forked from cerc-io/plugeth
c10a0a62c3
* eth: request ID based message dispatcher * eth: fix dispatcher cancellation, rework fetchers idleness tracker * eth/downloader: drop peers who refuse to serve advertised chains
2899 lines
99 KiB
Go
2899 lines
99 KiB
Go
// Copyright 2020 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package snap
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/json"
|
|
"errors"
|
|
"fmt"
|
|
"math/big"
|
|
"math/rand"
|
|
"sort"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/common/math"
|
|
"github.com/ethereum/go-ethereum/core/rawdb"
|
|
"github.com/ethereum/go-ethereum/core/state"
|
|
"github.com/ethereum/go-ethereum/core/state/snapshot"
|
|
"github.com/ethereum/go-ethereum/core/types"
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"github.com/ethereum/go-ethereum/ethdb"
|
|
"github.com/ethereum/go-ethereum/event"
|
|
"github.com/ethereum/go-ethereum/light"
|
|
"github.com/ethereum/go-ethereum/log"
|
|
"github.com/ethereum/go-ethereum/p2p/msgrate"
|
|
"github.com/ethereum/go-ethereum/rlp"
|
|
"github.com/ethereum/go-ethereum/trie"
|
|
"golang.org/x/crypto/sha3"
|
|
)
|
|
|
|
var (
|
|
// emptyRoot is the known root hash of an empty trie.
|
|
emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
|
|
|
|
// emptyCode is the known hash of the empty EVM bytecode.
|
|
emptyCode = crypto.Keccak256Hash(nil)
|
|
)
|
|
|
|
const (
|
|
// minRequestSize is the minimum number of bytes to request from a remote peer.
|
|
// This number is used as the low cap for account and storage range requests.
|
|
// Bytecode and trienode are limited inherently by item count (1).
|
|
minRequestSize = 64 * 1024
|
|
|
|
// maxRequestSize is the maximum number of bytes to request from a remote peer.
|
|
// This number is used as the high cap for account and storage range requests.
|
|
// Bytecode and trienode are limited more explicitly by the caps below.
|
|
maxRequestSize = 512 * 1024
|
|
|
|
// maxCodeRequestCount is the maximum number of bytecode blobs to request in a
|
|
// single query. If this number is too low, we're not filling responses fully
|
|
// and waste round trip times. If it's too high, we're capping responses and
|
|
// waste bandwidth.
|
|
//
|
|
// Depoyed bytecodes are currently capped at 24KB, so the minimum request
|
|
// size should be maxRequestSize / 24K. Assuming that most contracts do not
|
|
// come close to that, requesting 4x should be a good approximation.
|
|
maxCodeRequestCount = maxRequestSize / (24 * 1024) * 4
|
|
|
|
// maxTrieRequestCount is the maximum number of trie node blobs to request in
|
|
// a single query. If this number is too low, we're not filling responses fully
|
|
// and waste round trip times. If it's too high, we're capping responses and
|
|
// waste bandwidth.
|
|
maxTrieRequestCount = maxRequestSize / 512
|
|
)
|
|
|
|
var (
|
|
// accountConcurrency is the number of chunks to split the account trie into
|
|
// to allow concurrent retrievals.
|
|
accountConcurrency = 16
|
|
|
|
// storageConcurrency is the number of chunks to split the a large contract
|
|
// storage trie into to allow concurrent retrievals.
|
|
storageConcurrency = 16
|
|
)
|
|
|
|
// ErrCancelled is returned from snap syncing if the operation was prematurely
|
|
// terminated.
|
|
var ErrCancelled = errors.New("sync cancelled")
|
|
|
|
// accountRequest tracks a pending account range request to ensure responses are
|
|
// to actual requests and to validate any security constraints.
|
|
//
|
|
// Concurrency note: account requests and responses are handled concurrently from
|
|
// the main runloop to allow Merkle proof verifications on the peer's thread and
|
|
// to drop on invalid response. The request struct must contain all the data to
|
|
// construct the response without accessing runloop internals (i.e. task). That
|
|
// is only included to allow the runloop to match a response to the task being
|
|
// synced without having yet another set of maps.
|
|
type accountRequest struct {
|
|
peer string // Peer to which this request is assigned
|
|
id uint64 // Request ID of this request
|
|
time time.Time // Timestamp when the request was sent
|
|
|
|
deliver chan *accountResponse // Channel to deliver successful response on
|
|
revert chan *accountRequest // Channel to deliver request failure on
|
|
cancel chan struct{} // Channel to track sync cancellation
|
|
timeout *time.Timer // Timer to track delivery timeout
|
|
stale chan struct{} // Channel to signal the request was dropped
|
|
|
|
origin common.Hash // First account requested to allow continuation checks
|
|
limit common.Hash // Last account requested to allow non-overlapping chunking
|
|
|
|
task *accountTask // Task which this request is filling (only access fields through the runloop!!)
|
|
}
|
|
|
|
// accountResponse is an already Merkle-verified remote response to an account
|
|
// range request. It contains the subtrie for the requested account range and
|
|
// the database that's going to be filled with the internal nodes on commit.
|
|
type accountResponse struct {
|
|
task *accountTask // Task which this request is filling
|
|
|
|
hashes []common.Hash // Account hashes in the returned range
|
|
accounts []*types.StateAccount // Expanded accounts in the returned range
|
|
|
|
cont bool // Whether the account range has a continuation
|
|
}
|
|
|
|
// bytecodeRequest tracks a pending bytecode request to ensure responses are to
|
|
// actual requests and to validate any security constraints.
|
|
//
|
|
// Concurrency note: bytecode requests and responses are handled concurrently from
|
|
// the main runloop to allow Keccak256 hash verifications on the peer's thread and
|
|
// to drop on invalid response. The request struct must contain all the data to
|
|
// construct the response without accessing runloop internals (i.e. task). That
|
|
// is only included to allow the runloop to match a response to the task being
|
|
// synced without having yet another set of maps.
|
|
type bytecodeRequest struct {
|
|
peer string // Peer to which this request is assigned
|
|
id uint64 // Request ID of this request
|
|
time time.Time // Timestamp when the request was sent
|
|
|
|
deliver chan *bytecodeResponse // Channel to deliver successful response on
|
|
revert chan *bytecodeRequest // Channel to deliver request failure on
|
|
cancel chan struct{} // Channel to track sync cancellation
|
|
timeout *time.Timer // Timer to track delivery timeout
|
|
stale chan struct{} // Channel to signal the request was dropped
|
|
|
|
hashes []common.Hash // Bytecode hashes to validate responses
|
|
task *accountTask // Task which this request is filling (only access fields through the runloop!!)
|
|
}
|
|
|
|
// bytecodeResponse is an already verified remote response to a bytecode request.
|
|
type bytecodeResponse struct {
|
|
task *accountTask // Task which this request is filling
|
|
|
|
hashes []common.Hash // Hashes of the bytecode to avoid double hashing
|
|
codes [][]byte // Actual bytecodes to store into the database (nil = missing)
|
|
}
|
|
|
|
// storageRequest tracks a pending storage ranges request to ensure responses are
|
|
// to actual requests and to validate any security constraints.
|
|
//
|
|
// Concurrency note: storage requests and responses are handled concurrently from
|
|
// the main runloop to allow Merkel proof verifications on the peer's thread and
|
|
// to drop on invalid response. The request struct must contain all the data to
|
|
// construct the response without accessing runloop internals (i.e. tasks). That
|
|
// is only included to allow the runloop to match a response to the task being
|
|
// synced without having yet another set of maps.
|
|
type storageRequest struct {
|
|
peer string // Peer to which this request is assigned
|
|
id uint64 // Request ID of this request
|
|
time time.Time // Timestamp when the request was sent
|
|
|
|
deliver chan *storageResponse // Channel to deliver successful response on
|
|
revert chan *storageRequest // Channel to deliver request failure on
|
|
cancel chan struct{} // Channel to track sync cancellation
|
|
timeout *time.Timer // Timer to track delivery timeout
|
|
stale chan struct{} // Channel to signal the request was dropped
|
|
|
|
accounts []common.Hash // Account hashes to validate responses
|
|
roots []common.Hash // Storage roots to validate responses
|
|
|
|
origin common.Hash // First storage slot requested to allow continuation checks
|
|
limit common.Hash // Last storage slot requested to allow non-overlapping chunking
|
|
|
|
mainTask *accountTask // Task which this response belongs to (only access fields through the runloop!!)
|
|
subTask *storageTask // Task which this response is filling (only access fields through the runloop!!)
|
|
}
|
|
|
|
// storageResponse is an already Merkle-verified remote response to a storage
|
|
// range request. It contains the subtries for the requested storage ranges and
|
|
// the databases that's going to be filled with the internal nodes on commit.
|
|
type storageResponse struct {
|
|
mainTask *accountTask // Task which this response belongs to
|
|
subTask *storageTask // Task which this response is filling
|
|
|
|
accounts []common.Hash // Account hashes requested, may be only partially filled
|
|
roots []common.Hash // Storage roots requested, may be only partially filled
|
|
|
|
hashes [][]common.Hash // Storage slot hashes in the returned range
|
|
slots [][][]byte // Storage slot values in the returned range
|
|
|
|
cont bool // Whether the last storage range has a continuation
|
|
}
|
|
|
|
// trienodeHealRequest tracks a pending state trie request to ensure responses
|
|
// are to actual requests and to validate any security constraints.
|
|
//
|
|
// Concurrency note: trie node requests and responses are handled concurrently from
|
|
// the main runloop to allow Keccak256 hash verifications on the peer's thread and
|
|
// to drop on invalid response. The request struct must contain all the data to
|
|
// construct the response without accessing runloop internals (i.e. task). That
|
|
// is only included to allow the runloop to match a response to the task being
|
|
// synced without having yet another set of maps.
|
|
type trienodeHealRequest struct {
|
|
peer string // Peer to which this request is assigned
|
|
id uint64 // Request ID of this request
|
|
time time.Time // Timestamp when the request was sent
|
|
|
|
deliver chan *trienodeHealResponse // Channel to deliver successful response on
|
|
revert chan *trienodeHealRequest // Channel to deliver request failure on
|
|
cancel chan struct{} // Channel to track sync cancellation
|
|
timeout *time.Timer // Timer to track delivery timeout
|
|
stale chan struct{} // Channel to signal the request was dropped
|
|
|
|
hashes []common.Hash // Trie node hashes to validate responses
|
|
paths []trie.SyncPath // Trie node paths requested for rescheduling
|
|
|
|
task *healTask // Task which this request is filling (only access fields through the runloop!!)
|
|
}
|
|
|
|
// trienodeHealResponse is an already verified remote response to a trie node request.
|
|
type trienodeHealResponse struct {
|
|
task *healTask // Task which this request is filling
|
|
|
|
hashes []common.Hash // Hashes of the trie nodes to avoid double hashing
|
|
paths []trie.SyncPath // Trie node paths requested for rescheduling missing ones
|
|
nodes [][]byte // Actual trie nodes to store into the database (nil = missing)
|
|
}
|
|
|
|
// bytecodeHealRequest tracks a pending bytecode request to ensure responses are to
|
|
// actual requests and to validate any security constraints.
|
|
//
|
|
// Concurrency note: bytecode requests and responses are handled concurrently from
|
|
// the main runloop to allow Keccak256 hash verifications on the peer's thread and
|
|
// to drop on invalid response. The request struct must contain all the data to
|
|
// construct the response without accessing runloop internals (i.e. task). That
|
|
// is only included to allow the runloop to match a response to the task being
|
|
// synced without having yet another set of maps.
|
|
type bytecodeHealRequest struct {
|
|
peer string // Peer to which this request is assigned
|
|
id uint64 // Request ID of this request
|
|
time time.Time // Timestamp when the request was sent
|
|
|
|
deliver chan *bytecodeHealResponse // Channel to deliver successful response on
|
|
revert chan *bytecodeHealRequest // Channel to deliver request failure on
|
|
cancel chan struct{} // Channel to track sync cancellation
|
|
timeout *time.Timer // Timer to track delivery timeout
|
|
stale chan struct{} // Channel to signal the request was dropped
|
|
|
|
hashes []common.Hash // Bytecode hashes to validate responses
|
|
task *healTask // Task which this request is filling (only access fields through the runloop!!)
|
|
}
|
|
|
|
// bytecodeHealResponse is an already verified remote response to a bytecode request.
|
|
type bytecodeHealResponse struct {
|
|
task *healTask // Task which this request is filling
|
|
|
|
hashes []common.Hash // Hashes of the bytecode to avoid double hashing
|
|
codes [][]byte // Actual bytecodes to store into the database (nil = missing)
|
|
}
|
|
|
|
// accountTask represents the sync task for a chunk of the account snapshot.
|
|
type accountTask struct {
|
|
// These fields get serialized to leveldb on shutdown
|
|
Next common.Hash // Next account to sync in this interval
|
|
Last common.Hash // Last account to sync in this interval
|
|
SubTasks map[common.Hash][]*storageTask // Storage intervals needing fetching for large contracts
|
|
|
|
// These fields are internals used during runtime
|
|
req *accountRequest // Pending request to fill this task
|
|
res *accountResponse // Validate response filling this task
|
|
pend int // Number of pending subtasks for this round
|
|
|
|
needCode []bool // Flags whether the filling accounts need code retrieval
|
|
needState []bool // Flags whether the filling accounts need storage retrieval
|
|
needHeal []bool // Flags whether the filling accounts's state was chunked and need healing
|
|
|
|
codeTasks map[common.Hash]struct{} // Code hashes that need retrieval
|
|
stateTasks map[common.Hash]common.Hash // Account hashes->roots that need full state retrieval
|
|
|
|
genBatch ethdb.Batch // Batch used by the node generator
|
|
genTrie *trie.StackTrie // Node generator from storage slots
|
|
|
|
done bool // Flag whether the task can be removed
|
|
}
|
|
|
|
// storageTask represents the sync task for a chunk of the storage snapshot.
|
|
type storageTask struct {
|
|
Next common.Hash // Next account to sync in this interval
|
|
Last common.Hash // Last account to sync in this interval
|
|
|
|
// These fields are internals used during runtime
|
|
root common.Hash // Storage root hash for this instance
|
|
req *storageRequest // Pending request to fill this task
|
|
|
|
genBatch ethdb.Batch // Batch used by the node generator
|
|
genTrie *trie.StackTrie // Node generator from storage slots
|
|
|
|
done bool // Flag whether the task can be removed
|
|
}
|
|
|
|
// healTask represents the sync task for healing the snap-synced chunk boundaries.
|
|
type healTask struct {
|
|
scheduler *trie.Sync // State trie sync scheduler defining the tasks
|
|
|
|
trieTasks map[common.Hash]trie.SyncPath // Set of trie node tasks currently queued for retrieval
|
|
codeTasks map[common.Hash]struct{} // Set of byte code tasks currently queued for retrieval
|
|
}
|
|
|
|
// SyncProgress is a database entry to allow suspending and resuming a snapshot state
|
|
// sync. Opposed to full and fast sync, there is no way to restart a suspended
|
|
// snap sync without prior knowledge of the suspension point.
