forked from cerc-io/plugeth
876f357364
* trie: disable fnv64a hashing of hashes for bigcache * trie/database: add very important period
843 lines
29 KiB
Go
843 lines
29 KiB
Go
// Copyright 2018 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package trie
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"fmt"
|
|
"io"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/allegro/bigcache"
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/ethdb"
|
|
"github.com/ethereum/go-ethereum/log"
|
|
"github.com/ethereum/go-ethereum/metrics"
|
|
"github.com/ethereum/go-ethereum/rlp"
|
|
)
|
|
|
|
var (
|
|
memcacheCleanHitMeter = metrics.NewRegisteredMeter("trie/memcache/clean/hit", nil)
|
|
memcacheCleanMissMeter = metrics.NewRegisteredMeter("trie/memcache/clean/miss", nil)
|
|
memcacheCleanReadMeter = metrics.NewRegisteredMeter("trie/memcache/clean/read", nil)
|
|
memcacheCleanWriteMeter = metrics.NewRegisteredMeter("trie/memcache/clean/write", nil)
|
|
|
|
memcacheFlushTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/flush/time", nil)
|
|
memcacheFlushNodesMeter = metrics.NewRegisteredMeter("trie/memcache/flush/nodes", nil)
|
|
memcacheFlushSizeMeter = metrics.NewRegisteredMeter("trie/memcache/flush/size", nil)
|
|
|
|
memcacheGCTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/gc/time", nil)
|
|
memcacheGCNodesMeter = metrics.NewRegisteredMeter("trie/memcache/gc/nodes", nil)
|
|
memcacheGCSizeMeter = metrics.NewRegisteredMeter("trie/memcache/gc/size", nil)
|
|
|
|
memcacheCommitTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/commit/time", nil)
|
|
memcacheCommitNodesMeter = metrics.NewRegisteredMeter("trie/memcache/commit/nodes", nil)
|
|
memcacheCommitSizeMeter = metrics.NewRegisteredMeter("trie/memcache/commit/size", nil)
|
|
)
|
|
|
|
// secureKeyPrefix is the database key prefix used to store trie node preimages.
|
|
var secureKeyPrefix = []byte("secure-key-")
|
|
|
|
// secureKeyLength is the length of the above prefix + 32byte hash.
|
|
const secureKeyLength = 11 + 32
|
|
|
|
// Database is an intermediate write layer between the trie data structures and
|
|
// the disk database. The aim is to accumulate trie writes in-memory and only
|
|
// periodically flush a couple tries to disk, garbage collecting the remainder.
|
|
type Database struct {
|
|
diskdb ethdb.KeyValueStore // Persistent storage for matured trie nodes
|
|
|
|
cleans *bigcache.BigCache // GC friendly memory cache of clean node RLPs
|
|
dirties map[common.Hash]*cachedNode // Data and references relationships of dirty nodes
|
|
oldest common.Hash // Oldest tracked node, flush-list head
|
|
newest common.Hash // Newest tracked node, flush-list tail
|
|
|
|
preimages map[common.Hash][]byte // Preimages of nodes from the secure trie
|
|
seckeybuf [secureKeyLength]byte // Ephemeral buffer for calculating preimage keys
|
|
|
|
gctime time.Duration // Time spent on garbage collection since last commit
|
|
gcnodes uint64 // Nodes garbage collected since last commit
|
|
gcsize common.StorageSize // Data storage garbage collected since last commit
|
|
|
|
flushtime time.Duration // Time spent on data flushing since last commit
|
|
flushnodes uint64 // Nodes flushed since last commit
|
|
flushsize common.StorageSize // Data storage flushed since last commit
|
|
|
|
dirtiesSize common.StorageSize // Storage size of the dirty node cache (exc. flushlist)
|
|
preimagesSize common.StorageSize // Storage size of the preimages cache
|
|
|
|
lock sync.RWMutex
|
|
}
|
|
|
|
// rawNode is a simple binary blob used to differentiate between collapsed trie
|
|
// nodes and already encoded RLP binary blobs (while at the same time store them
|
|
// in the same cache fields).
|
|
type rawNode []byte
|
|
|
|
func (n rawNode) canUnload(uint16, uint16) bool { panic("this should never end up in a live trie") }
|
|
func (n rawNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") }
|
|
func (n rawNode) fstring(ind string) string { panic("this should never end up in a live trie") }
|
|
|
|
// rawFullNode represents only the useful data content of a full node, with the
|
|
// caches and flags stripped out to minimize its data storage. This type honors
|
|
// the same RLP encoding as the original parent.
