b", defaultStorageRequestHandler),
mkSource("nice-c", defaultStorageRequestHandler),
mkSource("corrupt", noProofStorageRequestHandler),
)
done := checkStall(t, term)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
close(done)
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
// TestSyncWithStorage tests basic sync using accounts + storage + code, against
// a peer who insists on delivering full storage sets _and_ proofs. This triggered
// an error, where the recipient erroneously clipped the boundary nodes, but
// did not mark the account for healing.
func TestSyncWithStorageMisbehavingProve(t *testing.T) {
t.Parallel()
testSyncWithStorageMisbehavingProve(t, rawdb.HashScheme)
testSyncWithStorageMisbehavingProve(t, rawdb.PathScheme)
}
func testSyncWithStorageMisbehavingProve(t *testing.T, scheme string) {
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems, storageTries, storageElems := makeAccountTrieWithStorageWithUniqueStorage(scheme, 10, 30, false)
mkSource := func(name string) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
source.setStorageTries(storageTries)
source.storageValues = storageElems
source.storageRequestHandler = proofHappyStorageRequestHandler
return source
}
syncer := setupSyncer(nodeScheme, mkSource("sourceA"))
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
}
type kv struct {
k, v []byte
}
func (k *kv) cmp(other *kv) int {
return bytes.Compare(k.k, other.k)
}
func key32(i uint64) []byte {
key := make([]byte, 32)
binary.LittleEndian.PutUint64(key, i)
return key
}
var (
codehashes = []common.Hash{
crypto.Keccak256Hash([]byte{0}),
crypto.Keccak256Hash([]byte{1}),
crypto.Keccak256Hash([]byte{2}),
crypto.Keccak256Hash([]byte{3}),
crypto.Keccak256Hash([]byte{4}),
crypto.Keccak256Hash([]byte{5}),
crypto.Keccak256Hash([]byte{6}),
crypto.Keccak256Hash([]byte{7}),
}
)
// getCodeHash returns a pseudo-random code hash
func getCodeHash(i uint64) []byte {
h := codehashes[int(i)%len(codehashes)]
return common.CopyBytes(h[:])
}
// getCodeByHash convenience function to lookup the code from the code hash
func getCodeByHash(hash common.Hash) []byte {
if hash == types.EmptyCodeHash {
return nil
}
for i, h := range codehashes {
if h == hash {
return []byte{byte(i)}
}
}
return nil
}
// makeAccountTrieNoStorage spits out a trie, along with the leafs
func makeAccountTrieNoStorage(n int, scheme string) (string, *trie.Trie, []*kv) {
var (
db = trie.NewDatabase(rawdb.NewMemoryDatabase(), newDbConfig(scheme))
accTrie = trie.NewEmpty(db)
entries []*kv
)
for i := uint64(1); i <= uint64(n); i++ {
value, _ := rlp.EncodeToBytes(&types.StateAccount{
Nonce: i,
Balance: big.NewInt(int64(i)),
Root: types.EmptyRootHash,
CodeHash: getCodeHash(i),
})
key := key32(i)
elem := &kv{key, value}
accTrie.MustUpdate(elem.k, elem.v)
entries = append(entries, elem)
}
slices.SortFunc(entries, (*kv).cmp)
// Commit the state changes into db and re-create the trie
// for accessing later.
root, nodes, _ := accTrie.Commit(false)
db.Update(root, types.EmptyRootHash, 0, trienode.NewWithNodeSet(nodes), nil)
accTrie, _ = trie.New(trie.StateTrieID(root), db)
return db.Scheme(), accTrie, entries
}
// makeBoundaryAccountTrie constructs an account trie. Instead of filling
// accounts normally, this function will fill a few accounts which have
// boundary hash.