|
|
type SyncProgress struct {
|
|
Tasks []*accountTask // The suspended account tasks (contract tasks within)
|
|
|
|
// Status report during syncing phase
|
|
AccountSynced uint64 // Number of accounts downloaded
|
|
AccountBytes common.StorageSize // Number of account trie bytes persisted to disk
|
|
BytecodeSynced uint64 // Number of bytecodes downloaded
|
|
BytecodeBytes common.StorageSize // Number of bytecode bytes downloaded
|
|
StorageSynced uint64 // Number of storage slots downloaded
|
|
StorageBytes common.StorageSize // Number of storage trie bytes persisted to disk
|
|
|
|
// Status report during healing phase
|
|
TrienodeHealSynced uint64 // Number of state trie nodes downloaded
|
|
TrienodeHealBytes common.StorageSize // Number of state trie bytes persisted to disk
|
|
BytecodeHealSynced uint64 // Number of bytecodes downloaded
|
|
BytecodeHealBytes common.StorageSize // Number of bytecodes persisted to disk
|
|
}
|
|
|
|
// SyncPending is analogous to SyncProgress, but it's used to report on pending
|
|
// ephemeral sync progress that doesn't get persisted into the database.
|
|
type SyncPending struct {
|
|
TrienodeHeal uint64 // Number of state trie nodes pending
|
|
BytecodeHeal uint64 // Number of bytecodes pending
|
|
}
|
|
|
|
// SyncPeer abstracts out the methods required for a peer to be synced against
|
|
// with the goal of allowing the construction of mock peers without the full
|
|
// blown networking.
|
|
type SyncPeer interface {
|
|
// ID retrieves the peer's unique identifier.
|
|
ID() string
|
|
|
|
// RequestAccountRange fetches a batch of accounts rooted in a specific account
|
|
// trie, starting with the origin.
|
|
RequestAccountRange(id uint64, root, origin, limit common.Hash, bytes uint64) error
|
|
|
|
// RequestStorageRanges fetches a batch of storage slots belonging to one or
|
|
// more accounts. If slots from only one accout is requested, an origin marker
|
|
// may also be used to retrieve from there.
|
|
RequestStorageRanges(id uint64, root common.Hash, accounts []common.Hash, origin, limit []byte, bytes uint64) error
|
|
|
|
// RequestByteCodes fetches a batch of bytecodes by hash.
|
|
RequestByteCodes(id uint64, hashes []common.Hash, bytes uint64) error
|
|
|
|
// RequestTrieNodes fetches a batch of account or storage trie nodes rooted in
|
|
// a specificstate trie.
|
|
RequestTrieNodes(id uint64, root common.Hash, paths []TrieNodePathSet, bytes uint64) error
|
|
|
|
// Log retrieves the peer's own contextual logger.
|
|
Log() log.Logger
|
|
}
|
|
|
|
// Syncer is an Ethereum account and storage trie syncer based on snapshots and
|
|
// the snap protocol. It's purpose is to download all the accounts and storage
|
|
// slots from remote peers and reassemble chunks of the state trie, on top of
|
|
// which a state sync can be run to fix any gaps / overlaps.
|
|
//
|
|
// Every network request has a variety of failure events:
|
|
// - The peer disconnects after task assignment, failing to send the request
|
|
// - The peer disconnects after sending the request, before delivering on it
|
|
// - The peer remains connected, but does not deliver a response in time
|
|
// - The peer delivers a stale response after a previous timeout
|
|
// - The peer delivers a refusal to serve the requested state
|
|
type Syncer struct {
|
|
db ethdb.KeyValueStore // Database to store the trie nodes into (and dedup)
|
|
|
|
root common.Hash // Current state trie root being synced
|
|
tasks []*accountTask // Current account task set being synced
|
|
snapped bool // Flag to signal that snap phase is done
|
|
healer *healTask // Current state healing task being executed
|
|
update chan struct{} // Notification channel for possible sync progression
|
|
|
|
peers map[string]SyncPeer // Currently active peers to download from
|
|
peerJoin *event.Feed // Event feed to react to peers joining
|
|
peerDrop *event.Feed // Event feed to react to peers dropping
|
|
rates *msgrate.Trackers // Message throughput rates for peers
|
|
|
|
// Request tracking during syncing phase
|
|
statelessPeers map[string]struct{} // Peers that failed to deliver state data
|
|
accountIdlers map[string]struct{} // Peers that aren't serving account requests
|
|
bytecodeIdlers map[string]struct{} // Peers that aren't serving bytecode requests
|
|
storageIdlers map[string]struct{} // Peers that aren't serving storage requests
|
|
|
|
accountReqs map[uint64]*accountRequest // Account requests currently running
|
|
bytecodeReqs map[uint64]*bytecodeRequest // Bytecode requests currently running
|
|
storageReqs map[uint64]*storageRequest // Storage requests currently running
|
|
|
|
accountSynced uint64 // Number of accounts downloaded
|
|
accountBytes common.StorageSize // Number of account trie bytes persisted to disk
|
|
bytecodeSynced uint64 // Number of bytecodes downloaded
|
|
bytecodeBytes common.StorageSize // Number of bytecode bytes downloaded
|
|
storageSynced uint64 // Number of storage slots downloaded
|
|
storageBytes common.StorageSize // Number of storage trie bytes persisted to disk
|
|
|
|
// Request tracking during healing phase
|
|
trienodeHealIdlers map[string]struct{} // Peers that aren't serving trie node requests
|
|
bytecodeHealIdlers map[string]struct{} // Peers that aren't serving bytecode requests
|
|
|
|
trienodeHealReqs map[uint64]*trienodeHealRequest // Trie node requests currently running
|
|
bytecodeHealReqs map[uint64]*bytecodeHealRequest // Bytecode requests currently running
|
|
|
|
trienodeHealSynced uint64 // Number of state trie nodes downloaded
|
|
trienodeHealBytes common.StorageSize // Number of state trie bytes persisted to disk
|
|
trienodeHealDups uint64 // Number of state trie nodes already processed
|
|
trienodeHealNops uint64 // Number of state trie nodes not requested
|
|
bytecodeHealSynced uint64 // Number of bytecodes downloaded
|
|
bytecodeHealBytes common.StorageSize // Number of bytecodes persisted to disk
|
|
bytecodeHealDups uint64 // Number of bytecodes already processed
|
|
bytecodeHealNops uint64 // Number of bytecodes not requested
|
|
|
|
stateWriter ethdb.Batch // Shared batch writer used for persisting raw states
|
|
accountHealed uint64 // Number of accounts downloaded during the healing stage
|
|
accountHealedBytes common.StorageSize // Number of raw account bytes persisted to disk during the healing stage
|
|
storageHealed uint64 // Number of storage slots downloaded during the healing stage
|
|
storageHealedBytes common.StorageSize // Number of raw storage bytes persisted to disk during the healing stage
|
|
|
|
startTime time.Time // Time instance when snapshot sync started
|
|
logTime time.Time // Time instance when status was last reported
|
|
|
|
pend sync.WaitGroup // Tracks network request goroutines for graceful shutdown
|
|
lock sync.RWMutex // Protects fields that can change outside of sync (peers, reqs, root)
|
|
}
|
|
|
|
// NewSyncer creates a new snapshot syncer to download the Ethereum state over the
|
|
// snap protocol.
|
|
func NewSyncer(db ethdb.KeyValueStore) *Syncer {
|
|
return &Syncer{
|
|
db: db,
|
|
|
|
peers: make(map[string]SyncPeer),
|
|
peerJoin: new(event.Feed),
|
|
peerDrop: new(event.Feed),
|
|
rates: msgrate.NewTrackers(log.New("proto", "snap")),
|
|
update: make(chan struct{}, 1),
|
|
|
|
accountIdlers: make(map[string]struct{}),
|
|
storageIdlers: make(map[string]struct{}),
|
|
bytecodeIdlers: make(map[string]struct{}),
|
|
|
|
accountReqs: make(map[uint64]*accountRequest),
|
|
storageReqs: make(map[uint64]*storageRequest),
|
|
bytecodeReqs: make(map[uint64]*bytecodeRequest),
|
|
|
|
trienodeHealIdlers: make(map[string]struct{}),
|
|
bytecodeHealIdlers: make(map[string]struct{}),
|
|
|
|
trienodeHealReqs: make(map[uint64]*trienodeHealRequest),
|
|
bytecodeHealReqs: make(map[uint64]*bytecodeHealRequest),
|
|
stateWriter: db.NewBatch(),
|
|
}
|
|
}
|
|
|
|
// Register injects a new data source into the syncer's peerset.
|
|
func (s *Syncer) Register(peer SyncPeer) error {
|
|
// Make sure the peer is not registered yet
|
|
id := peer.ID()
|
|
|
|
s.lock.Lock()
|
|
if _, ok := s.peers[id]; ok {
|
|
log.Error("Snap peer already registered", "id", id)
|
|
|
|
s.lock.Unlock()
|
|
return errors.New("already registered")
|
|
}
|
|
s.peers[id] = peer
|
|
s.rates.Track(id, msgrate.NewTracker(s.rates.MeanCapacities(), s.rates.MedianRoundTrip()))
|
|
|
|
// Mark the peer as idle, even if no sync is running
|
|
s.accountIdlers[id] = struct{}{}
|
|
s.storageIdlers[id] = struct{}{}
|
|
s.bytecodeIdlers[id] = struct{}{}
|
|
s.trienodeHealIdlers[id] = struct{}{}
|
|
s.bytecodeHealIdlers[id] = struct{}{}
|
|
s.lock.Unlock()
|
|
|
|
// Notify any active syncs that a new peer can be assigned data
|
|
s.peerJoin.Send(id)
|
|
return nil
|
|
}
|
|
|
|
// Unregister injects a new data source into the syncer's peerset.
|
|
func (s *Syncer) Unregister(id string) error {
|
|
// Remove all traces of the peer from the registry
|
|
s.lock.Lock()
|
|
if _, ok := s.peers[id]; !ok {
|
|
log.Error("Snap peer not registered", "id", id)
|
|
|
|
s.lock.Unlock()
|
|
return errors.New("not registered")
|
|
}
|
|
delete(s.peers, id)
|
|
s.rates.Untrack(id)
|
|
|
|
// Remove status markers, even if no sync is running
|
|
delete(s.statelessPeers, id)
|
|
|
|
delete(s.accountIdlers, id)
|
|
delete(s.storageIdlers, id)
|
|
delete(s.bytecodeIdlers, id)
|
|
delete(s.trienodeHealIdlers, id)
|
|
delete(s.bytecodeHealIdlers, id)
|
|
s.lock.Unlock()
|
|
|
|
// Notify any active syncs that pending requests need to be reverted
|
|
s.peerDrop.Send(id)
|
|
return nil
|
|
}
|
|
|
|
// Sync starts (or resumes a previous) sync cycle to iterate over an state trie
|
|
// with the given root and reconstruct the nodes based on the snapshot leaves.
|
|
// Previously downloaded segments will not be redownloaded of fixed, rather any
|
|
// errors will be healed after the leaves are fully accumulated.
|
|
func (s *Syncer) Sync(root common.Hash, cancel chan struct{}) error {
|
|
// Move the trie root from any previous value, revert stateless markers for
|
|
// any peers and initialize the syncer if it was not yet run
|
|
s.lock.Lock()
|
|
s.root = root
|
|
s.healer = &healTask{
|
|
scheduler: state.NewStateSync(root, s.db, nil, s.onHealState),
|
|
trieTasks: make(map[common.Hash]trie.SyncPath),
|
|
codeTasks: make(map[common.Hash]struct{}),
|
|
}
|
|
s.statelessPeers = make(map[string]struct{})
|
|
s.lock.Unlock()
|
|
|
|
if s.startTime == (time.Time{}) {
|
|
s.startTime = time.Now()
|
|
}
|
|
// Retrieve the previous sync status from LevelDB and abort if already synced
|
|
s.loadSyncStatus()
|
|
if len(s.tasks) == 0 && s.healer.scheduler.Pending() == 0 {
|
|
log.Debug("Snapshot sync already completed")
|
|
return nil
|
|
}
|
|
defer func() { // Persist any progress, independent of failure
|
|
for _, task := range s.tasks {
|
|
s.forwardAccountTask(task)
|
|
}
|
|
s.cleanAccountTasks()
|
|
s.saveSyncStatus()
|
|
}()
|
|
|
|
log.Debug("Starting snapshot sync cycle", "root", root)
|
|
|
|
// Flush out the last committed raw states
|
|
defer func() {
|
|
if s.stateWriter.ValueSize() > 0 {
|
|
s.stateWriter.Write()
|
|
s.stateWriter.Reset()
|
|
}
|
|
}()
|
|
defer s.report(true)
|
|
|
|
// Whether sync completed or not, disregard any future packets
|
|
defer func() {
|
|
log.Debug("Terminating snapshot sync cycle", "root", root)
|
|
s.lock.Lock()
|
|
s.accountReqs = make(map[uint64]*accountRequest)
|
|
s.storageReqs = make(map[uint64]*storageRequest)
|
|
s.bytecodeReqs = make(map[uint64]*bytecodeRequest)
|
|
s.trienodeHealReqs = make(map[uint64]*trienodeHealRequest)
|
|
s.bytecodeHealReqs = make(map[uint64]*bytecodeHealRequest)
|
|
s.lock.Unlock()
|
|
}()
|
|
// Keep scheduling sync tasks
|
|
peerJoin := make(chan string, 16)
|
|
peerJoinSub := s.peerJoin.Subscribe(peerJoin)
|
|
defer peerJoinSub.Unsubscribe()
|
|
|
|
peerDrop := make(chan string, 16)
|
|
peerDropSub := s.peerDrop.Subscribe(peerDrop)
|
|
defer peerDropSub.Unsubscribe()
|
|
|
|
// Create a set of unique channels for this sync cycle. We need these to be
|
|
// ephemeral so a data race doesn't accidentally deliver something stale on
|
|
// a persistent channel across syncs (yup, this happened)
|
|
var (
|
|
accountReqFails = make(chan *accountRequest)
|
|
storageReqFails = make(chan *storageRequest)
|
|
bytecodeReqFails = make(chan *bytecodeRequest)
|
|
accountResps = make(chan *accountResponse)
|
|
storageResps = make(chan *storageResponse)
|
|
bytecodeResps = make(chan *bytecodeResponse)
|
|
trienodeHealReqFails = make(chan *trienodeHealRequest)
|
|
bytecodeHealReqFails = make(chan *bytecodeHealRequest)
|
|
trienodeHealResps = make(chan *trienodeHealResponse)
|
|
bytecodeHealResps = make(chan *bytecodeHealResponse)
|
|
)
|
|
for {
|
|
// Remove all completed tasks and terminate sync if everything's done
|
|
s.cleanStorageTasks()
|
|
s.cleanAccountTasks()
|
|
if len(s.tasks) == 0 && s.healer.scheduler.Pending() == 0 {
|
|
return nil
|
|
}
|
|
// Assign all the data retrieval tasks to any free peers
|
|
s.assignAccountTasks(accountResps, accountReqFails, cancel)
|
|
s.assignBytecodeTasks(bytecodeResps, bytecodeReqFails, cancel)
|
|
s.assignStorageTasks(storageResps, storageReqFails, cancel)
|
|
|
|
if len(s.tasks) == 0 {
|
|
// Sync phase done, run heal phase
|
|
s.assignTrienodeHealTasks(trienodeHealResps, trienodeHealReqFails, cancel)
|
|
s.assignBytecodeHealTasks(bytecodeHealResps, bytecodeHealReqFails, cancel)
|
|
}
|
|
// Wait for something to happen
|
|
select {
|
|
case <-s.update:
|
|
// Something happened (new peer, delivery, timeout), recheck tasks
|
|
case <-peerJoin:
|
|
// A new peer joined, try to schedule it new tasks
|
|
case id := <-peerDrop:
|
|
s.revertRequests(id)
|
|
case <-cancel:
|
|
return ErrCancelled
|
|
|
|
case req := <-accountReqFails:
|
|
s.revertAccountRequest(req)
|
|
case req := <-bytecodeReqFails:
|
|
s.revertBytecodeRequest(req)
|
|
case req := <-storageReqFails:
|
|
s.revertStorageRequest(req)
|
|
case req := <-trienodeHealReqFails:
|
|
s.revertTrienodeHealRequest(req)
|
|
case req := <-bytecodeHealReqFails:
|
|
s.revertBytecodeHealRequest(req)
|
|
|
|
case res := <-accountResps:
|
|
s.processAccountResponse(res)
|
|
case res := <-bytecodeResps:
|
|
s.processBytecodeResponse(res)
|
|
case res := <-storageResps:
|
|
s.processStorageResponse(res)
|
|
case res := <-trienodeHealResps:
|
|
s.processTrienodeHealResponse(res)
|
|
case res := <-bytecodeHealResps:
|
|
s.processBytecodeHealResponse(res)
|
|
}
|
|
// Report stats if something meaningful happened
|
|
s.report(false)
|
|
}
|
|
}
|
|
|
|
// loadSyncStatus retrieves a previously aborted sync status from the database,
|
|
// or generates a fresh one if none is available.