|
|
type rawFullNode [17]node
|
|
|
|
func (n rawFullNode) canUnload(uint16, uint16) bool { panic("this should never end up in a live trie") }
|
|
func (n rawFullNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") }
|
|
func (n rawFullNode) fstring(ind string) string { panic("this should never end up in a live trie") }
|
|
|
|
func (n rawFullNode) EncodeRLP(w io.Writer) error {
|
|
var nodes [17]node
|
|
|
|
for i, child := range n {
|
|
if child != nil {
|
|
nodes[i] = child
|
|
} else {
|
|
nodes[i] = nilValueNode
|
|
}
|
|
}
|
|
return rlp.Encode(w, nodes)
|
|
}
|
|
|
|
// rawShortNode represents only the useful data content of a short node, with the
|
|
// caches and flags stripped out to minimize its data storage. This type honors
|
|
// the same RLP encoding as the original parent.
|
|
type rawShortNode struct {
|
|
Key []byte
|
|
Val node
|
|
}
|
|
|
|
func (n rawShortNode) canUnload(uint16, uint16) bool { panic("this should never end up in a live trie") }
|
|
func (n rawShortNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") }
|
|
func (n rawShortNode) fstring(ind string) string { panic("this should never end up in a live trie") }
|
|
|
|
// cachedNode is all the information we know about a single cached node in the
|
|
// memory database write layer.
|
|
type cachedNode struct {
|
|
node node // Cached collapsed trie node, or raw rlp data
|
|
size uint16 // Byte size of the useful cached data
|
|
|
|
parents uint32 // Number of live nodes referencing this one
|
|
children map[common.Hash]uint16 // External children referenced by this node
|
|
|
|
flushPrev common.Hash // Previous node in the flush-list
|
|
flushNext common.Hash // Next node in the flush-list
|
|
}
|
|
|
|
// rlp returns the raw rlp encoded blob of the cached node, either directly from
|
|
// the cache, or by regenerating it from the collapsed node.
|
|
func (n *cachedNode) rlp() []byte {
|
|
if node, ok := n.node.(rawNode); ok {
|
|
return node
|
|
}
|
|
blob, err := rlp.EncodeToBytes(n.node)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return blob
|
|
}
|
|
|
|
// obj returns the decoded and expanded trie node, either directly from the cache,
|
|
// or by regenerating it from the rlp encoded blob.
|
|
func (n *cachedNode) obj(hash common.Hash) node {
|
|
if node, ok := n.node.(rawNode); ok {
|
|
return mustDecodeNode(hash[:], node)
|
|
}
|
|
return expandNode(hash[:], n.node)
|
|
}
|
|
|
|
// childs returns all the tracked children of this node, both the implicit ones
|
|
// from inside the node as well as the explicit ones from outside the node.
|
|
func (n *cachedNode) childs() []common.Hash {
|
|
children := make([]common.Hash, 0, 16)
|
|
for child := range n.children {
|
|
children = append(children, child)
|
|
}
|
|
if _, ok := n.node.(rawNode); !ok {
|
|
gatherChildren(n.node, &children)
|
|
}
|
|
return children
|
|
}
|
|
|
|
// gatherChildren traverses the node hierarchy of a collapsed storage node and
|
|
// retrieves all the hashnode children.
|
|
func gatherChildren(n node, children *[]common.Hash) {
|
|
switch n := n.(type) {
|
|
case *rawShortNode:
|
|
gatherChildren(n.Val, children)
|
|
|
|
case rawFullNode:
|
|
for i := 0; i < 16; i++ {
|
|
gatherChildren(n[i], children)
|
|
}
|
|
case hashNode:
|
|
*children = append(*children, common.BytesToHash(n))
|
|
|
|
case valueNode, nil:
|
|
|
|
default:
|
|
panic(fmt.Sprintf("unknown node type: %T", n))
|
|
}
|
|
}
|
|
|
|
// simplifyNode traverses the hierarchy of an expanded memory node and discards
|
|
// all the internal caches, returning a node that only contains the raw data.