func makeBoundaryAccountTrie(scheme string, n int) (string, *trie.Trie, []*kv) {
var (
entries []*kv
boundaries []common.Hash
db = trie.NewDatabase(rawdb.NewMemoryDatabase(), newDbConfig(scheme))
accTrie = trie.NewEmpty(db)
)
// Initialize boundaries
var next common.Hash
step := new(big.Int).Sub(
new(big.Int).Div(
new(big.Int).Exp(common.Big2, common.Big256, nil),
big.NewInt(int64(accountConcurrency)),
), common.Big1,
)
for i := 0; i < accountConcurrency; i++ {
last := common.BigToHash(new(big.Int).Add(next.Big(), step))
if i == accountConcurrency-1 {
last = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
}
boundaries = append(boundaries, last)
next = common.BigToHash(new(big.Int).Add(last.Big(), common.Big1))
}
// Fill boundary accounts
for i := 0; i < len(boundaries); i++ {
value, _ := rlp.EncodeToBytes(&types.StateAccount{
Nonce: uint64(0),
Balance: big.NewInt(int64(i)),
Root: types.EmptyRootHash,
CodeHash: getCodeHash(uint64(i)),
})
elem := &kv{boundaries[i].Bytes(), value}
accTrie.MustUpdate(elem.k, elem.v)
entries = append(entries, elem)
}
// Fill other accounts if required
for i := uint64(1); i <= uint64(n); i++ {
value, _ := rlp.EncodeToBytes(&types.StateAccount{
Nonce: i,
Balance: big.NewInt(int64(i)),
Root: types.EmptyRootHash,
CodeHash: getCodeHash(i),
})
elem := &kv{key32(i), value}
accTrie.MustUpdate(elem.k, elem.v)
entries = append(entries, elem)
}
slices.SortFunc(entries, (*kv).cmp)
// Commit the state changes into db and re-create the trie
// for accessing later.
root, nodes, _ := accTrie.Commit(false)
db.Update(root, types.EmptyRootHash, 0, trienode.NewWithNodeSet(nodes), nil)
accTrie, _ = trie.New(trie.StateTrieID(root), db)
return db.Scheme(), accTrie, entries
}
// makeAccountTrieWithStorageWithUniqueStorage creates an account trie where each accounts
// has a unique storage set.
func makeAccountTrieWithStorageWithUniqueStorage(scheme string, accounts, slots int, code bool) (string, *trie.Trie, []*kv, map[common.Hash]*trie.Trie, map[common.Hash][]*kv) {
var (
db = trie.NewDatabase(rawdb.NewMemoryDatabase(), newDbConfig(scheme))
accTrie = trie.NewEmpty(db)
entries []*kv
storageRoots = make(map[common.Hash]common.Hash)
storageTries = make(map[common.Hash]*trie.Trie)
storageEntries = make(map[common.Hash][]*kv)
nodes = trienode.NewMergedNodeSet()
)
// Create n accounts in the trie
for i := uint64(1); i <= uint64(accounts); i++ {
key := key32(i)
codehash := types.EmptyCodeHash.Bytes()
if code {
codehash = getCodeHash(i)
}
// Create a storage trie
stRoot, stNodes, stEntries := makeStorageTrieWithSeed(common.BytesToHash(key), uint64(slots), i, db)
nodes.Merge(stNodes)
value, _ := rlp.EncodeToBytes(&types.StateAccount{
Nonce: i,
Balance: big.NewInt(int64(i)),
Root: stRoot,
CodeHash: codehash,
})
elem := &kv{key, value}
accTrie.MustUpdate(elem.k, elem.v)
entries = append(entries, elem)
storageRoots[common.BytesToHash(key)] = stRoot
storageEntries[common.BytesToHash(key)] = stEntries
}
slices.SortFunc(entries, (*kv).cmp)
// Commit account trie
root, set, _ := accTrie.Commit(true)
nodes.Merge(set)
// Commit gathered dirty nodes into database
db.Update(root, types.EmptyRootHash, 0, nodes, nil)
// Re-create tries with new root
accTrie, _ = trie.New(trie.StateTrieID(root), db)
for i := uint64(1); i <= uint64(accounts); i++ {
key := key32(i)
id := trie.StorageTrieID(root, common.BytesToHash(key), storageRoots[common.BytesToHash(key)])
trie, _ := trie.New(id, db)
storageTries[common.BytesToHash(key)] = trie
}
return db.Scheme(), accTrie, entries, storageTries, storageEntries
}
// makeAccountTrieWithStorage spits out a trie, along with the leafs
func makeAccountTrieWithStorage(scheme string, accounts, slots int, code, boundary bool) (string, *trie.Trie, []*kv, map[common.Hash]*trie.Trie, map[common.Hash][]*kv) {
var (
db = trie.NewDatabase(rawdb.NewMemoryDatabase(), newDbConfig(scheme))
accTrie = trie.NewEmpty(db)