|
|
func (s *Syncer) loadSyncStatus() {
|
|
var progress SyncProgress
|
|
|
|
if status := rawdb.ReadSnapshotSyncStatus(s.db); status != nil {
|
|
if err := json.Unmarshal(status, &progress); err != nil {
|
|
log.Error("Failed to decode snap sync status", "err", err)
|
|
} else {
|
|
for _, task := range progress.Tasks {
|
|
log.Debug("Scheduled account sync task", "from", task.Next, "last", task.Last)
|
|
}
|
|
s.tasks = progress.Tasks
|
|
for _, task := range s.tasks {
|
|
task.genBatch = ethdb.HookedBatch{
|
|
Batch: s.db.NewBatch(),
|
|
OnPut: func(key []byte, value []byte) {
|
|
s.accountBytes += common.StorageSize(len(key) + len(value))
|
|
},
|
|
}
|
|
task.genTrie = trie.NewStackTrie(task.genBatch)
|
|
|
|
for _, subtasks := range task.SubTasks {
|
|
for _, subtask := range subtasks {
|
|
subtask.genBatch = ethdb.HookedBatch{
|
|
Batch: s.db.NewBatch(),
|
|
OnPut: func(key []byte, value []byte) {
|
|
s.storageBytes += common.StorageSize(len(key) + len(value))
|
|
},
|
|
}
|
|
subtask.genTrie = trie.NewStackTrie(subtask.genBatch)
|
|
}
|
|
}
|
|
}
|
|
s.snapped = len(s.tasks) == 0
|
|
|
|
s.accountSynced = progress.AccountSynced
|
|
s.accountBytes = progress.AccountBytes
|
|
s.bytecodeSynced = progress.BytecodeSynced
|
|
s.bytecodeBytes = progress.BytecodeBytes
|
|
s.storageSynced = progress.StorageSynced
|
|
s.storageBytes = progress.StorageBytes
|
|
|
|
s.trienodeHealSynced = progress.TrienodeHealSynced
|
|
s.trienodeHealBytes = progress.TrienodeHealBytes
|
|
s.bytecodeHealSynced = progress.BytecodeHealSynced
|
|
s.bytecodeHealBytes = progress.BytecodeHealBytes
|
|
return
|
|
}
|
|
}
|
|
// Either we've failed to decode the previus state, or there was none.
|
|
// Start a fresh sync by chunking up the account range and scheduling
|
|
// them for retrieval.
|
|
s.tasks = nil
|
|
s.accountSynced, s.accountBytes = 0, 0
|
|
s.bytecodeSynced, s.bytecodeBytes = 0, 0
|
|
s.storageSynced, s.storageBytes = 0, 0
|
|
s.trienodeHealSynced, s.trienodeHealBytes = 0, 0
|
|
s.bytecodeHealSynced, s.bytecodeHealBytes = 0, 0
|
|
|
|
var next common.Hash
|
|
step := new(big.Int).Sub(
|
|
new(big.Int).Div(
|
|
new(big.Int).Exp(common.Big2, common.Big256, nil),
|
|
big.NewInt(int64(accountConcurrency)),
|
|
), common.Big1,
|
|
)
|
|
for i := 0; i < accountConcurrency; i++ {
|
|
last := common.BigToHash(new(big.Int).Add(next.Big(), step))
|
|
if i == accountConcurrency-1 {
|
|
// Make sure we don't overflow if the step is not a proper divisor
|
|
last = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
|
|
}
|
|
batch := ethdb.HookedBatch{
|
|
Batch: s.db.NewBatch(),
|
|
OnPut: func(key []byte, value []byte) {
|
|
s.accountBytes += common.StorageSize(len(key) + len(value))
|
|
},
|
|
}
|
|
s.tasks = append(s.tasks, &accountTask{
|
|
Next: next,
|
|
Last: last,
|
|
SubTasks: make(map[common.Hash][]*storageTask),
|
|
genBatch: batch,
|
|
genTrie: trie.NewStackTrie(batch),
|
|
})
|
|
log.Debug("Created account sync task", "from", next, "last", last)
|
|
next = common.BigToHash(new(big.Int).Add(last.Big(), common.Big1))
|
|
}
|
|
}
|
|
|
|
// saveSyncStatus marshals the remaining sync tasks into leveldb.
|
|
func (s *Syncer) saveSyncStatus() {
|
|
// Serialize any partial progress to disk before spinning down
|
|
for _, task := range s.tasks {
|
|
if err := task.genBatch.Write(); err != nil {
|
|
log.Error("Failed to persist account slots", "err", err)
|
|
}
|
|
for _, subtasks := range task.SubTasks {
|
|
for _, subtask := range subtasks {
|
|
if err := subtask.genBatch.Write(); err != nil {
|
|
log.Error("Failed to persist storage slots", "err", err)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Store the actual progress markers
|
|
progress := &SyncProgress{
|
|
Tasks: s.tasks,
|
|
AccountSynced: s.accountSynced,
|
|
AccountBytes: s.accountBytes,
|
|
BytecodeSynced: s.bytecodeSynced,
|
|
BytecodeBytes: s.bytecodeBytes,
|
|
StorageSynced: s.storageSynced,
|
|
StorageBytes: s.storageBytes,
|
|
TrienodeHealSynced: s.trienodeHealSynced,
|
|
TrienodeHealBytes: s.trienodeHealBytes,
|
|
BytecodeHealSynced: s.bytecodeHealSynced,
|
|
BytecodeHealBytes: s.bytecodeHealBytes,
|
|
}
|
|
status, err := json.Marshal(progress)
|
|
if err != nil {
|
|
panic(err) // This can only fail during implementation
|
|
}
|
|
rawdb.WriteSnapshotSyncStatus(s.db, status)
|
|
}
|
|
|
|
// Progress returns the snap sync status statistics.
|
|
func (s *Syncer) Progress() (*SyncProgress, *SyncPending) {
|
|
s.lock.Lock()
|
|
defer s.lock.Unlock()
|
|
|
|
progress := &SyncProgress{
|
|
AccountSynced: s.accountSynced,
|
|
AccountBytes: s.accountBytes,
|
|
BytecodeSynced: s.bytecodeSynced,
|
|
BytecodeBytes: s.bytecodeBytes,
|
|
StorageSynced: s.storageSynced,
|
|
StorageBytes: s.storageBytes,
|
|
TrienodeHealSynced: s.trienodeHealSynced,
|
|
TrienodeHealBytes: s.trienodeHealBytes,
|
|
BytecodeHealSynced: s.bytecodeHealSynced,
|
|
BytecodeHealBytes: s.bytecodeHealBytes,
|
|
}
|
|
pending := new(SyncPending)
|
|
if s.healer != nil {
|
|
pending.TrienodeHeal = uint64(len(s.healer.trieTasks))
|
|
pending.BytecodeHeal = uint64(len(s.healer.codeTasks))
|
|
}
|
|
return progress, pending
|
|
}
|
|
|
|
// cleanAccountTasks removes account range retrieval tasks that have already been
|
|
// completed.
|
|
func (s *Syncer) cleanAccountTasks() {
|
|
// If the sync was already done before, don't even bother
|
|
if len(s.tasks) == 0 {
|
|
return
|
|
}
|
|
// Sync wasn't finished previously, check for any task that can be finalized
|
|
for i := 0; i < len(s.tasks); i++ {
|
|
if s.tasks[i].done {
|
|
s.tasks = append(s.tasks[:i], s.tasks[i+1:]...)
|
|
i--
|
|
}
|
|
}
|
|
// If everything was just finalized just, generate the account trie and start heal
|
|
if len(s.tasks) == 0 {
|
|
s.lock.Lock()
|
|
s.snapped = true
|
|
s.lock.Unlock()
|
|
|
|
// Push the final sync report
|
|
s.reportSyncProgress(true)
|
|
}
|
|
}
|
|
|
|
// cleanStorageTasks iterates over all the account tasks and storage sub-tasks
|
|
// within, cleaning any that have been completed.
|
|
func (s *Syncer) cleanStorageTasks() {
|
|
for _, task := range s.tasks {
|
|
for account, subtasks := range task.SubTasks {
|
|
// Remove storage range retrieval tasks that completed
|
|
for j := 0; j < len(subtasks); j++ {
|
|
if subtasks[j].done {
|
|
subtasks = append(subtasks[:j], subtasks[j+1:]...)
|
|
j--
|
|
}
|
|
}
|
|
if len(subtasks) > 0 {
|
|
task.SubTasks[account] = subtasks
|
|
continue
|
|
}
|
|
// If all storage chunks are done, mark the account as done too
|
|
for j, hash := range task.res.hashes {
|
|
if hash == account {
|
|
task.needState[j] = false
|
|
}
|
|
}
|
|
delete(task.SubTasks, account)
|
|
task.pend--
|
|
|
|
// If this was the last pending task, forward the account task
|
|
if task.pend == 0 {
|
|
s.forwardAccountTask(task)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// assignAccountTasks attempts to match idle peers to pending account range
|
|
// retrievals.
|
|
func (s *Syncer) assignAccountTasks(success chan *accountResponse, fail chan *accountRequest, cancel chan struct{}) {
|
|
s.lock.Lock()
|
|
defer s.lock.Unlock()
|
|
|
|
// Sort the peers by download capacity to use faster ones if many available
|
|
idlers := &capacitySort{
|
|
ids: make([]string, 0, len(s.accountIdlers)),
|
|
caps: make([]int, 0, len(s.accountIdlers)),
|
|
}
|
|
targetTTL := s.rates.TargetTimeout()
|
|
for id := range s.accountIdlers {
|
|
if _, ok := s.statelessPeers[id]; ok {
|
|
continue
|
|
}
|
|
idlers.ids = append(idlers.ids, id)
|
|
idlers.caps = append(idlers.caps, s.rates.Capacity(id, AccountRangeMsg, targetTTL))
|
|
}
|
|
if len(idlers.ids) == 0 {
|
|
return
|
|
}
|
|
sort.Sort(sort.Reverse(idlers))
|
|
|
|
// Iterate over all the tasks and try to find a pending one
|
|
for _, task := range s.tasks {
|
|
// Skip any tasks already filling
|
|
if task.req != nil || task.res != nil {
|
|
continue
|
|
}
|
|
// Task pending retrieval, try to find an idle peer. If no such peer
|
|
// exists, we probably assigned tasks for all (or they are stateless).
|
|
// Abort the entire assignment mechanism.
|
|
if len(idlers.ids) == 0 {
|
|
return
|
|
}
|
|
var (
|
|
idle = idlers.ids[0]
|
|
peer = s.peers[idle]
|
|
cap = idlers.caps[0]
|
|
)
|
|
idlers.ids, idlers.caps = idlers.ids[1:], idlers.caps[1:]
|
|
|
|
// Matched a pending task to an idle peer, allocate a unique request id
|
|
var reqid uint64
|
|
for {
|
|
reqid = uint64(rand.Int63())
|
|
if reqid == 0 {
|
|
continue
|
|
}
|
|
if _, ok := s.accountReqs[reqid]; ok {
|
|
continue
|
|
}
|
|
break
|
|
}
|
|
// Generate the network query and send it to the peer
|
|
req := &accountRequest{
|
|
peer: idle,
|
|
id: reqid,
|
|
time: time.Now(),
|
|
deliver: success,
|
|
revert: fail,
|
|
cancel: cancel,
|
|
stale: make(chan struct{}),
|
|
origin: task.Next,
|
|
limit: task.Last,
|
|
task: task,
|
|
}
|
|
req.timeout = time.AfterFunc(s.rates.TargetTimeout(), func() {
|
|
peer.Log().Debug("Account range request timed out", "reqid", reqid)
|
|
s.rates.Update(idle, AccountRangeMsg, 0, 0)
|
|
s.scheduleRevertAccountRequest(req)
|
|
})
|
|
s.accountReqs[reqid] = req
|
|
delete(s.accountIdlers, idle)
|
|
|
|
s.pend.Add(1)
|
|
go func(root common.Hash) {
|
|
defer s.pend.Done()
|
|
|
|
// Attempt to send the remote request and revert if it fails
|
|
if cap > maxRequestSize {
|
|
cap = maxRequestSize
|
|
}
|
|
if cap < minRequestSize { // Don't bother with peers below a bare minimum performance
|
|
cap = minRequestSize
|
|
}
|
|
if err := peer.RequestAccountRange(reqid, root, req.origin, req.limit, uint64(cap)); err != nil {
|
|
peer.Log().Debug("Failed to request account range", "err", err)
|
|
s.scheduleRevertAccountRequest(req)
|
|
}
|
|
}(s.root)
|
|
|
|
// Inject the request into the task to block further assignments
|
|
task.req = req
|
|
}
|
|
}
|
|
|
|
// assignBytecodeTasks attempts to match idle peers to pending code retrievals.
|
|
func (s *Syncer) assignBytecodeTasks(success chan *bytecodeResponse, fail chan *bytecodeRequest, cancel chan struct{}) {
|
|
s.lock.Lock()
|
|
defer s.lock.Unlock()
|
|
|
|
// Sort the peers by download capacity to use faster ones if many available
|
|
idlers := &capacitySort{
|
|
ids: make([]string, 0, len(s.bytecodeIdlers)),
|
|
caps: make([]int, 0, len(s.bytecodeIdlers)),
|
|
}
|
|
targetTTL := s.rates.TargetTimeout()
|
|
for id := range s.bytecodeIdlers {
|
|
if _, ok := s.statelessPeers[id]; ok {
|
|
continue
|
|
}
|
|
idlers.ids = append(idlers.ids, id)
|
|
idlers.caps = append(idlers.caps, s.rates.Capacity(id, ByteCodesMsg, targetTTL))
|
|
}
|
|
if len(idlers.ids) == 0 {
|
|
return
|
|
}
|
|
sort.Sort(sort.Reverse(idlers))
|
|
|
|
// Iterate over all the tasks and try to find a pending one
|
|
for _, task := range s.tasks {
|
|
// Skip any tasks not in the bytecode retrieval phase
|
|
if task.res == nil {
|
|
continue
|
|
}
|
|
// Skip tasks that are already retrieving (or done with) all codes
|
|
if len(task.codeTasks) == 0 {
|
|
continue
|
|
}
|
|
// Task pending retrieval, try to find an idle peer. If no such peer
|
|
// exists, we probably assigned tasks for all (or they are stateless).