|
|
func simplifyNode(n node) node {
|
|
switch n := n.(type) {
|
|
case *shortNode:
|
|
// Short nodes discard the flags and cascade
|
|
return &rawShortNode{Key: n.Key, Val: simplifyNode(n.Val)}
|
|
|
|
case *fullNode:
|
|
// Full nodes discard the flags and cascade
|
|
node := rawFullNode(n.Children)
|
|
for i := 0; i < len(node); i++ {
|
|
if node[i] != nil {
|
|
node[i] = simplifyNode(node[i])
|
|
}
|
|
}
|
|
return node
|
|
|
|
case valueNode, hashNode, rawNode:
|
|
return n
|
|
|
|
default:
|
|
panic(fmt.Sprintf("unknown node type: %T", n))
|
|
}
|
|
}
|
|
|
|
// expandNode traverses the node hierarchy of a collapsed storage node and converts
|
|
// all fields and keys into expanded memory form.
|
|
func expandNode(hash hashNode, n node) node {
|
|
switch n := n.(type) {
|
|
case *rawShortNode:
|
|
// Short nodes need key and child expansion
|
|
return &shortNode{
|
|
Key: compactToHex(n.Key),
|
|
Val: expandNode(nil, n.Val),
|
|
flags: nodeFlag{
|
|
hash: hash,
|
|
},
|
|
}
|
|
|
|
case rawFullNode:
|
|
// Full nodes need child expansion
|
|
node := &fullNode{
|
|
flags: nodeFlag{
|
|
hash: hash,
|
|
},
|
|
}
|
|
for i := 0; i < len(node.Children); i++ {
|
|
if n[i] != nil {
|
|
node.Children[i] = expandNode(nil, n[i])
|
|
}
|
|
}
|
|
return node
|
|
|
|
case valueNode, hashNode:
|
|
return n
|
|
|
|
default:
|
|
panic(fmt.Sprintf("unknown node type: %T", n))
|
|
}
|
|
}
|
|
|
|
// trienodeHasher is a struct to be used with BigCache, which uses a Hasher to
|
|
// determine which shard to place an entry into. It's not a cryptographic hash,
|
|
// just to provide a bit of anti-collision (default is FNV64a).
|
|
//
|
|
// Since trie keys are already hashes, we can just use the key directly to
|
|
// map shard id.
|
|
type trienodeHasher struct{}
|
|
|
|
// Sum64 implements the bigcache.Hasher interface.
|
|
func (t trienodeHasher) Sum64(key string) uint64 {
|
|
return binary.BigEndian.Uint64([]byte(key))
|
|
}
|
|
|
|
// NewDatabase creates a new trie database to store ephemeral trie content before
|
|
// its written out to disk or garbage collected. No read cache is created, so all
|
|
// data retrievals will hit the underlying disk database.
|
|
func NewDatabase(diskdb ethdb.KeyValueStore) *Database {
|
|
return NewDatabaseWithCache(diskdb, 0)
|
|
}
|
|
|
|
// NewDatabaseWithCache creates a new trie database to store ephemeral trie content
|
|
// before its written out to disk or garbage collected. It also acts as a read cache
|
|
// for nodes loaded from disk.
|
|
func NewDatabaseWithCache(diskdb ethdb.KeyValueStore, cache int) *Database {
|
|
var cleans *bigcache.BigCache
|
|
if cache > 0 {
|
|
cleans, _ = bigcache.NewBigCache(bigcache.Config{
|
|
Shards: 1024,
|
|
LifeWindow: time.Hour,
|
|
MaxEntriesInWindow: cache * 1024,
|
|
MaxEntrySize: 512,
|
|
HardMaxCacheSize: cache,
|
|
Hasher: trienodeHasher{},
|
|
})
|
|
}
|
|
return &Database{
|
|
diskdb: diskdb,
|
|
cleans: cleans,
|
|
dirties: map[common.Hash]*cachedNode{{}: {}},
|
|
preimages: make(map[common.Hash][]byte),
|
|
}
|
|
}
|
|
|
|
// DiskDB retrieves the persistent storage backing the trie database.
|
|
func (db *Database) DiskDB() ethdb.Reader {
|
|
return db.diskdb
|
|
}
|
|
|
|
// InsertBlob writes a new reference tracked blob to the memory database if it's
|
|
// yet unknown. This method should only be used for non-trie nodes that require
|
|
// reference counting, since trie nodes are garbage collected directly through
|
|
// their embedded children.
|
|
func (db *Database) InsertBlob(hash common.Hash, blob []byte) {
|
|
db.lock.Lock()
|
|
defer db.lock.Unlock()
|
|
|
|
db.insert(hash, blob, rawNode(blob))
|
|
}
|
|
|
|
// insert inserts a collapsed trie node into the memory database. This method is
|
|
// a more generic version of InsertBlob, supporting both raw blob insertions as
|
|
// well ex trie node insertions. The blob must always be specified to allow proper
|
|
// size tracking.