entries []*kv
storageRoots = make(map[common.Hash]common.Hash)
storageTries = make(map[common.Hash]*trie.Trie)
storageEntries = make(map[common.Hash][]*kv)
nodes = trienode.NewMergedNodeSet()
)
// Create n accounts in the trie
for i := uint64(1); i <= uint64(accounts); i++ {
key := key32(i)
codehash := types.EmptyCodeHash.Bytes()
if code {
codehash = getCodeHash(i)
}
// Make a storage trie
var (
stRoot common.Hash
stNodes *trienode.NodeSet
stEntries []*kv
)
if boundary {
stRoot, stNodes, stEntries = makeBoundaryStorageTrie(common.BytesToHash(key), slots, db)
} else {
stRoot, stNodes, stEntries = makeStorageTrieWithSeed(common.BytesToHash(key), uint64(slots), 0, db)
}
nodes.Merge(stNodes)
value, _ := rlp.EncodeToBytes(&types.StateAccount{
Nonce: i,
Balance: big.NewInt(int64(i)),
Root: stRoot,
CodeHash: codehash,
})
elem := &kv{key, value}
accTrie.MustUpdate(elem.k, elem.v)
entries = append(entries, elem)
// we reuse the same one for all accounts
storageRoots[common.BytesToHash(key)] = stRoot
storageEntries[common.BytesToHash(key)] = stEntries
}
slices.SortFunc(entries, (*kv).cmp)
// Commit account trie
root, set, _ := accTrie.Commit(true)
nodes.Merge(set)
// Commit gathered dirty nodes into database
db.Update(root, types.EmptyRootHash, 0, nodes, nil)
// Re-create tries with new root
accTrie, err := trie.New(trie.StateTrieID(root), db)
if err != nil {
panic(err)
}
for i := uint64(1); i <= uint64(accounts); i++ {
key := key32(i)
id := trie.StorageTrieID(root, common.BytesToHash(key), storageRoots[common.BytesToHash(key)])
trie, err := trie.New(id, db)
if err != nil {
panic(err)
}
storageTries[common.BytesToHash(key)] = trie
}
return db.Scheme(), accTrie, entries, storageTries, storageEntries
}
// makeStorageTrieWithSeed fills a storage trie with n items, returning the
// not-yet-committed trie and the sorted entries. The seeds can be used to ensure
// that tries are unique.
func makeStorageTrieWithSeed(owner common.Hash, n, seed uint64, db *trie.Database) (common.Hash, *trienode.NodeSet, []*kv) {
trie, _ := trie.New(trie.StorageTrieID(types.EmptyRootHash, owner, types.EmptyRootHash), db)
var entries []*kv
for i := uint64(1); i <= n; i++ {
// store 'x' at slot 'x'
slotValue := key32(i + seed)
rlpSlotValue, _ := rlp.EncodeToBytes(common.TrimLeftZeroes(slotValue[:]))
slotKey := key32(i)
key := crypto.Keccak256Hash(slotKey[:])
elem := &kv{key[:], rlpSlotValue}
trie.MustUpdate(elem.k, elem.v)
entries = append(entries, elem)
}
slices.SortFunc(entries, (*kv).cmp)
root, nodes, _ := trie.Commit(false)
return root, nodes, entries
}
// makeBoundaryStorageTrie constructs a storage trie. Instead of filling
// storage slots normally, this function will fill a few slots which have
// boundary hash.
func makeBoundaryStorageTrie(owner common.Hash, n int, db *trie.Database) (common.Hash, *trienode.NodeSet, []*kv) {
var (
entries []*kv
boundaries []common.Hash
trie, _ = trie.New(trie.StorageTrieID(types.EmptyRootHash, owner, types.EmptyRootHash), db)
)
// Initialize boundaries
var next common.Hash
step := new(big.Int).Sub(
new(big.Int).Div(
new(big.Int).Exp(common.Big2, common.Big256, nil),
big.NewInt(int64(accountConcurrency)),
), common.Big1,
)
for i := 0; i < accountConcurrency; i++ {
last := common.BigToHash(new(big.Int).Add(next.Big(), step))
if i == accountConcurrency-1 {
last = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
}
boundaries = append(boundaries, last)
next = common.BigToHash(new(big.Int).Add(last.Big(), common.Big1))
}
// Fill boundary slots
for i := 0; i < len(boundaries); i++ {
key := boundaries[i]
val := []byte{0xde, 0xad, 0xbe, 0xef}
elem := &kv{key[:], val}
trie.MustUpdate(elem.k, elem.v)
entries = append(entries, elem)
}
// Fill other slots if required
for i := uint64(1); i <= uint64(n); i++ {
slotKey := key32(i)
key := crypto.Keccak256Hash(slotKey[:])
slotValue := key32(i)
rlpSlotValue, _ := rlp.EncodeToBytes(common.TrimLeftZeroes(slotValue[:]))