|
|
// Abort the entire assignment mechanism.
|
|
if len(idlers.ids) == 0 {
|
|
return
|
|
}
|
|
var (
|
|
idle = idlers.ids[0]
|
|
peer = s.peers[idle]
|
|
cap = idlers.caps[0]
|
|
)
|
|
idlers.ids, idlers.caps = idlers.ids[1:], idlers.caps[1:]
|
|
|
|
// Matched a pending task to an idle peer, allocate a unique request id
|
|
var reqid uint64
|
|
for {
|
|
reqid = uint64(rand.Int63())
|
|
if reqid == 0 {
|
|
continue
|
|
}
|
|
if _, ok := s.bytecodeReqs[reqid]; ok {
|
|
continue
|
|
}
|
|
break
|
|
}
|
|
// Generate the network query and send it to the peer
|
|
if cap > maxCodeRequestCount {
|
|
cap = maxCodeRequestCount
|
|
}
|
|
hashes := make([]common.Hash, 0, cap)
|
|
for hash := range task.codeTasks {
|
|
delete(task.codeTasks, hash)
|
|
hashes = append(hashes, hash)
|
|
if len(hashes) >= cap {
|
|
break
|
|
}
|
|
}
|
|
req := &bytecodeRequest{
|
|
peer: idle,
|
|
id: reqid,
|
|
time: time.Now(),
|
|
deliver: success,
|
|
revert: fail,
|
|
cancel: cancel,
|
|
stale: make(chan struct{}),
|
|
hashes: hashes,
|
|
task: task,
|
|
}
|
|
req.timeout = time.AfterFunc(s.rates.TargetTimeout(), func() {
|
|
peer.Log().Debug("Bytecode request timed out", "reqid", reqid)
|
|
s.rates.Update(idle, ByteCodesMsg, 0, 0)
|
|
s.scheduleRevertBytecodeRequest(req)
|
|
})
|
|
s.bytecodeReqs[reqid] = req
|
|
delete(s.bytecodeIdlers, idle)
|
|
|
|
s.pend.Add(1)
|
|
go func() {
|
|
defer s.pend.Done()
|
|
|
|
// Attempt to send the remote request and revert if it fails
|
|
if err := peer.RequestByteCodes(reqid, hashes, maxRequestSize); err != nil {
|
|
log.Debug("Failed to request bytecodes", "err", err)
|
|
s.scheduleRevertBytecodeRequest(req)
|
|
}
|
|
}()
|
|
}
|
|
}
|
|
|
|
// assignStorageTasks attempts to match idle peers to pending storage range
|
|
// retrievals.
|
|
func (s *Syncer) assignStorageTasks(success chan *storageResponse, fail chan *storageRequest, cancel chan struct{}) {
|
|
s.lock.Lock()
|
|
defer s.lock.Unlock()
|
|
|
|
// Sort the peers by download capacity to use faster ones if many available
|
|
idlers := &capacitySort{
|
|
ids: make([]string, 0, len(s.storageIdlers)),
|
|
caps: make([]int, 0, len(s.storageIdlers)),
|
|
}
|
|
targetTTL := s.rates.TargetTimeout()
|
|
for id := range s.storageIdlers {
|
|
if _, ok := s.statelessPeers[id]; ok {
|
|
continue
|
|
}
|
|
idlers.ids = append(idlers.ids, id)
|
|
idlers.caps = append(idlers.caps, s.rates.Capacity(id, StorageRangesMsg, targetTTL))
|
|
}
|
|
if len(idlers.ids) == 0 {
|
|
return
|
|
}
|
|
sort.Sort(sort.Reverse(idlers))
|
|
|
|
// Iterate over all the tasks and try to find a pending one
|
|
for _, task := range s.tasks {
|
|
// Skip any tasks not in the storage retrieval phase
|
|
if task.res == nil {
|
|
continue
|
|
}
|
|
// Skip tasks that are already retrieving (or done with) all small states
|
|
if len(task.SubTasks) == 0 && len(task.stateTasks) == 0 {
|
|
continue
|
|
}
|
|
// Task pending retrieval, try to find an idle peer. If no such peer
|
|
// exists, we probably assigned tasks for all (or they are stateless).
|
|
// Abort the entire assignment mechanism.
|
|
if len(idlers.ids) == 0 {
|
|
return
|
|
}
|
|
var (
|
|
idle = idlers.ids[0]
|
|
peer = s.peers[idle]
|
|
cap = idlers.caps[0]
|
|
)
|
|
idlers.ids, idlers.caps = idlers.ids[1:], idlers.caps[1:]
|
|
|
|
// Matched a pending task to an idle peer, allocate a unique request id
|
|
var reqid uint64
|
|
for {
|
|
reqid = uint64(rand.Int63())
|
|
if reqid == 0 {
|
|
continue
|
|
}
|
|
if _, ok := s.storageReqs[reqid]; ok {
|
|
continue
|
|
}
|
|
break
|
|
}
|
|
// Generate the network query and send it to the peer. If there are
|
|
// large contract tasks pending, complete those before diving into
|
|
// even more new contracts.
|
|
if cap > maxRequestSize {
|
|
cap = maxRequestSize
|
|
}
|
|
if cap < minRequestSize { // Don't bother with peers below a bare minimum performance
|
|
cap = minRequestSize
|
|
}
|
|
storageSets := cap / 1024
|
|
|
|
var (
|
|
accounts = make([]common.Hash, 0, storageSets)
|
|
roots = make([]common.Hash, 0, storageSets)
|
|
subtask *storageTask
|
|
)
|
|
for account, subtasks := range task.SubTasks {
|
|
for _, st := range subtasks {
|
|
// Skip any subtasks already filling
|
|
if st.req != nil {
|
|
continue
|
|
}
|
|
// Found an incomplete storage chunk, schedule it
|
|
accounts = append(accounts, account)
|
|
roots = append(roots, st.root)
|
|
subtask = st
|
|
break // Large contract chunks are downloaded individually
|
|
}
|
|
if subtask != nil {
|
|
break // Large contract chunks are downloaded individually
|
|
}
|
|
}
|
|
if subtask == nil {
|
|
// No large contract required retrieval, but small ones available
|
|
for acccount, root := range task.stateTasks {
|
|
delete(task.stateTasks, acccount)
|
|
|
|
accounts = append(accounts, acccount)
|
|
roots = append(roots, root)
|
|
|
|
if len(accounts) >= storageSets {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
// If nothing was found, it means this task is actually already fully
|
|
// retrieving, but large contracts are hard to detect. Skip to the next.
|
|
if len(accounts) == 0 {
|
|
continue
|
|
}
|
|
req := &storageRequest{
|
|
peer: idle,
|
|
id: reqid,
|
|
time: time.Now(),
|
|
deliver: success,
|
|
revert: fail,
|
|
cancel: cancel,
|
|
stale: make(chan struct{}),
|
|
accounts: accounts,
|
|
roots: roots,
|
|
mainTask: task,
|
|
subTask: subtask,
|
|
}
|
|
if subtask != nil {
|
|
req.origin = subtask.Next
|
|
req.limit = subtask.Last
|
|
}
|
|
req.timeout = time.AfterFunc(s.rates.TargetTimeout(), func() {
|
|
peer.Log().Debug("Storage request timed out", "reqid", reqid)
|
|
s.rates.Update(idle, StorageRangesMsg, 0, 0)
|
|
s.scheduleRevertStorageRequest(req)
|
|
})
|
|
s.storageReqs[reqid] = req
|
|
delete(s.storageIdlers, idle)
|
|
|
|
s.pend.Add(1)
|
|
go func(root common.Hash) {
|
|
defer s.pend.Done()
|
|
|
|
// Attempt to send the remote request and revert if it fails
|
|
var origin, limit []byte
|
|
if subtask != nil {
|
|
origin, limit = req.origin[:], req.limit[:]
|
|
}
|
|
if err := peer.RequestStorageRanges(reqid, root, accounts, origin, limit, uint64(cap)); err != nil {
|
|
log.Debug("Failed to request storage", "err", err)
|
|
s.scheduleRevertStorageRequest(req)
|
|
}
|
|
}(s.root)
|
|
|
|
// Inject the request into the subtask to block further assignments
|
|
if subtask != nil {
|
|
subtask.req = req
|
|
}
|
|
}
|
|
}
|
|
|
|
// assignTrienodeHealTasks attempts to match idle peers to trie node requests to
|
|
// heal any trie errors caused by the snap sync's chunked retrieval model.
|
|
func (s *Syncer) assignTrienodeHealTasks(success chan *trienodeHealResponse, fail chan *trienodeHealRequest, cancel chan struct{}) {
|
|
s.lock.Lock()
|
|
defer s.lock.Unlock()
|
|
|
|
// Sort the peers by download capacity to use faster ones if many available
|
|
idlers := &capacitySort{
|
|
ids: make([]string, 0, len(s.trienodeHealIdlers)),
|
|
caps: make([]int, 0, len(s.trienodeHealIdlers)),
|
|
}
|
|
targetTTL := s.rates.TargetTimeout()
|
|
for id := range s.trienodeHealIdlers {
|
|
if _, ok := s.statelessPeers[id]; ok {
|
|
continue
|
|
}
|
|
idlers.ids = append(idlers.ids, id)
|
|
idlers.caps = append(idlers.caps, s.rates.Capacity(id, TrieNodesMsg, targetTTL))
|
|
}
|
|
if len(idlers.ids) == 0 {
|
|
return
|
|
}
|
|
sort.Sort(sort.Reverse(idlers))
|
|
|
|
// Iterate over pending tasks and try to find a peer to retrieve with
|
|
for len(s.healer.trieTasks) > 0 || s.healer.scheduler.Pending() > 0 {
|
|
// If there are not enough trie tasks queued to fully assign, fill the
|
|
// queue from the state sync scheduler. The trie synced schedules these
|
|
// together with bytecodes, so we need to queue them combined.
|
|
var (
|
|
have = len(s.healer.trieTasks) + len(s.healer.codeTasks)
|
|
want = maxTrieRequestCount + maxCodeRequestCount
|
|
)
|
|
if have < want {
|
|
nodes, paths, codes := s.healer.scheduler.Missing(want - have)
|
|
for i, hash := range nodes {
|
|
s.healer.trieTasks[hash] = paths[i]
|
|
}
|
|
for _, hash := range codes {
|
|
s.healer.codeTasks[hash] = struct{}{}
|
|
}
|
|
}
|
|
// If all the heal tasks are bytecodes or already downloading, bail
|
|
if len(s.healer.trieTasks) == 0 {
|
|
return
|
|
}
|
|
// Task pending retrieval, try to find an idle peer. If no such peer
|
|
// exists, we probably assigned tasks for all (or they are stateless).
|
|
// Abort the entire assignment mechanism.
|
|
if len(idlers.ids) == 0 {
|
|
return
|
|
}
|
|
var (
|
|
idle = idlers.ids[0]
|
|
peer = s.peers[idle]
|
|
cap = idlers.caps[0]
|
|
)
|
|
idlers.ids, idlers.caps = idlers.ids[1:], idlers.caps[1:]
|
|
|
|
// Matched a pending task to an idle peer, allocate a unique request id
|
|
var reqid uint64
|
|
for {
|
|
reqid = uint64(rand.Int63())
|
|
if reqid == 0 {
|
|
continue
|
|
}
|
|
if _, ok := s.trienodeHealReqs[reqid]; ok {
|
|
continue
|
|
}
|
|
break
|
|
}
|
|
// Generate the network query and send it to the peer
|
|
if cap > maxTrieRequestCount {
|
|
cap = maxTrieRequestCount
|
|
}
|
|
var (
|
|
hashes = make([]common.Hash, 0, cap)
|
|
paths = make([]trie.SyncPath, 0, cap)
|
|
pathsets = make([]TrieNodePathSet, 0, cap)
|
|
)
|
|
for hash, pathset := range s.healer.trieTasks {
|
|
delete(s.healer.trieTasks, hash)
|
|
|
|
hashes = append(hashes, hash)
|
|
paths = append(paths, pathset)
|
|
pathsets = append(pathsets, [][]byte(pathset)) // TODO(karalabe): group requests by account hash
|
|
|
|
if len(hashes) >= cap {
|
|
break
|
|
}
|
|
}
|
|
req := &trienodeHealRequest{
|
|
peer: idle,
|
|
id: reqid,
|
|
time: time.Now(),
|
|
deliver: success,
|
|
revert: fail,
|
|
cancel: cancel,
|
|
stale: make(chan struct{}),
|
|
hashes: hashes,
|
|
paths: paths,
|
|
task: s.healer,
|
|
}
|
|
req.timeout = time.AfterFunc(s.rates.TargetTimeout(), func() {
|
|
peer.Log().Debug("Trienode heal request timed out", "reqid", reqid)
|
|
s.rates.Update(idle, TrieNodesMsg, 0, 0)
|
|
s.scheduleRevertTrienodeHealRequest(req)
|
|
})
|
|
s.trienodeHealReqs[reqid] = req
|
|
delete(s.trienodeHealIdlers, idle)
|
|
|
|
s.pend.Add(1)
|
|
go func(root common.Hash) {
|
|
defer s.pend.Done()
|
|
|
|
// Attempt to send the remote request and revert if it fails
|
|
if err := peer.RequestTrieNodes(reqid, root, pathsets, maxRequestSize); err != nil {
|
|
log.Debug("Failed to request trienode healers", "err", err)
|
|
s.scheduleRevertTrienodeHealRequest(req)
|
|
}
|
|
}(s.root)
|
|
}
|
|
}
|
|
|
|
// assignBytecodeHealTasks attempts to match idle peers to bytecode requests to
|
|
// heal any trie errors caused by the snap sync's chunked retrieval model.
|
|
func (s *Syncer) assignBytecodeHealTasks(success chan *bytecodeHealResponse, fail chan *bytecodeHealRequest, cancel chan struct{}) {
|
|
s.lock.Lock()
|
|
defer s.lock.Unlock()
|
|
|
|
// Sort the peers by download capacity to use faster ones if many available
|
|
idlers := &capacitySort{
|
|
ids: make([]string, 0, len(s.bytecodeHealIdlers)),
|
|
caps: make([]int, 0, len(s.bytecodeHealIdlers)),
|
|
}
|
|
targetTTL := s.rates.TargetTimeout()
|
|
for id := range s.bytecodeHealIdlers {
|
|
if _, ok := s.statelessPeers[id]; ok {
|
|
continue
|
|
}
|
|
idlers.ids = append(idlers.ids, id)
|
|
idlers.caps = append(idlers.caps, s.rates.Capacity(id, ByteCodesMsg, targetTTL))
|
|
}
|
|
if len(idlers.ids) == 0 {
|
|
return
|
|
}
|
|
sort.Sort(sort.Reverse(idlers))
|
|
|
|
// Iterate over pending tasks and try to find a peer to retrieve with
|
|
for len(s.healer.codeTasks) > 0 || s.healer.scheduler.Pending() > 0 {
|
|
// If there are not enough trie tasks queued to fully assign, fill the
|
|
// queue from the state sync scheduler. The trie synced schedules these
|
|
// together with trie nodes, so we need to queue them combined.