|
|
func (db *Database) insert(hash common.Hash, blob []byte, node node) {
|
|
// If the node's already cached, skip
|
|
if _, ok := db.dirties[hash]; ok {
|
|
return
|
|
}
|
|
// Create the cached entry for this node
|
|
entry := &cachedNode{
|
|
node: simplifyNode(node),
|
|
size: uint16(len(blob)),
|
|
flushPrev: db.newest,
|
|
}
|
|
for _, child := range entry.childs() {
|
|
if c := db.dirties[child]; c != nil {
|
|
c.parents++
|
|
}
|
|
}
|
|
db.dirties[hash] = entry
|
|
|
|
// Update the flush-list endpoints
|
|
if db.oldest == (common.Hash{}) {
|
|
db.oldest, db.newest = hash, hash
|
|
} else {
|
|
db.dirties[db.newest].flushNext, db.newest = hash, hash
|
|
}
|
|
db.dirtiesSize += common.StorageSize(common.HashLength + entry.size)
|
|
}
|
|
|
|
// insertPreimage writes a new trie node pre-image to the memory database if it's
|
|
// yet unknown. The method will make a copy of the slice.
|
|
//
|
|
// Note, this method assumes that the database's lock is held!
|
|
func (db *Database) insertPreimage(hash common.Hash, preimage []byte) {
|
|
if _, ok := db.preimages[hash]; ok {
|
|
return
|
|
}
|
|
db.preimages[hash] = common.CopyBytes(preimage)
|
|
db.preimagesSize += common.StorageSize(common.HashLength + len(preimage))
|
|
}
|
|
|
|
// node retrieves a cached trie node from memory, or returns nil if none can be
|
|
// found in the memory cache.
|
|
func (db *Database) node(hash common.Hash) node {
|
|
// Retrieve the node from the clean cache if available
|
|
if db.cleans != nil {
|
|
if enc, err := db.cleans.Get(string(hash[:])); err == nil && enc != nil {
|
|
memcacheCleanHitMeter.Mark(1)
|
|
memcacheCleanReadMeter.Mark(int64(len(enc)))
|
|
return mustDecodeNode(hash[:], enc)
|
|
}
|
|
}
|
|
// Retrieve the node from the dirty cache if available
|
|
db.lock.RLock()
|
|
dirty := db.dirties[hash]
|
|
db.lock.RUnlock()
|
|
|
|
if dirty != nil {
|
|
return dirty.obj(hash)
|
|
}
|
|
// Content unavailable in memory, attempt to retrieve from disk
|
|
enc, err := db.diskdb.Get(hash[:])
|
|
if err != nil || enc == nil {
|
|
return nil
|
|
}
|
|
if db.cleans != nil {
|
|
db.cleans.Set(string(hash[:]), enc)
|
|
memcacheCleanMissMeter.Mark(1)
|
|
memcacheCleanWriteMeter.Mark(int64(len(enc)))
|
|
}
|
|
return mustDecodeNode(hash[:], enc)
|
|
}
|
|
|
|
// Node retrieves an encoded cached trie node from memory. If it cannot be found
|
|
// cached, the method queries the persistent database for the content.
|
|
func (db *Database) Node(hash common.Hash) ([]byte, error) {
|
|
// Retrieve the node from the clean cache if available
|
|
if db.cleans != nil {
|
|
if enc, err := db.cleans.Get(string(hash[:])); err == nil && enc != nil {
|
|
memcacheCleanHitMeter.Mark(1)
|
|
memcacheCleanReadMeter.Mark(int64(len(enc)))
|
|
return enc, nil
|
|
}
|
|
}
|
|
// Retrieve the node from the dirty cache if available
|
|
db.lock.RLock()
|
|
dirty := db.dirties[hash]
|
|
db.lock.RUnlock()
|
|
|
|
if dirty != nil {
|
|
return dirty.rlp(), nil
|
|
}
|
|
// Content unavailable in memory, attempt to retrieve from disk
|
|
enc, err := db.diskdb.Get(hash[:])
|
|
if err == nil && enc != nil {
|
|
if db.cleans != nil {
|
|
db.cleans.Set(string(hash[:]), enc)
|
|
memcacheCleanMissMeter.Mark(1)
|
|
memcacheCleanWriteMeter.Mark(int64(len(enc)))
|
|
}
|
|
}
|
|
return enc, err
|
|
}
|
|
|
|
// preimage retrieves a cached trie node pre-image from memory. If it cannot be
|
|
// found cached, the method queries the persistent database for the content.