elem := &kv{key[:], rlpSlotValue}
trie.MustUpdate(elem.k, elem.v)
entries = append(entries, elem)
}
slices.SortFunc(entries, (*kv).cmp)
root, nodes, _ := trie.Commit(false)
return root, nodes, entries
}
func verifyTrie(scheme string, db ethdb.KeyValueStore, root common.Hash, t *testing.T) {
t.Helper()
triedb := trie.NewDatabase(rawdb.NewDatabase(db), newDbConfig(scheme))
accTrie, err := trie.New(trie.StateTrieID(root), triedb)
if err != nil {
t.Fatal(err)
}
accounts, slots := 0, 0
accIt := trie.NewIterator(accTrie.MustNodeIterator(nil))
for accIt.Next() {
var acc struct {
Nonce uint64
Balance *big.Int
Root common.Hash
CodeHash []byte
}
if err := rlp.DecodeBytes(accIt.Value, &acc); err != nil {
log.Crit("Invalid account encountered during snapshot creation", "err", err)
}
accounts++
if acc.Root != types.EmptyRootHash {
id := trie.StorageTrieID(root, common.BytesToHash(accIt.Key), acc.Root)
storeTrie, err := trie.NewStateTrie(id, triedb)
if err != nil {
t.Fatal(err)
}
storeIt := trie.NewIterator(storeTrie.MustNodeIterator(nil))
for storeIt.Next() {
slots++
}
if err := storeIt.Err; err != nil {
t.Fatal(err)
}
}
}
if err := accIt.Err; err != nil {
t.Fatal(err)
}
t.Logf("accounts: %d, slots: %d", accounts, slots)
}
// TestSyncAccountPerformance tests how efficient the snap algo is at minimizing
// state healing
func TestSyncAccountPerformance(t *testing.T) {
t.Parallel()
testSyncAccountPerformance(t, rawdb.HashScheme)
testSyncAccountPerformance(t, rawdb.PathScheme)
}
func testSyncAccountPerformance(t *testing.T, scheme string) {
// Set the account concurrency to 1. This _should_ result in the
// range root to become correct, and there should be no healing needed
defer func(old int) { accountConcurrency = old }(accountConcurrency)
accountConcurrency = 1
var (
once sync.Once
cancel = make(chan struct{})
term = func() {
once.Do(func() {
close(cancel)
})
}
)
nodeScheme, sourceAccountTrie, elems := makeAccountTrieNoStorage(100, scheme)
mkSource := func(name string) *testPeer {
source := newTestPeer(name, t, term)
source.accountTrie = sourceAccountTrie.Copy()
source.accountValues = elems
return source
}
src := mkSource("source")
syncer := setupSyncer(nodeScheme, src)
if err := syncer.Sync(sourceAccountTrie.Hash(), cancel); err != nil {
t.Fatalf("sync failed: %v", err)
}
verifyTrie(scheme, syncer.db, sourceAccountTrie.Hash(), t)
// The trie root will always be requested, since it is added when the snap
// sync cycle starts. When popping the queue, we do not look it up again.
// Doing so would bring this number down to zero in this artificial testcase,
// but only add extra IO for no reason in practice.
if have, want := src.nTrienodeRequests, 1; have != want {
fmt.Print(src.Stats())
t.Errorf("trie node heal requests wrong, want %d, have %d", want, have)
}
}
func TestSlotEstimation(t *testing.T) {
for i, tc := range []struct {
last common.Hash
count int
want uint64
}{
{
// Half the space
common.HexToHash("0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"),
100,
100,
},
{
// 1 / 16th
common.HexToHash("0x0fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"),
100,
1500,
},
{
// Bit more than 1 / 16th
common.HexToHash("0x1000000000000000000000000000000000000000000000000000000000000000"),
100,
1499,
},
{
// Almost everything
common.HexToHash("0xF000000000000000000000000000000000000000000000000000000000000000"),
100,
6,
},
{
// Almost nothing -- should lead to error
common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000001"),
1,
0,
},
{
// Nothing -- should lead to error
common.Hash{},
100,
0,
},
} {
have, _ := estimateRemainingSlots(tc.count, tc.last)
if want := tc.want; have != want {
t.Errorf("test %d: have %d want %d", i, have, want)
}
}
}
func newDbConfig(scheme string) *trie.Config {
if scheme == rawdb.HashScheme {
return &trie.Config{}
}
return &trie.Config{PathDB: pathdb.Defaults}
}