|
|
var (
|
|
have = len(s.healer.trieTasks) + len(s.healer.codeTasks)
|
|
want = maxTrieRequestCount + maxCodeRequestCount
|
|
)
|
|
if have < want {
|
|
nodes, paths, codes := s.healer.scheduler.Missing(want - have)
|
|
for i, hash := range nodes {
|
|
s.healer.trieTasks[hash] = paths[i]
|
|
}
|
|
for _, hash := range codes {
|
|
s.healer.codeTasks[hash] = struct{}{}
|
|
}
|
|
}
|
|
// If all the heal tasks are trienodes or already downloading, bail
|
|
if len(s.healer.codeTasks) == 0 {
|
|
return
|
|
}
|
|
// Task pending retrieval, try to find an idle peer. If no such peer
|
|
// exists, we probably assigned tasks for all (or they are stateless).
|
|
// Abort the entire assignment mechanism.
|
|
if len(idlers.ids) == 0 {
|
|
return
|
|
}
|
|
var (
|
|
idle = idlers.ids[0]
|
|
peer = s.peers[idle]
|
|
cap = idlers.caps[0]
|
|
)
|
|
idlers.ids, idlers.caps = idlers.ids[1:], idlers.caps[1:]
|
|
|
|
// Matched a pending task to an idle peer, allocate a unique request id
|
|
var reqid uint64
|
|
for {
|
|
reqid = uint64(rand.Int63())
|
|
if reqid == 0 {
|
|
continue
|
|
}
|
|
if _, ok := s.bytecodeHealReqs[reqid]; ok {
|
|
continue
|
|
}
|
|
break
|
|
}
|
|
// Generate the network query and send it to the peer
|
|
if cap > maxCodeRequestCount {
|
|
cap = maxCodeRequestCount
|
|
}
|
|
hashes := make([]common.Hash, 0, cap)
|
|
for hash := range s.healer.codeTasks {
|
|
delete(s.healer.codeTasks, hash)
|
|
|
|
hashes = append(hashes, hash)
|
|
if len(hashes) >= cap {
|
|
break
|
|
}
|
|
}
|
|
req := &bytecodeHealRequest{
|
|
peer: idle,
|
|
id: reqid,
|
|
time: time.Now(),
|
|
deliver: success,
|
|
revert: fail,
|
|
cancel: cancel,
|
|
stale: make(chan struct{}),
|
|
hashes: hashes,
|
|
task: s.healer,
|
|
}
|
|
req.timeout = time.AfterFunc(s.rates.TargetTimeout(), func() {
|
|
peer.Log().Debug("Bytecode heal request timed out", "reqid", reqid)
|
|
s.rates.Update(idle, ByteCodesMsg, 0, 0)
|
|
s.scheduleRevertBytecodeHealRequest(req)
|
|
})
|
|
s.bytecodeHealReqs[reqid] = req
|
|
delete(s.bytecodeHealIdlers, idle)
|
|
|
|
s.pend.Add(1)
|
|
go func() {
|
|
defer s.pend.Done()
|
|
|
|
// Attempt to send the remote request and revert if it fails
|
|
if err := peer.RequestByteCodes(reqid, hashes, maxRequestSize); err != nil {
|
|
log.Debug("Failed to request bytecode healers", "err", err)
|
|
s.scheduleRevertBytecodeHealRequest(req)
|
|
}
|
|
}()
|
|
}
|
|
}
|
|
|
|
// revertRequests locates all the currently pending reuqests from a particular
|
|
// peer and reverts them, rescheduling for others to fulfill.
|
|
func (s *Syncer) revertRequests(peer string) {
|
|
// Gather the requests first, revertals need the lock too
|
|
s.lock.Lock()
|
|
var accountReqs []*accountRequest
|
|
for _, req := range s.accountReqs {
|
|
if req.peer == peer {
|
|
accountReqs = append(accountReqs, req)
|
|
}
|
|
}
|
|
var bytecodeReqs []*bytecodeRequest
|
|
for _, req := range s.bytecodeReqs {
|
|
if req.peer == peer {
|
|
bytecodeReqs = append(bytecodeReqs, req)
|
|
}
|
|
}
|
|
var storageReqs []*storageRequest
|
|
for _, req := range s.storageReqs {
|
|
if req.peer == peer {
|
|
storageReqs = append(storageReqs, req)
|
|
}
|
|
}
|
|
var trienodeHealReqs []*trienodeHealRequest
|
|
for _, req := range s.trienodeHealReqs {
|
|
if req.peer == peer {
|
|
trienodeHealReqs = append(trienodeHealReqs, req)
|
|
}
|
|
}
|
|
var bytecodeHealReqs []*bytecodeHealRequest
|
|
for _, req := range s.bytecodeHealReqs {
|
|
if req.peer == peer {
|
|
bytecodeHealReqs = append(bytecodeHealReqs, req)
|
|
}
|
|
}
|
|
s.lock.Unlock()
|
|
|
|
// Revert all the requests matching the peer
|
|
for _, req := range accountReqs {
|
|
s.revertAccountRequest(req)
|
|
}
|
|
for _, req := range bytecodeReqs {
|
|
s.revertBytecodeRequest(req)
|
|
}
|
|
for _, req := range storageReqs {
|
|
s.revertStorageRequest(req)
|
|
}
|
|
for _, req := range trienodeHealReqs {
|
|
s.revertTrienodeHealRequest(req)
|
|
}
|
|
for _, req := range bytecodeHealReqs {
|
|
s.revertBytecodeHealRequest(req)
|
|
}
|
|
}
|
|
|
|
// scheduleRevertAccountRequest asks the event loop to clean up an account range
|
|
// request and return all failed retrieval tasks to the scheduler for reassignment.
|
|
func (s *Syncer) scheduleRevertAccountRequest(req *accountRequest) {
|
|
select {
|
|
case req.revert <- req:
|
|
// Sync event loop notified
|
|
case <-req.cancel:
|
|
// Sync cycle got cancelled
|
|
case <-req.stale:
|
|
// Request already reverted
|
|
}
|
|
}
|
|
|
|
// revertAccountRequest cleans up an account range request and returns all failed
|
|
// retrieval tasks to the scheduler for reassignment.
|
|
//
|
|
// Note, this needs to run on the event runloop thread to reschedule to idle peers.
|
|
// On peer threads, use scheduleRevertAccountRequest.
|
|
func (s *Syncer) revertAccountRequest(req *accountRequest) {
|
|
log.Debug("Reverting account request", "peer", req.peer, "reqid", req.id)
|
|
select {
|
|
case <-req.stale:
|
|
log.Trace("Account request already reverted", "peer", req.peer, "reqid", req.id)
|
|
return
|
|
default:
|
|
}
|
|
close(req.stale)
|
|
|
|
// Remove the request from the tracked set
|
|
s.lock.Lock()
|
|
delete(s.accountReqs, req.id)
|
|
s.lock.Unlock()
|
|
|
|
// If there's a timeout timer still running, abort it and mark the account
|
|
// task as not-pending, ready for resheduling
|
|
req.timeout.Stop()
|
|
if req.task.req == req {
|
|
req.task.req = nil
|
|
}
|
|
}
|
|
|
|
// scheduleRevertBytecodeRequest asks the event loop to clean up a bytecode request
|
|
// and return all failed retrieval tasks to the scheduler for reassignment.
|
|
func (s *Syncer) scheduleRevertBytecodeRequest(req *bytecodeRequest) {
|
|
select {
|
|
case req.revert <- req:
|
|
// Sync event loop notified
|
|
case <-req.cancel:
|
|
// Sync cycle got cancelled
|
|
case <-req.stale:
|
|
// Request already reverted
|
|
}
|
|
}
|
|
|
|
// revertBytecodeRequest cleans up a bytecode request and returns all failed
|
|
// retrieval tasks to the scheduler for reassignment.
|
|
//
|
|
// Note, this needs to run on the event runloop thread to reschedule to idle peers.
|
|
// On peer threads, use scheduleRevertBytecodeRequest.
|
|
func (s *Syncer) revertBytecodeRequest(req *bytecodeRequest) {
|
|
log.Debug("Reverting bytecode request", "peer", req.peer)
|
|
select {
|
|
case <-req.stale:
|
|
log.Trace("Bytecode request already reverted", "peer", req.peer, "reqid", req.id)
|
|
return
|
|
default:
|
|
}
|
|
close(req.stale)
|
|
|
|
// Remove the request from the tracked set
|
|
s.lock.Lock()
|
|
delete(s.bytecodeReqs, req.id)
|
|
s.lock.Unlock()
|
|
|
|
// If there's a timeout timer still running, abort it and mark the code
|
|
// retrievals as not-pending, ready for resheduling
|
|
req.timeout.Stop()
|
|
for _, hash := range req.hashes {
|
|
req.task.codeTasks[hash] = struct{}{}
|
|
}
|
|
}
|
|
|
|
// scheduleRevertStorageRequest asks the event loop to clean up a storage range
|
|
// request and return all failed retrieval tasks to the scheduler for reassignment.
|
|
func (s *Syncer) scheduleRevertStorageRequest(req *storageRequest) {
|
|
select {
|
|
case req.revert <- req:
|
|
// Sync event loop notified
|
|
case <-req.cancel:
|
|
// Sync cycle got cancelled
|
|
case <-req.stale:
|
|
// Request already reverted
|
|
}
|
|
}
|
|
|
|
// revertStorageRequest cleans up a storage range request and returns all failed
|
|
// retrieval tasks to the scheduler for reassignment.
|
|
//
|
|
// Note, this needs to run on the event runloop thread to reschedule to idle peers.
|
|
// On peer threads, use scheduleRevertStorageRequest.
|
|
func (s *Syncer) revertStorageRequest(req *storageRequest) {
|
|
log.Debug("Reverting storage request", "peer", req.peer)
|
|
select {
|
|
case <-req.stale:
|
|
log.Trace("Storage request already reverted", "peer", req.peer, "reqid", req.id)
|
|
return
|
|
default:
|
|
}
|
|
close(req.stale)
|
|
|
|
// Remove the request from the tracked set
|
|
s.lock.Lock()
|
|
delete(s.storageReqs, req.id)
|
|
s.lock.Unlock()
|
|
|
|
// If there's a timeout timer still running, abort it and mark the storage
|
|
// task as not-pending, ready for resheduling
|
|
req.timeout.Stop()
|
|
if req.subTask != nil {
|
|
req.subTask.req = nil
|
|
} else {
|
|
for i, account := range req.accounts {
|
|
req.mainTask.stateTasks[account] = req.roots[i]
|
|
}
|
|
}
|
|
}
|
|
|
|
// scheduleRevertTrienodeHealRequest asks the event loop to clean up a trienode heal
|
|
// request and return all failed retrieval tasks to the scheduler for reassignment.
|
|
func (s *Syncer) scheduleRevertTrienodeHealRequest(req *trienodeHealRequest) {
|
|
select {
|
|
case req.revert <- req:
|
|
// Sync event loop notified
|
|
case <-req.cancel:
|
|
// Sync cycle got cancelled
|
|
case <-req.stale:
|
|
// Request already reverted
|
|
}
|
|
}
|
|
|
|
// revertTrienodeHealRequest cleans up a trienode heal request and returns all
|
|
// failed retrieval tasks to the scheduler for reassignment.
|
|
//
|
|
// Note, this needs to run on the event runloop thread to reschedule to idle peers.
|
|
// On peer threads, use scheduleRevertTrienodeHealRequest.
|
|
func (s *Syncer) revertTrienodeHealRequest(req *trienodeHealRequest) {
|
|
log.Debug("Reverting trienode heal request", "peer", req.peer)
|
|
select {
|
|
case <-req.stale:
|
|
log.Trace("Trienode heal request already reverted", "peer", req.peer, "reqid", req.id)
|
|
return
|
|
default:
|
|
}
|
|
close(req.stale)
|
|
|
|
// Remove the request from the tracked set
|
|
s.lock.Lock()
|
|
delete(s.trienodeHealReqs, req.id)
|
|
s.lock.Unlock()
|
|
|
|
// If there's a timeout timer still running, abort it and mark the trie node
|
|
// retrievals as not-pending, ready for resheduling
|
|
req.timeout.Stop()
|
|
for i, hash := range req.hashes {
|
|
req.task.trieTasks[hash] = req.paths[i]
|
|
}
|
|
}
|
|
|
|
// scheduleRevertBytecodeHealRequest asks the event loop to clean up a bytecode heal
|
|
// request and return all failed retrieval tasks to the scheduler for reassignment.
|
|
func (s *Syncer) scheduleRevertBytecodeHealRequest(req *bytecodeHealRequest) {
|
|
select {
|
|
case req.revert <- req:
|
|
// Sync event loop notified
|
|
case <-req.cancel:
|
|
// Sync cycle got cancelled
|
|
case <-req.stale:
|
|
// Request already reverted
|
|
}
|
|
}
|
|
|
|
// revertBytecodeHealRequest cleans up a bytecode heal request and returns all
|
|
// failed retrieval tasks to the scheduler for reassignment.
|
|
//
|
|
// Note, this needs to run on the event runloop thread to reschedule to idle peers.
|
|
// On peer threads, use scheduleRevertBytecodeHealRequest.
|
|
func (s *Syncer) revertBytecodeHealRequest(req *bytecodeHealRequest) {
|
|
log.Debug("Reverting bytecode heal request", "peer", req.peer)
|
|
select {
|
|
case <-req.stale:
|
|
log.Trace("Bytecode heal request already reverted", "peer", req.peer, "reqid", req.id)
|
|
return
|
|
default:
|
|
}
|
|
close(req.stale)
|
|
|
|
// Remove the request from the tracked set
|
|
s.lock.Lock()
|
|
delete(s.bytecodeHealReqs, req.id)
|
|
s.lock.Unlock()
|
|
|
|
// If there's a timeout timer still running, abort it and mark the code
|
|
// retrievals as not-pending, ready for resheduling
|
|
req.timeout.Stop()
|
|
for _, hash := range req.hashes {
|
|
req.task.codeTasks[hash] = struct{}{}
|
|
}
|
|
}
|
|
|
|
// processAccountResponse integrates an already validated account range response
|
|
// into the account tasks.
|
|
func (s *Syncer) processAccountResponse(res *accountResponse) {
|
|
// Switch the task from pending to filling
|
|
res.task.req = nil
|
|
res.task.res = res
|
|
|
|
// Ensure that the response doesn't overflow into the subsequent task
|
|
last := res.task.Last.Big()
|
|
for i, hash := range res.hashes {
|
|
// Mark the range complete if the last is already included.
|
|
// Keep iteration to delete the extra states if exists.
|
|
cmp := hash.Big().Cmp(last)
|
|
if cmp == 0 {
|
|
res.cont = false
|
|
continue
|
|
}
|
|
if cmp > 0 {
|
|
// Chunk overflown, cut off excess
|
|
res.hashes = res.hashes[:i]
|
|
res.accounts = res.accounts[:i]
|
|
res.cont = false // Mark range completed
|
|
break
|
|
}
|
|
}
|
|
// Iterate over all the accounts and assemble which ones need further sub-
|
|
// filling before the entire account range can be persisted.