|
|
func (db *Database) preimage(hash common.Hash) ([]byte, error) {
|
|
// Retrieve the node from cache if available
|
|
db.lock.RLock()
|
|
preimage := db.preimages[hash]
|
|
db.lock.RUnlock()
|
|
|
|
if preimage != nil {
|
|
return preimage, nil
|
|
}
|
|
// Content unavailable in memory, attempt to retrieve from disk
|
|
return db.diskdb.Get(db.secureKey(hash[:]))
|
|
}
|
|
|
|
// secureKey returns the database key for the preimage of key, as an ephemeral
|
|
// buffer. The caller must not hold onto the return value because it will become
|
|
// invalid on the next call.
|
|
func (db *Database) secureKey(key []byte) []byte {
|
|
buf := append(db.seckeybuf[:0], secureKeyPrefix...)
|
|
buf = append(buf, key...)
|
|
return buf
|
|
}
|
|
|
|
// Nodes retrieves the hashes of all the nodes cached within the memory database.
|
|
// This method is extremely expensive and should only be used to validate internal
|
|
// states in test code.
|
|
func (db *Database) Nodes() []common.Hash {
|
|
db.lock.RLock()
|
|
defer db.lock.RUnlock()
|
|
|
|
var hashes = make([]common.Hash, 0, len(db.dirties))
|
|
for hash := range db.dirties {
|
|
if hash != (common.Hash{}) { // Special case for "root" references/nodes
|
|
hashes = append(hashes, hash)
|
|
}
|
|
}
|
|
return hashes
|
|
}
|
|
|
|
// Reference adds a new reference from a parent node to a child node.
|
|
func (db *Database) Reference(child common.Hash, parent common.Hash) {
|
|
db.lock.RLock()
|
|
defer db.lock.RUnlock()
|
|
|
|
db.reference(child, parent)
|
|
}
|
|
|
|
// reference is the private locked version of Reference.
|
|
func (db *Database) reference(child common.Hash, parent common.Hash) {
|
|
// If the node does not exist, it's a node pulled from disk, skip
|
|
node, ok := db.dirties[child]
|
|
if !ok {
|
|
return
|
|
}
|
|
// If the reference already exists, only duplicate for roots
|
|
if db.dirties[parent].children == nil {
|
|
db.dirties[parent].children = make(map[common.Hash]uint16)
|
|
} else if _, ok = db.dirties[parent].children[child]; ok && parent != (common.Hash{}) {
|
|
return
|
|
}
|
|
node.parents++
|
|
db.dirties[parent].children[child]++
|
|
}
|
|
|
|
// Dereference removes an existing reference from a root node.
|
|
func (db *Database) Dereference(root common.Hash) {
|
|
// Sanity check to ensure that the meta-root is not removed
|
|
if root == (common.Hash{}) {
|
|
log.Error("Attempted to dereference the trie cache meta root")
|
|
return
|
|
}
|
|
db.lock.Lock()
|
|
defer db.lock.Unlock()
|
|
|
|
nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
|
|
db.dereference(root, common.Hash{})
|
|
|
|
db.gcnodes += uint64(nodes - len(db.dirties))
|
|
db.gcsize += storage - db.dirtiesSize
|
|
db.gctime += time.Since(start)
|
|
|
|
memcacheGCTimeTimer.Update(time.Since(start))
|
|
memcacheGCSizeMeter.Mark(int64(storage - db.dirtiesSize))
|
|
memcacheGCNodesMeter.Mark(int64(nodes - len(db.dirties)))
|
|
|
|
log.Debug("Dereferenced trie from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
|
|
"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
|
|
}
|
|
|
|
// dereference is the private locked version of Dereference.
|
|
func (db *Database) dereference(child common.Hash, parent common.Hash) {
|
|
// Dereference the parent-child
|
|
node := db.dirties[parent]
|
|
|
|
if node.children != nil && node.children[child] > 0 {
|
|
node.children[child]--
|
|
if node.children[child] == 0 {
|
|
delete(node.children, child)
|
|
}
|
|
}
|
|
// If the child does not exist, it's a previously committed node.