|
|
res.task.needCode = make([]bool, len(res.accounts))
|
|
res.task.needState = make([]bool, len(res.accounts))
|
|
res.task.needHeal = make([]bool, len(res.accounts))
|
|
|
|
res.task.codeTasks = make(map[common.Hash]struct{})
|
|
res.task.stateTasks = make(map[common.Hash]common.Hash)
|
|
|
|
resumed := make(map[common.Hash]struct{})
|
|
|
|
res.task.pend = 0
|
|
for i, account := range res.accounts {
|
|
// Check if the account is a contract with an unknown code
|
|
if !bytes.Equal(account.CodeHash, emptyCode[:]) {
|
|
if code := rawdb.ReadCodeWithPrefix(s.db, common.BytesToHash(account.CodeHash)); code == nil {
|
|
res.task.codeTasks[common.BytesToHash(account.CodeHash)] = struct{}{}
|
|
res.task.needCode[i] = true
|
|
res.task.pend++
|
|
}
|
|
}
|
|
// Check if the account is a contract with an unknown storage trie
|
|
if account.Root != emptyRoot {
|
|
if node, err := s.db.Get(account.Root[:]); err != nil || node == nil {
|
|
// If there was a previous large state retrieval in progress,
|
|
// don't restart it from scratch. This happens if a sync cycle
|
|
// is interrupted and resumed later. However, *do* update the
|
|
// previous root hash.
|
|
if subtasks, ok := res.task.SubTasks[res.hashes[i]]; ok {
|
|
log.Debug("Resuming large storage retrieval", "account", res.hashes[i], "root", account.Root)
|
|
for _, subtask := range subtasks {
|
|
subtask.root = account.Root
|
|
}
|
|
res.task.needHeal[i] = true
|
|
resumed[res.hashes[i]] = struct{}{}
|
|
} else {
|
|
res.task.stateTasks[res.hashes[i]] = account.Root
|
|
}
|
|
res.task.needState[i] = true
|
|
res.task.pend++
|
|
}
|
|
}
|
|
}
|
|
// Delete any subtasks that have been aborted but not resumed. This may undo
|
|
// some progress if a new peer gives us less accounts than an old one, but for
|
|
// now we have to live with that.
|
|
for hash := range res.task.SubTasks {
|
|
if _, ok := resumed[hash]; !ok {
|
|
log.Debug("Aborting suspended storage retrieval", "account", hash)
|
|
delete(res.task.SubTasks, hash)
|
|
}
|
|
}
|
|
// If the account range contained no contracts, or all have been fully filled
|
|
// beforehand, short circuit storage filling and forward to the next task
|
|
if res.task.pend == 0 {
|
|
s.forwardAccountTask(res.task)
|
|
return
|
|
}
|
|
// Some accounts are incomplete, leave as is for the storage and contract
|
|
// task assigners to pick up and fill.
|
|
}
|
|
|
|
// processBytecodeResponse integrates an already validated bytecode response
|
|
// into the account tasks.
|
|
func (s *Syncer) processBytecodeResponse(res *bytecodeResponse) {
|
|
batch := s.db.NewBatch()
|
|
|
|
var (
|
|
codes uint64
|
|
)
|
|
for i, hash := range res.hashes {
|
|
code := res.codes[i]
|
|
|
|
// If the bytecode was not delivered, reschedule it
|
|
if code == nil {
|
|
res.task.codeTasks[hash] = struct{}{}
|
|
continue
|
|
}
|
|
// Code was delivered, mark it not needed any more
|
|
for j, account := range res.task.res.accounts {
|
|
if res.task.needCode[j] && hash == common.BytesToHash(account.CodeHash) {
|
|
res.task.needCode[j] = false
|
|
res.task.pend--
|
|
}
|
|
}
|
|
// Push the bytecode into a database batch
|
|
codes++
|
|
rawdb.WriteCode(batch, hash, code)
|
|
}
|
|
bytes := common.StorageSize(batch.ValueSize())
|
|
if err := batch.Write(); err != nil {
|
|
log.Crit("Failed to persist bytecodes", "err", err)
|
|
}
|
|
s.bytecodeSynced += codes
|
|
s.bytecodeBytes += bytes
|
|
|
|
log.Debug("Persisted set of bytecodes", "count", codes, "bytes", bytes)
|
|
|
|
// If this delivery completed the last pending task, forward the account task
|
|
// to the next chunk
|
|
if res.task.pend == 0 {
|
|
s.forwardAccountTask(res.task)
|
|
return
|
|
}
|
|
// Some accounts are still incomplete, leave as is for the storage and contract
|
|
// task assigners to pick up and fill.
|
|
}
|
|
|
|
// processStorageResponse integrates an already validated storage response
|
|
// into the account tasks.
|
|
func (s *Syncer) processStorageResponse(res *storageResponse) {
|
|
// Switch the subtask from pending to idle
|
|
if res.subTask != nil {
|
|
res.subTask.req = nil
|
|
}
|
|
batch := ethdb.HookedBatch{
|
|
Batch: s.db.NewBatch(),
|
|
OnPut: func(key []byte, value []byte) {
|
|
s.storageBytes += common.StorageSize(len(key) + len(value))
|
|
},
|
|
}
|
|
var (
|
|
slots int
|
|
oldStorageBytes = s.storageBytes
|
|
)
|
|
// Iterate over all the accounts and reconstruct their storage tries from the
|
|
// delivered slots
|
|
for i, account := range res.accounts {
|
|
// If the account was not delivered, reschedule it
|
|
if i >= len(res.hashes) {
|
|
res.mainTask.stateTasks[account] = res.roots[i]
|
|
continue
|
|
}
|
|
// State was delivered, if complete mark as not needed any more, otherwise
|
|
// mark the account as needing healing
|
|
for j, hash := range res.mainTask.res.hashes {
|
|
if account != hash {
|
|
continue
|
|
}
|
|
acc := res.mainTask.res.accounts[j]
|
|
|
|
// If the packet contains multiple contract storage slots, all
|
|
// but the last are surely complete. The last contract may be
|
|
// chunked, so check it's continuation flag.
|
|
if res.subTask == nil && res.mainTask.needState[j] && (i < len(res.hashes)-1 || !res.cont) {
|
|
res.mainTask.needState[j] = false
|
|
res.mainTask.pend--
|
|
}
|
|
// If the last contract was chunked, mark it as needing healing
|
|
// to avoid writing it out to disk prematurely.
|
|
if res.subTask == nil && !res.mainTask.needHeal[j] && i == len(res.hashes)-1 && res.cont {
|
|
res.mainTask.needHeal[j] = true
|
|
}
|
|
// If the last contract was chunked, we need to switch to large
|
|
// contract handling mode
|
|
if res.subTask == nil && i == len(res.hashes)-1 && res.cont {
|
|
// If we haven't yet started a large-contract retrieval, create
|
|
// the subtasks for it within the main account task
|
|
if tasks, ok := res.mainTask.SubTasks[account]; !ok {
|
|
var (
|
|
keys = res.hashes[i]
|
|
chunks = uint64(storageConcurrency)
|
|
lastKey common.Hash
|
|
)
|
|
if len(keys) > 0 {
|
|
lastKey = keys[len(keys)-1]
|
|
}
|
|
// If the number of slots remaining is low, decrease the
|
|
// number of chunks. Somewhere on the order of 10-15K slots
|
|
// fit into a packet of 500KB. A key/slot pair is maximum 64
|
|
// bytes, so pessimistically maxRequestSize/64 = 8K.
|
|
//
|
|
// Chunk so that at least 2 packets are needed to fill a task.
|
|
if estimate, err := estimateRemainingSlots(len(keys), lastKey); err == nil {
|
|
if n := estimate / (2 * (maxRequestSize / 64)); n+1 < chunks {
|
|
chunks = n + 1
|
|
}
|
|
log.Debug("Chunked large contract", "initiators", len(keys), "tail", lastKey, "remaining", estimate, "chunks", chunks)
|
|
} else {
|
|
log.Debug("Chunked large contract", "initiators", len(keys), "tail", lastKey, "chunks", chunks)
|
|
}
|
|
r := newHashRange(lastKey, chunks)
|
|
|
|
// Our first task is the one that was just filled by this response.
|
|
batch := ethdb.HookedBatch{
|
|
Batch: s.db.NewBatch(),
|
|
OnPut: func(key []byte, value []byte) {
|
|
s.storageBytes += common.StorageSize(len(key) + len(value))
|
|
},
|
|
}
|
|
tasks = append(tasks, &storageTask{
|
|
Next: common.Hash{},
|
|
Last: r.End(),
|
|
root: acc.Root,
|
|
genBatch: batch,
|
|
genTrie: trie.NewStackTrie(batch),
|
|
})
|
|
for r.Next() {
|
|
batch := ethdb.HookedBatch{
|
|
Batch: s.db.NewBatch(),
|
|
OnPut: func(key []byte, value []byte) {
|
|
s.storageBytes += common.StorageSize(len(key) + len(value))
|
|
},
|
|
}
|
|
tasks = append(tasks, &storageTask{
|
|
Next: r.Start(),
|
|
Last: r.End(),
|
|
root: acc.Root,
|
|
genBatch: batch,
|
|
genTrie: trie.NewStackTrie(batch),
|
|
})
|
|
}
|
|
for _, task := range tasks {
|
|
log.Debug("Created storage sync task", "account", account, "root", acc.Root, "from", task.Next, "last", task.Last)
|
|
}
|
|
res.mainTask.SubTasks[account] = tasks
|
|
|
|
// Since we've just created the sub-tasks, this response
|
|
// is surely for the first one (zero origin)
|
|
res.subTask = tasks[0]
|
|
}
|
|
}
|
|
// If we're in large contract delivery mode, forward the subtask
|
|
if res.subTask != nil {
|
|
// Ensure the response doesn't overflow into the subsequent task
|
|
last := res.subTask.Last.Big()
|
|
// Find the first overflowing key. While at it, mark res as complete
|
|
// if we find the range to include or pass the 'last'
|
|
index := sort.Search(len(res.hashes[i]), func(k int) bool {
|
|
cmp := res.hashes[i][k].Big().Cmp(last)
|
|
if cmp >= 0 {
|
|
res.cont = false
|
|
}
|
|
return cmp > 0
|
|
})
|
|
if index >= 0 {
|
|
// cut off excess
|
|
res.hashes[i] = res.hashes[i][:index]
|
|
res.slots[i] = res.slots[i][:index]
|
|
}
|
|
// Forward the relevant storage chunk (even if created just now)
|
|
if res.cont {
|
|
res.subTask.Next = incHash(res.hashes[i][len(res.hashes[i])-1])
|
|
} else {
|
|
res.subTask.done = true
|
|
}
|
|
}
|
|
}
|
|
// Iterate over all the complete contracts, reconstruct the trie nodes and
|
|
// push them to disk. If the contract is chunked, the trie nodes will be
|
|
// reconstructed later.
|
|
slots += len(res.hashes[i])
|
|
|
|
if i < len(res.hashes)-1 || res.subTask == nil {
|
|
tr := trie.NewStackTrie(batch)
|
|
for j := 0; j < len(res.hashes[i]); j++ {
|
|
tr.Update(res.hashes[i][j][:], res.slots[i][j])
|
|
}
|
|
tr.Commit()
|
|
}
|
|
// Persist the received storage segements. These flat state maybe
|
|
// outdated during the sync, but it can be fixed later during the
|
|
// snapshot generation.
|
|
for j := 0; j < len(res.hashes[i]); j++ {
|
|
rawdb.WriteStorageSnapshot(batch, account, res.hashes[i][j], res.slots[i][j])
|
|
|
|
// If we're storing large contracts, generate the trie nodes
|
|
// on the fly to not trash the gluing points
|
|
if i == len(res.hashes)-1 && res.subTask != nil {
|
|
res.subTask.genTrie.Update(res.hashes[i][j][:], res.slots[i][j])
|
|
}
|
|
}
|
|
}
|
|
// Large contracts could have generated new trie nodes, flush them to disk
|
|
if res.subTask != nil {
|
|
if res.subTask.done {
|
|
if root, err := res.subTask.genTrie.Commit(); err != nil {
|
|
log.Error("Failed to commit stack slots", "err", err)
|
|
} else if root == res.subTask.root {
|
|
// If the chunk's root is an overflown but full delivery, clear the heal request
|
|
for i, account := range res.mainTask.res.hashes {
|
|
if account == res.accounts[len(res.accounts)-1] {
|
|
res.mainTask.needHeal[i] = false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if res.subTask.genBatch.ValueSize() > ethdb.IdealBatchSize || res.subTask.done {
|
|
if err := res.subTask.genBatch.Write(); err != nil {
|
|
log.Error("Failed to persist stack slots", "err", err)
|
|
}
|
|
res.subTask.genBatch.Reset()
|
|
}
|
|
}
|
|
// Flush anything written just now and update the stats
|
|
if err := batch.Write(); err != nil {
|
|
log.Crit("Failed to persist storage slots", "err", err)
|
|
}
|
|
s.storageSynced += uint64(slots)
|
|
|
|
log.Debug("Persisted set of storage slots", "accounts", len(res.hashes), "slots", slots, "bytes", s.storageBytes-oldStorageBytes)
|
|
|
|
// If this delivery completed the last pending task, forward the account task
|
|
// to the next chunk
|
|
if res.mainTask.pend == 0 {
|
|
s.forwardAccountTask(res.mainTask)
|
|
return
|
|
}
|
|
// Some accounts are still incomplete, leave as is for the storage and contract
|
|
// task assigners to pick up and fill.
|
|
}
|
|
|
|
// processTrienodeHealResponse integrates an already validated trienode response
|
|
// into the healer tasks.
|
|
func (s *Syncer) processTrienodeHealResponse(res *trienodeHealResponse) {
|
|
for i, hash := range res.hashes {
|
|
node := res.nodes[i]
|
|
|
|
// If the trie node was not delivered, reschedule it
|
|
if node == nil {
|
|
res.task.trieTasks[hash] = res.paths[i]
|
|
continue
|
|
}
|
|
// Push the trie node into the state syncer
|
|
s.trienodeHealSynced++
|
|
s.trienodeHealBytes += common.StorageSize(len(node))
|
|
|
|
err := s.healer.scheduler.Process(trie.SyncResult{Hash: hash, Data: node})
|
|
switch err {
|
|
case nil:
|
|
case trie.ErrAlreadyProcessed:
|
|
s.trienodeHealDups++
|
|
case trie.ErrNotRequested:
|
|
s.trienodeHealNops++
|
|
default:
|
|
log.Error("Invalid trienode processed", "hash", hash, "err", err)
|
|
}
|
|
}
|
|
batch := s.db.NewBatch()
|
|
if err := s.healer.scheduler.Commit(batch); err != nil {
|
|
log.Error("Failed to commit healing data", "err", err)
|
|
}
|
|
if err := batch.Write(); err != nil {
|
|
log.Crit("Failed to persist healing data", "err", err)
|
|
}
|
|
log.Debug("Persisted set of healing data", "type", "trienodes", "bytes", common.StorageSize(batch.ValueSize()))
|
|
}
|
|
|
|
// processBytecodeHealResponse integrates an already validated bytecode response
|
|
// into the healer tasks.
|
|
func (s *Syncer) processBytecodeHealResponse(res *bytecodeHealResponse) {
|
|
for i, hash := range res.hashes {
|
|
node := res.codes[i]
|
|
|
|
// If the trie node was not delivered, reschedule it
|
|
if node == nil {
|
|
res.task.codeTasks[hash] = struct{}{}
|
|
continue
|
|
}
|
|
// Push the trie node into the state syncer
|
|
s.bytecodeHealSynced++
|
|
s.bytecodeHealBytes += common.StorageSize(len(node))
|
|
|
|
err := s.healer.scheduler.Process(trie.SyncResult{Hash: hash, Data: node})
|
|
switch err {
|
|
case nil:
|
|
case trie.ErrAlreadyProcessed:
|
|
s.bytecodeHealDups++
|
|
case trie.ErrNotRequested:
|
|
s.bytecodeHealNops++
|
|
default:
|
|
log.Error("Invalid bytecode processed", "hash", hash, "err", err)
|
|
}
|
|
}
|
|
batch := s.db.NewBatch()
|
|
if err := s.healer.scheduler.Commit(batch); err != nil {
|
|
log.Error("Failed to commit healing data", "err", err)
|
|
}
|
|
if err := batch.Write(); err != nil {
|
|
log.Crit("Failed to persist healing data", "err", err)
|
|
}
|
|
log.Debug("Persisted set of healing data", "type", "bytecode", "bytes", common.StorageSize(batch.ValueSize()))
|
|
}
|
|
|
|
// forwardAccountTask takes a filled account task and persists anything available
|
|
// into the database, after which it forwards the next account marker so that the
|
|
// task's next chunk may be filled.
|
|
func (s *Syncer) forwardAccountTask(task *accountTask) {
|
|
// Remove any pending delivery
|
|
res := task.res
|
|
if res == nil {
|
|
return // nothing to forward
|
|
}
|
|
task.res = nil
|
|
|
|
// Persist the received account segements. These flat state maybe
|
|
// outdated during the sync, but it can be fixed later during the
|
|
// snapshot generation.
|
|
oldAccountBytes := s.accountBytes
|
|
|
|
batch := ethdb.HookedBatch{
|
|
Batch: s.db.NewBatch(),
|
|
OnPut: func(key []byte, value []byte) {
|
|
s.accountBytes += common.StorageSize(len(key) + len(value))
|
|
},
|
|
}
|
|
for i, hash := range res.hashes {
|
|
if task.needCode[i] || task.needState[i] {
|
|
break
|
|
}
|
|
slim := snapshot.SlimAccountRLP(res.accounts[i].Nonce, res.accounts[i].Balance, res.accounts[i].Root, res.accounts[i].CodeHash)
|
|
rawdb.WriteAccountSnapshot(batch, hash, slim)
|
|
|
|
// If the task is complete, drop it into the stack trie to generate
|
|
// account trie nodes for it
|
|
if !task.needHeal[i] {
|
|
full, err := snapshot.FullAccountRLP(slim) // TODO(karalabe): Slim parsing can be omitted
|
|
if err != nil {
|
|
panic(err) // Really shouldn't ever happen
|
|
}
|
|
task.genTrie.Update(hash[:], full)
|
|
}
|
|
}
|
|
// Flush anything written just now and update the stats
|
|
if err := batch.Write(); err != nil {
|
|
log.Crit("Failed to persist accounts", "err", err)
|
|
}
|
|
s.accountSynced += uint64(len(res.accounts))
|
|
|
|
// Task filling persisted, push it the chunk marker forward to the first
|
|
// account still missing data.
|
|
for i, hash := range res.hashes {
|
|
if task.needCode[i] || task.needState[i] {
|
|
return
|
|
}
|
|
task.Next = incHash(hash)
|
|
}
|
|
// All accounts marked as complete, track if the entire task is done
|
|
task.done = !res.cont
|
|
|
|
// Stack trie could have generated trie nodes, push them to disk (we need to
|
|
// flush after finalizing task.done. It's fine even if we crash and lose this
|
|
// write as it will only cause more data to be downloaded during heal.
|
|
if task.done {
|
|
if _, err := task.genTrie.Commit(); err != nil {
|
|
log.Error("Failed to commit stack account", "err", err)
|
|
}
|
|
}
|
|
if task.genBatch.ValueSize() > ethdb.IdealBatchSize || task.done {
|
|
if err := task.genBatch.Write(); err != nil {
|
|
log.Error("Failed to persist stack account", "err", err)
|
|
}
|
|
task.genBatch.Reset()
|
|
}
|
|
log.Debug("Persisted range of accounts", "accounts", len(res.accounts), "bytes", s.accountBytes-oldAccountBytes)
|
|
}
|
|
|
|
// OnAccounts is a callback method to invoke when a range of accounts are
|
|
// received from a remote peer.
|
|
func (s *Syncer) OnAccounts(peer SyncPeer, id uint64, hashes []common.Hash, accounts [][]byte, proof [][]byte) error {
|
|
size := common.StorageSize(len(hashes) * common.HashLength)
|
|
for _, account := range accounts {
|
|
size += common.StorageSize(len(account))
|
|
}
|
|
for _, node := range proof {
|
|
size += common.StorageSize(len(node))
|
|
}
|
|
logger := peer.Log().New("reqid", id)
|
|
logger.Trace("Delivering range of accounts", "hashes", len(hashes), "accounts", len(accounts), "proofs", len(proof), "bytes", size)
|
|
|
|
// Whether or not the response is valid, we can mark the peer as idle and
|
|
// notify the scheduler to assign a new task. If the response is invalid,
|
|
// we'll drop the peer in a bit.
|
|
s.lock.Lock()
|
|
if _, ok := s.peers[peer.ID()]; ok {
|
|
s.accountIdlers[peer.ID()] = struct{}{}
|
|
}
|
|
select {
|
|
case s.update <- struct{}{}:
|
|
default:
|
|
}
|
|
// Ensure the response is for a valid request
|
|
req, ok := s.accountReqs[id]
|
|
if !ok {
|
|
// Request stale, perhaps the peer timed out but came through in the end
|
|
logger.Warn("Unexpected account range packet")
|
|
s.lock.Unlock()
|
|
return nil
|
|
}
|
|
delete(s.accountReqs, id)
|
|
s.rates.Update(peer.ID(), AccountRangeMsg, time.Since(req.time), int(size))
|
|
|
|
// Clean up the request timeout timer, we'll see how to proceed further based
|
|
// on the actual delivered content
|
|
if !req.timeout.Stop() {
|
|
// The timeout is already triggered, and this request will be reverted+rescheduled
|
|
s.lock.Unlock()
|
|
return nil
|
|
}
|
|
// Response is valid, but check if peer is signalling that it does not have
|
|
// the requested data. For account range queries that means the state being
|
|
// retrieved was either already pruned remotely, or the peer is not yet
|
|
// synced to our head.
|
|
if len(hashes) == 0 && len(accounts) == 0 && len(proof) == 0 {
|
|
logger.Debug("Peer rejected account range request", "root", s.root)
|
|
s.statelessPeers[peer.ID()] = struct{}{}
|
|
s.lock.Unlock()
|
|
|
|
// Signal this request as failed, and ready for rescheduling
|
|
s.scheduleRevertAccountRequest(req)
|
|
return nil
|
|
}
|
|
root := s.root
|
|
s.lock.Unlock()
|
|
|
|
// Reconstruct a partial trie from the response and verify it
|
|
keys := make([][]byte, len(hashes))
|
|
for i, key := range hashes {
|
|
keys[i] = common.CopyBytes(key[:])
|
|
}
|
|
nodes := make(light.NodeList, len(proof))
|
|
for i, node := range proof {
|
|
nodes[i] = node
|
|
}
|
|
proofdb := nodes.NodeSet()
|
|
|
|
var end []byte
|
|
if len(keys) > 0 {
|
|
end = keys[len(keys)-1]
|
|
}
|
|
cont, err := trie.VerifyRangeProof(root, req.origin[:], end, keys, accounts, proofdb)
|
|
if err != nil {
|
|
logger.Warn("Account range failed proof", "err", err)
|
|
// Signal this request as failed, and ready for rescheduling
|
|
s.scheduleRevertAccountRequest(req)
|
|
return err
|
|
}
|
|
accs := make([]*types.StateAccount, len(accounts))
|
|
for i, account := range accounts {
|
|
acc := new(types.StateAccount)
|
|
if err := rlp.DecodeBytes(account, acc); err != nil {
|
|
panic(err) // We created these blobs, we must be able to decode them
|
|
}
|
|
accs[i] = acc
|
|
}
|
|
response := &accountResponse{
|
|
task: req.task,
|
|
hashes: hashes,
|
|
accounts: accs,
|
|
cont: cont,
|
|
}
|
|
select {
|
|
case req.deliver <- response:
|
|
case <-req.cancel:
|
|
case <-req.stale:
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// OnByteCodes is a callback method to invoke when a batch of contract
|
|
// bytes codes are received from a remote peer.
|
|
func (s *Syncer) OnByteCodes(peer SyncPeer, id uint64, bytecodes [][]byte) error {
|
|
s.lock.RLock()
|
|
syncing := !s.snapped
|
|
s.lock.RUnlock()
|
|
|
|
if syncing {
|
|
return s.onByteCodes(peer, id, bytecodes)
|
|
}
|
|
return s.onHealByteCodes(peer, id, bytecodes)
|
|
}
|
|
|
|
// onByteCodes is a callback method to invoke when a batch of contract
|
|
// bytes codes are received from a remote peer in the syncing phase.
|
|
func (s *Syncer) onByteCodes(peer SyncPeer, id uint64, bytecodes [][]byte) error {
|
|
var size common.StorageSize
|
|
for _, code := range bytecodes {
|
|
size += common.StorageSize(len(code))
|
|
}
|
|
logger := peer.Log().New("reqid", id)
|
|
logger.Trace("Delivering set of bytecodes", "bytecodes", len(bytecodes), "bytes", size)
|
|
|
|
// Whether or not the response is valid, we can mark the peer as idle and
|
|
// notify the scheduler to assign a new task. If the response is invalid,
|
|
// we'll drop the peer in a bit.
|
|
s.lock.Lock()
|
|
if _, ok := s.peers[peer.ID()]; ok {
|
|
s.bytecodeIdlers[peer.ID()] = struct{}{}
|
|
}
|
|
select {
|
|
case s.update <- struct{}{}:
|
|
default:
|
|
}
|
|
// Ensure the response is for a valid request
|
|
req, ok := s.bytecodeReqs[id]
|
|
if !ok {
|
|
// Request stale, perhaps the peer timed out but came through in the end
|
|
logger.Warn("Unexpected bytecode packet")
|
|
s.lock.Unlock()
|
|
return nil
|
|
}
|
|
delete(s.bytecodeReqs, id)
|
|
s.rates.Update(peer.ID(), ByteCodesMsg, time.Since(req.time), len(bytecodes))
|
|
|
|
// Clean up the request timeout timer, we'll see how to proceed further based
|
|
// on the actual delivered content
|
|
if !req.timeout.Stop() {
|
|
// The timeout is already triggered, and this request will be reverted+rescheduled
|
|
s.lock.Unlock()
|
|
return nil
|
|
}
|
|
|
|
// Response is valid, but check if peer is signalling that it does not have
|
|
// the requested data. For bytecode range queries that means the peer is not
|
|
// yet synced.
|
|
if len(bytecodes) == 0 {
|
|
logger.Debug("Peer rejected bytecode request")
|
|
s.statelessPeers[peer.ID()] = struct{}{}
|
|
s.lock.Unlock()
|
|
|
|
// Signal this request as failed, and ready for rescheduling
|
|
s.scheduleRevertBytecodeRequest(req)
|
|
return nil
|
|
}
|
|
s.lock.Unlock()
|
|
|
|
// Cross reference the requested bytecodes with the response to find gaps
|
|
// that the serving node is missing
|
|
hasher := sha3.NewLegacyKeccak256().(crypto.KeccakState)
|
|
hash := make([]byte, 32)
|
|
|
|
codes := make([][]byte, len(req.hashes))
|
|
for i, j := 0, 0; i < len(bytecodes); i++ {
|
|
// Find the next hash that we've been served, leaving misses with nils
|
|
hasher.Reset()
|
|
hasher.Write(bytecodes[i])
|
|
hasher.Read(hash)
|
|
|
|
for j < len(req.hashes) && !bytes.Equal(hash, req.hashes[j][:]) {
|
|
j++
|
|
}
|
|
if j < len(req.hashes) {
|
|
codes[j] = bytecodes[i]
|
|
j++
|
|
continue
|
|
}
|
|
// We've either ran out of hashes, or got unrequested data
|
|
logger.Warn("Unexpected bytecodes", "count", len(bytecodes)-i)
|
|
// Signal this request as failed, and ready for rescheduling
|
|
s.scheduleRevertBytecodeRequest(req)
|
|
return errors.New("unexpected bytecode")
|
|
}
|
|
// Response validated, send it to the scheduler for filling
|
|
response := &bytecodeResponse{
|
|
task: req.task,
|
|
hashes: req.hashes,
|
|
codes: codes,
|
|
}
|
|
select {
|
|
case req.deliver <- response:
|
|
case <-req.cancel:
|
|
case <-req.stale:
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// OnStorage is a callback method to invoke when ranges of storage slots
|
|
// are received from a remote peer.
|
|
func (s *Syncer) OnStorage(peer SyncPeer, id uint64, hashes [][]common.Hash, slots [][][]byte, proof [][]byte) error {
|
|
// Gather some trace stats to aid in debugging issues
|
|
var (
|
|
hashCount int
|
|
slotCount int
|
|
size common.StorageSize
|
|
)
|
|
for _, hashset := range hashes {
|
|
size += common.StorageSize(common.HashLength * len(hashset))
|
|
hashCount += len(hashset)
|
|
}
|
|
for _, slotset := range slots {
|
|
for _, slot := range slotset {
|
|
size += common.StorageSize(len(slot))
|
|
}
|
|
slotCount += len(slotset)
|
|
}
|
|
for _, node := range proof {
|
|
size += common.StorageSize(len(node))
|
|
}
|
|
logger := peer.Log().New("reqid", id)
|
|
logger.Trace("Delivering ranges of storage slots", "accounts", len(hashes), "hashes", hashCount, "slots", slotCount, "proofs", len(proof), "size", size)
|
|
|
|
// Whether or not the response is valid, we can mark the peer as idle and
|
|
// notify the scheduler to assign a new task. If the response is invalid,
|
|
// we'll drop the peer in a bit.
|
|
s.lock.Lock()
|
|
if _, ok := s.peers[peer.ID()]; ok {
|
|
s.storageIdlers[peer.ID()] = struct{}{}
|
|
}
|
|
select {
|
|
case s.update <- struct{}{}:
|
|
default:
|
|
}
|
|
// Ensure the response is for a valid request
|
|
req, ok := s.storageReqs[id]
|
|
if !ok {
|
|
// Request stale, perhaps the peer timed out but came through in the end
|
|
logger.Warn("Unexpected storage ranges packet")
|
|
s.lock.Unlock()
|
|
return nil
|
|
}
|
|
delete(s.storageReqs, id)
|
|
s.rates.Update(peer.ID(), StorageRangesMsg, time.Since(req.time), int(size))
|
|
|
|
// Clean up the request timeout timer, we'll see how to proceed further based
|
|
// on the actual delivered content
|
|
if !req.timeout.Stop() {
|
|
// The timeout is already triggered, and this request will be reverted+rescheduled
|
|
s.lock.Unlock()
|
|
return nil
|
|
}
|
|
|
|
// Reject the response if the hash sets and slot sets don't match, or if the
|
|
// peer sent more data than requested.