|
|
node, ok := db.dirties[child]
|
|
if !ok {
|
|
return
|
|
}
|
|
// If there are no more references to the child, delete it and cascade
|
|
if node.parents > 0 {
|
|
// This is a special cornercase where a node loaded from disk (i.e. not in the
|
|
// memcache any more) gets reinjected as a new node (short node split into full,
|
|
// then reverted into short), causing a cached node to have no parents. That is
|
|
// no problem in itself, but don't make maxint parents out of it.
|
|
node.parents--
|
|
}
|
|
if node.parents == 0 {
|
|
// Remove the node from the flush-list
|
|
switch child {
|
|
case db.oldest:
|
|
db.oldest = node.flushNext
|
|
db.dirties[node.flushNext].flushPrev = common.Hash{}
|
|
case db.newest:
|
|
db.newest = node.flushPrev
|
|
db.dirties[node.flushPrev].flushNext = common.Hash{}
|
|
default:
|
|
db.dirties[node.flushPrev].flushNext = node.flushNext
|
|
db.dirties[node.flushNext].flushPrev = node.flushPrev
|
|
}
|
|
// Dereference all children and delete the node
|
|
for _, hash := range node.childs() {
|
|
db.dereference(hash, child)
|
|
}
|
|
delete(db.dirties, child)
|
|
db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
|
|
}
|
|
}
|
|
|
|
// Cap iteratively flushes old but still referenced trie nodes until the total
|
|
// memory usage goes below the given threshold.
|
|
func (db *Database) Cap(limit common.StorageSize) error {
|
|
// Create a database batch to flush persistent data out. It is important that
|
|
// outside code doesn't see an inconsistent state (referenced data removed from
|
|
// memory cache during commit but not yet in persistent storage). This is ensured
|
|
// by only uncaching existing data when the database write finalizes.
|
|
db.lock.RLock()
|
|
|
|
nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
|
|
batch := db.diskdb.NewBatch()
|
|
|
|
// db.dirtiesSize only contains the useful data in the cache, but when reporting
|
|
// the total memory consumption, the maintenance metadata is also needed to be
|
|
// counted. For every useful node, we track 2 extra hashes as the flushlist.
|
|
size := db.dirtiesSize + common.StorageSize((len(db.dirties)-1)*2*common.HashLength)
|
|
|
|
// If the preimage cache got large enough, push to disk. If it's still small
|
|
// leave for later to deduplicate writes.
|
|
flushPreimages := db.preimagesSize > 4*1024*1024
|
|
if flushPreimages {
|
|
for hash, preimage := range db.preimages {
|
|
if err := batch.Put(db.secureKey(hash[:]), preimage); err != nil {
|
|
log.Error("Failed to commit preimage from trie database", "err", err)
|
|
db.lock.RUnlock()
|
|
return err
|
|
}
|
|
if batch.ValueSize() > ethdb.IdealBatchSize {
|
|
if err := batch.Write(); err != nil {
|
|
db.lock.RUnlock()
|
|
return err
|
|
}
|
|
batch.Reset()
|
|
}
|
|
}
|
|
}
|
|
// Keep committing nodes from the flush-list until we're below allowance
|
|
oldest := db.oldest
|
|
for size > limit && oldest != (common.Hash{}) {
|
|
// Fetch the oldest referenced node and push into the batch
|
|
node := db.dirties[oldest]
|
|
if err := batch.Put(oldest[:], node.rlp()); err != nil {
|
|
db.lock.RUnlock()
|
|
return err
|
|
}
|
|
// If we exceeded the ideal batch size, commit and reset
|
|
if batch.ValueSize() >= ethdb.IdealBatchSize {
|
|
if err := batch.Write(); err != nil {
|
|
log.Error("Failed to write flush list to disk", "err", err)
|
|
db.lock.RUnlock()
|
|
return err
|
|
}
|
|
batch.Reset()
|
|
}
|
|
// Iterate to the next flush item, or abort if the size cap was achieved. Size
|
|
// is the total size, including both the useful cached data (hash -> blob), as
|
|
// well as the flushlist metadata (2*hash). When flushing items from the cache,
|
|
// we need to reduce both.
|
|
size -= common.StorageSize(3*common.HashLength + int(node.size))
|
|
oldest = node.flushNext
|
|
}
|
|
// Flush out any remainder data from the last batch
|
|
if err := batch.Write(); err != nil {
|
|
log.Error("Failed to write flush list to disk", "err", err)
|
|
db.lock.RUnlock()
|
|
return err
|
|
}
|
|
db.lock.RUnlock()
|
|
|
|
// Write successful, clear out the flushed data
|
|
db.lock.Lock()
|
|
defer db.lock.Unlock()
|
|
|
|
if flushPreimages {
|
|
db.preimages = make(map[common.Hash][]byte)
|
|
db.preimagesSize = 0
|
|
}
|
|
for db.oldest != oldest {
|
|
node := db.dirties[db.oldest]
|
|
delete(db.dirties, db.oldest)
|
|
db.oldest = node.flushNext
|
|
|
|
db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
|
|
}
|
|
if db.oldest != (common.Hash{}) {
|
|
db.dirties[db.oldest].flushPrev = common.Hash{}
|
|
}
|
|
db.flushnodes += uint64(nodes - len(db.dirties))
|
|
db.flushsize += storage - db.dirtiesSize
|
|
db.flushtime += time.Since(start)
|
|
|
|
memcacheFlushTimeTimer.Update(time.Since(start))
|
|
memcacheFlushSizeMeter.Mark(int64(storage - db.dirtiesSize))
|
|
memcacheFlushNodesMeter.Mark(int64(nodes - len(db.dirties)))
|
|
|
|
log.Debug("Persisted nodes from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
|
|
"flushnodes", db.flushnodes, "flushsize", db.flushsize, "flushtime", db.flushtime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
|
|
|
|
return nil
|
|
}
|
|
|
|
// Commit iterates over all the children of a particular node, writes them out
|
|
// to disk, forcefully tearing down all references in both directions.
|
|
//
|
|
// As a side effect, all pre-images accumulated up to this point are also written.
|
|
func (db *Database) Commit(node common.Hash, report bool) error {
|
|
// Create a database batch to flush persistent data out. It is important that
|
|
// outside code doesn't see an inconsistent state (referenced data removed from
|
|
// memory cache during commit but not yet in persistent storage). This is ensured
|
|
// by only uncaching existing data when the database write finalizes.
|
|
db.lock.RLock()
|
|
|
|
start := time.Now()
|
|
batch := db.diskdb.NewBatch()
|
|
|
|
// Move all of the accumulated preimages into a write batch
|
|
for hash, preimage := range db.preimages {
|
|
if err := batch.Put(db.secureKey(hash[:]), preimage); err != nil {
|
|
log.Error("Failed to commit preimage from trie database", "err", err)
|
|
db.lock.RUnlock()
|
|
return err
|
|
}
|
|
if batch.ValueSize() > ethdb.IdealBatchSize {
|
|
if err := batch.Write(); err != nil {
|
|
db.lock.RUnlock()
|
|
return err
|
|
}
|
|
batch.Reset()
|
|
}
|
|
}
|
|
// Move the trie itself into the batch, flushing if enough data is accumulated
|
|
nodes, storage := len(db.dirties), db.dirtiesSize
|
|
if err := db.commit(node, batch); err != nil {
|
|
log.Error("Failed to commit trie from trie database", "err", err)
|
|
db.lock.RUnlock()
|
|
return err
|
|
}
|
|
// Write batch ready, unlock for readers during persistence
|
|
if err := batch.Write(); err != nil {
|
|
log.Error("Failed to write trie to disk", "err", err)
|
|
db.lock.RUnlock()
|
|
return err
|
|
}
|
|
db.lock.RUnlock()
|
|
|
|
// Write successful, clear out the flushed data
|
|
db.lock.Lock()
|
|
defer db.lock.Unlock()
|
|
|
|
db.preimages = make(map[common.Hash][]byte)
|
|
db.preimagesSize = 0
|
|
|
|
db.uncache(node)
|
|
|
|
memcacheCommitTimeTimer.Update(time.Since(start))
|
|
memcacheCommitSizeMeter.Mark(int64(storage - db.dirtiesSize))
|
|
memcacheCommitNodesMeter.Mark(int64(nodes - len(db.dirties)))
|
|
|
|
logger := log.Info
|
|
if !report {
|
|
logger = log.Debug
|
|
}
|
|
logger("Persisted trie from memory database", "nodes", nodes-len(db.dirties)+int(db.flushnodes), "size", storage-db.dirtiesSize+db.flushsize, "time", time.Since(start)+db.flushtime,
|
|
"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
|
|
|
|
// Reset the garbage collection statistics
|
|
db.gcnodes, db.gcsize, db.gctime = 0, 0, 0
|
|
db.flushnodes, db.flushsize, db.flushtime = 0, 0, 0
|
|
|
|
return nil
|
|
}
|
|
|
|
// commit is the private locked version of Commit.
|
|
func (db *Database) commit(hash common.Hash, batch ethdb.Batch) error {
|
|
// If the node does not exist, it's a previously committed node
|
|
node, ok := db.dirties[hash]
|
|
if !ok {
|
|
return nil
|
|
}
|
|
for _, child := range node.childs() {
|
|
if err := db.commit(child, batch); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
if err := batch.Put(hash[:], node.rlp()); err != nil {
|
|
return err
|
|
}
|
|
// If we've reached an optimal batch size, commit and start over
|
|
if batch.ValueSize() >= ethdb.IdealBatchSize {
|
|
if err := batch.Write(); err != nil {
|
|
return err
|
|
}
|
|
batch.Reset()
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// uncache is the post-processing step of a commit operation where the already
|
|
// persisted trie is removed from the cache. The reason behind the two-phase
|
|
// commit is to ensure consistent data availability while moving from memory
|
|
// to disk.
|
|
func (db *Database) uncache(hash common.Hash) {
|
|
// If the node does not exist, we're done on this path
|
|
node, ok := db.dirties[hash]
|
|
if !ok {
|
|
return
|
|
}
|
|
// Node still exists, remove it from the flush-list
|
|
switch hash {
|
|
case db.oldest:
|
|
db.oldest = node.flushNext
|
|
db.dirties[node.flushNext].flushPrev = common.Hash{}
|
|
case db.newest:
|
|
db.newest = node.flushPrev
|
|
db.dirties[node.flushPrev].flushNext = common.Hash{}
|
|
default:
|
|
db.dirties[node.flushPrev].flushNext = node.flushNext
|
|
db.dirties[node.flushNext].flushPrev = node.flushPrev
|
|
}
|
|
// Uncache the node's subtries and remove the node itself too
|
|
for _, child := range node.childs() {
|
|
db.uncache(child)
|
|
}
|
|
delete(db.dirties, hash)
|
|
db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
|
|
}
|
|
|
|
// Size returns the current storage size of the memory cache in front of the
|
|
// persistent database layer.
|
|
func (db *Database) Size() (common.StorageSize, common.StorageSize) {
|
|
db.lock.RLock()
|
|
defer db.lock.RUnlock()
|
|
|
|
// db.dirtiesSize only contains the useful data in the cache, but when reporting
|
|
// the total memory consumption, the maintenance metadata is also needed to be
|
|
// counted. For every useful node, we track 2 extra hashes as the flushlist.
|
|
var flushlistSize = common.StorageSize((len(db.dirties) - 1) * 2 * common.HashLength)
|
|
return db.dirtiesSize + flushlistSize, db.preimagesSize
|
|
}
|
|
|
|
// verifyIntegrity is a debug method to iterate over the entire trie stored in
|
|
// memory and check whether every node is reachable from the meta root. The goal
|
|
// is to find any errors that might cause memory leaks and or trie nodes to go
|
|
// missing.
|
|
//
|
|
// This method is extremely CPU and memory intensive, only use when must.
|
|
func (db *Database) verifyIntegrity() {
|
|
// Iterate over all the cached nodes and accumulate them into a set
|
|
reachable := map[common.Hash]struct{}{{}: {}}
|
|
|
|
for child := range db.dirties[common.Hash{}].children {
|
|
db.accumulate(child, reachable)
|
|
}
|
|
// Find any unreachable but cached nodes
|
|
var unreachable []string
|
|
for hash, node := range db.dirties {
|
|
if _, ok := reachable[hash]; !ok {
|
|
unreachable = append(unreachable, fmt.Sprintf("%x: {Node: %v, Parents: %d, Prev: %x, Next: %x}",
|
|
hash, node.node, node.parents, node.flushPrev, node.flushNext))
|
|
}
|
|
}
|
|
if len(unreachable) != 0 {
|
|
panic(fmt.Sprintf("trie cache memory leak: %v", unreachable))
|
|
}
|
|
}
|
|
|
|
// accumulate iterates over the trie defined by hash and accumulates all the
|
|
// cached children found in memory.
|
|
func (db *Database) accumulate(hash common.Hash, reachable map[common.Hash]struct{}) {
|
|
// Mark the node reachable if present in the memory cache
|
|
node, ok := db.dirties[hash]
|
|
if !ok {
|
|
return
|
|
}
|
|
reachable[hash] = struct{}{}
|
|
|
|
// Iterate over all the children and accumulate them too
|
|
for _, child := range node.childs() {
|
|
db.accumulate(child, reachable)
|
|
}
|
|
}
|