|
|
if len(hashes) != len(slots) {
|
|
s.lock.Unlock()
|
|
s.scheduleRevertStorageRequest(req) // reschedule request
|
|
logger.Warn("Hash and slot set size mismatch", "hashset", len(hashes), "slotset", len(slots))
|
|
return errors.New("hash and slot set size mismatch")
|
|
}
|
|
if len(hashes) > len(req.accounts) {
|
|
s.lock.Unlock()
|
|
s.scheduleRevertStorageRequest(req) // reschedule request
|
|
logger.Warn("Hash set larger than requested", "hashset", len(hashes), "requested", len(req.accounts))
|
|
return errors.New("hash set larger than requested")
|
|
}
|
|
// Response is valid, but check if peer is signalling that it does not have
|
|
// the requested data. For storage range queries that means the state being
|
|
// retrieved was either already pruned remotely, or the peer is not yet
|
|
// synced to our head.
|
|
if len(hashes) == 0 {
|
|
logger.Debug("Peer rejected storage request")
|
|
s.statelessPeers[peer.ID()] = struct{}{}
|
|
s.lock.Unlock()
|
|
s.scheduleRevertStorageRequest(req) // reschedule request
|
|
return nil
|
|
}
|
|
s.lock.Unlock()
|
|
|
|
// Reconstruct the partial tries from the response and verify them
|
|
var cont bool
|
|
|
|
for i := 0; i < len(hashes); i++ {
|
|
// Convert the keys and proofs into an internal format
|
|
keys := make([][]byte, len(hashes[i]))
|
|
for j, key := range hashes[i] {
|
|
keys[j] = common.CopyBytes(key[:])
|
|
}
|
|
nodes := make(light.NodeList, 0, len(proof))
|
|
if i == len(hashes)-1 {
|
|
for _, node := range proof {
|
|
nodes = append(nodes, node)
|
|
}
|
|
}
|
|
var err error
|
|
if len(nodes) == 0 {
|
|
// No proof has been attached, the response must cover the entire key
|
|
// space and hash to the origin root.
|
|
_, err = trie.VerifyRangeProof(req.roots[i], nil, nil, keys, slots[i], nil)
|
|
if err != nil {
|
|
s.scheduleRevertStorageRequest(req) // reschedule request
|
|
logger.Warn("Storage slots failed proof", "err", err)
|
|
return err
|
|
}
|
|
} else {
|
|
// A proof was attached, the response is only partial, check that the
|
|
// returned data is indeed part of the storage trie
|
|
proofdb := nodes.NodeSet()
|
|
|
|
var end []byte
|
|
if len(keys) > 0 {
|
|
end = keys[len(keys)-1]
|
|
}
|
|
cont, err = trie.VerifyRangeProof(req.roots[i], req.origin[:], end, keys, slots[i], proofdb)
|
|
if err != nil {
|
|
s.scheduleRevertStorageRequest(req) // reschedule request
|
|
logger.Warn("Storage range failed proof", "err", err)
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
// Partial tries reconstructed, send them to the scheduler for storage filling
|
|
response := &storageResponse{
|
|
mainTask: req.mainTask,
|
|
subTask: req.subTask,
|
|
accounts: req.accounts,
|
|
roots: req.roots,
|
|
hashes: hashes,
|
|
slots: slots,
|
|
cont: cont,
|
|
}
|
|
select {
|
|
case req.deliver <- response:
|
|
case <-req.cancel:
|
|
case <-req.stale:
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// OnTrieNodes is a callback method to invoke when a batch of trie nodes
|
|
// are received from a remote peer.
|
|
func (s *Syncer) OnTrieNodes(peer SyncPeer, id uint64, trienodes [][]byte) error {
|
|
var size common.StorageSize
|
|
for _, node := range trienodes {
|
|
size += common.StorageSize(len(node))
|
|
}
|
|
logger := peer.Log().New("reqid", id)
|
|
logger.Trace("Delivering set of healing trienodes", "trienodes", len(trienodes), "bytes", size)
|
|
|
|
// Whether or not the response is valid, we can mark the peer as idle and
|
|
// notify the scheduler to assign a new task. If the response is invalid,
|
|
// we'll drop the peer in a bit.
|
|
s.lock.Lock()
|
|
if _, ok := s.peers[peer.ID()]; ok {
|
|
s.trienodeHealIdlers[peer.ID()] = struct{}{}
|
|
}
|
|
select {
|
|
case s.update <- struct{}{}:
|
|
default:
|
|
}
|
|
// Ensure the response is for a valid request
|
|
req, ok := s.trienodeHealReqs[id]
|
|
if !ok {
|
|
// Request stale, perhaps the peer timed out but came through in the end
|
|
logger.Warn("Unexpected trienode heal packet")
|
|
s.lock.Unlock()
|
|
return nil
|
|
}
|
|
delete(s.trienodeHealReqs, id)
|
|
s.rates.Update(peer.ID(), TrieNodesMsg, time.Since(req.time), len(trienodes))
|
|
|
|
// Clean up the request timeout timer, we'll see how to proceed further based
|
|
// on the actual delivered content
|
|
if !req.timeout.Stop() {
|
|
// The timeout is already triggered, and this request will be reverted+rescheduled
|
|
s.lock.Unlock()
|
|
return nil
|
|
}
|
|
|
|
// Response is valid, but check if peer is signalling that it does not have
|
|
// the requested data. For bytecode range queries that means the peer is not
|
|
// yet synced.
|
|
if len(trienodes) == 0 {
|
|
logger.Debug("Peer rejected trienode heal request")
|
|
s.statelessPeers[peer.ID()] = struct{}{}
|
|
s.lock.Unlock()
|
|
|
|
// Signal this request as failed, and ready for rescheduling
|
|
s.scheduleRevertTrienodeHealRequest(req)
|
|
return nil
|
|
}
|
|
s.lock.Unlock()
|
|
|
|
// Cross reference the requested trienodes with the response to find gaps
|
|
// that the serving node is missing
|
|
hasher := sha3.NewLegacyKeccak256().(crypto.KeccakState)
|
|
hash := make([]byte, 32)
|
|
|
|
nodes := make([][]byte, len(req.hashes))
|
|
for i, j := 0, 0; i < len(trienodes); i++ {
|
|
// Find the next hash that we've been served, leaving misses with nils
|
|
hasher.Reset()
|
|
hasher.Write(trienodes[i])
|
|
hasher.Read(hash)
|
|
|
|
for j < len(req.hashes) && !bytes.Equal(hash, req.hashes[j][:]) {
|
|
j++
|
|
}
|
|
if j < len(req.hashes) {
|
|
nodes[j] = trienodes[i]
|
|
j++
|
|
continue
|
|
}
|
|
// We've either ran out of hashes, or got unrequested data
|
|
logger.Warn("Unexpected healing trienodes", "count", len(trienodes)-i)
|
|
// Signal this request as failed, and ready for rescheduling
|
|
s.scheduleRevertTrienodeHealRequest(req)
|
|
return errors.New("unexpected healing trienode")
|
|
}
|
|
// Response validated, send it to the scheduler for filling
|
|
response := &trienodeHealResponse{
|
|
task: req.task,
|
|
hashes: req.hashes,
|
|
paths: req.paths,
|
|
nodes: nodes,
|
|
}
|
|
select {
|
|
case req.deliver <- response:
|
|
case <-req.cancel:
|
|
case <-req.stale:
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// onHealByteCodes is a callback method to invoke when a batch of contract
|
|
// bytes codes are received from a remote peer in the healing phase.
|
|
func (s *Syncer) onHealByteCodes(peer SyncPeer, id uint64, bytecodes [][]byte) error {
|
|
var size common.StorageSize
|
|
for _, code := range bytecodes {
|
|
size += common.StorageSize(len(code))
|
|
}
|
|
logger := peer.Log().New("reqid", id)
|
|
logger.Trace("Delivering set of healing bytecodes", "bytecodes", len(bytecodes), "bytes", size)
|
|
|
|
// Whether or not the response is valid, we can mark the peer as idle and
|
|
// notify the scheduler to assign a new task. If the response is invalid,
|
|
// we'll drop the peer in a bit.
|
|
s.lock.Lock()
|
|
if _, ok := s.peers[peer.ID()]; ok {
|
|
s.bytecodeHealIdlers[peer.ID()] = struct{}{}
|
|
}
|
|
select {
|
|
case s.update <- struct{}{}:
|
|
default:
|
|
}
|
|
// Ensure the response is for a valid request
|
|
req, ok := s.bytecodeHealReqs[id]
|
|
if !ok {
|
|
// Request stale, perhaps the peer timed out but came through in the end
|
|
logger.Warn("Unexpected bytecode heal packet")
|
|
s.lock.Unlock()
|
|
return nil
|
|
}
|
|
delete(s.bytecodeHealReqs, id)
|
|
s.rates.Update(peer.ID(), ByteCodesMsg, time.Since(req.time), len(bytecodes))
|
|
|
|
// Clean up the request timeout timer, we'll see how to proceed further based
|
|
// on the actual delivered content
|
|
if !req.timeout.Stop() {
|
|
// The timeout is already triggered, and this request will be reverted+rescheduled
|
|
s.lock.Unlock()
|
|
return nil
|
|
}
|
|
|
|
// Response is valid, but check if peer is signalling that it does not have
|
|
// the requested data. For bytecode range queries that means the peer is not
|
|
// yet synced.
|
|
if len(bytecodes) == 0 {
|
|
logger.Debug("Peer rejected bytecode heal request")
|
|
s.statelessPeers[peer.ID()] = struct{}{}
|
|
s.lock.Unlock()
|
|
|
|
// Signal this request as failed, and ready for rescheduling
|
|
s.scheduleRevertBytecodeHealRequest(req)
|
|
return nil
|
|
}
|
|
s.lock.Unlock()
|
|
|
|
// Cross reference the requested bytecodes with the response to find gaps
|
|
// that the serving node is missing
|
|
hasher := sha3.NewLegacyKeccak256().(crypto.KeccakState)
|
|
hash := make([]byte, 32)
|
|
|
|
codes := make([][]byte, len(req.hashes))
|
|
for i, j := 0, 0; i < len(bytecodes); i++ {
|
|
// Find the next hash that we've been served, leaving misses with nils
|
|
hasher.Reset()
|
|
hasher.Write(bytecodes[i])
|
|
hasher.Read(hash)
|
|
|
|
for j < len(req.hashes) && !bytes.Equal(hash, req.hashes[j][:]) {
|
|
j++
|
|
}
|
|
if j < len(req.hashes) {
|
|
codes[j] = bytecodes[i]
|
|
j++
|
|
continue
|
|
}
|
|
// We've either ran out of hashes, or got unrequested data
|
|
logger.Warn("Unexpected healing bytecodes", "count", len(bytecodes)-i)
|
|
// Signal this request as failed, and ready for rescheduling
|
|
s.scheduleRevertBytecodeHealRequest(req)
|
|
return errors.New("unexpected healing bytecode")
|
|
}
|
|
// Response validated, send it to the scheduler for filling
|
|
response := &bytecodeHealResponse{
|
|
task: req.task,
|
|
hashes: req.hashes,
|
|
codes: codes,
|
|
}
|
|
select {
|
|
case req.deliver <- response:
|
|
case <-req.cancel:
|
|
case <-req.stale:
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// onHealState is a callback method to invoke when a flat state(account
|
|
// or storage slot) is downloded during the healing stage. The flat states
|
|
// can be persisted blindly and can be fixed later in the generation stage.
|
|
// Note it's not concurrent safe, please handle the concurrent issue outside.
|
|
func (s *Syncer) onHealState(paths [][]byte, value []byte) error {
|
|
if len(paths) == 1 {
|
|
var account types.StateAccount
|
|
if err := rlp.DecodeBytes(value, &account); err != nil {
|
|
return nil
|
|
}
|
|
blob := snapshot.SlimAccountRLP(account.Nonce, account.Balance, account.Root, account.CodeHash)
|
|
rawdb.WriteAccountSnapshot(s.stateWriter, common.BytesToHash(paths[0]), blob)
|
|
s.accountHealed += 1
|
|
s.accountHealedBytes += common.StorageSize(1 + common.HashLength + len(blob))
|
|
}
|
|
if len(paths) == 2 {
|
|
rawdb.WriteStorageSnapshot(s.stateWriter, common.BytesToHash(paths[0]), common.BytesToHash(paths[1]), value)
|
|
s.storageHealed += 1
|
|
s.storageHealedBytes += common.StorageSize(1 + 2*common.HashLength + len(value))
|
|
}
|
|
if s.stateWriter.ValueSize() > ethdb.IdealBatchSize {
|
|
s.stateWriter.Write() // It's fine to ignore the error here
|
|
s.stateWriter.Reset()
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// hashSpace is the total size of the 256 bit hash space for accounts.
|
|
var hashSpace = new(big.Int).Exp(common.Big2, common.Big256, nil)
|
|
|
|
// report calculates various status reports and provides it to the user.
|
|
func (s *Syncer) report(force bool) {
|
|
if len(s.tasks) > 0 {
|
|
s.reportSyncProgress(force)
|
|
return
|
|
}
|
|
s.reportHealProgress(force)
|
|
}
|
|
|
|
// reportSyncProgress calculates various status reports and provides it to the user.
|
|
func (s *Syncer) reportSyncProgress(force bool) {
|
|
// Don't report all the events, just occasionally
|
|
if !force && time.Since(s.logTime) < 8*time.Second {
|
|
return
|
|
}
|
|
// Don't report anything until we have a meaningful progress
|
|
synced := s.accountBytes + s.bytecodeBytes + s.storageBytes
|
|
if synced == 0 {
|
|
return
|
|
}
|
|
accountGaps := new(big.Int)
|
|
for _, task := range s.tasks {
|
|
accountGaps.Add(accountGaps, new(big.Int).Sub(task.Last.Big(), task.Next.Big()))
|
|
}
|
|
accountFills := new(big.Int).Sub(hashSpace, accountGaps)
|
|
if accountFills.BitLen() == 0 {
|
|
return
|
|
}
|
|
s.logTime = time.Now()
|
|
estBytes := float64(new(big.Int).Div(
|
|
new(big.Int).Mul(new(big.Int).SetUint64(uint64(synced)), hashSpace),
|
|
accountFills,
|
|
).Uint64())
|
|
|
|
elapsed := time.Since(s.startTime)
|
|
estTime := elapsed / time.Duration(synced) * time.Duration(estBytes)
|
|
|
|
// Create a mega progress report
|
|
var (
|
|
progress = fmt.Sprintf("%.2f%%", float64(synced)*100/estBytes)
|
|
accounts = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.accountSynced), s.accountBytes.TerminalString())
|
|
storage = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.storageSynced), s.storageBytes.TerminalString())
|
|
bytecode = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.bytecodeSynced), s.bytecodeBytes.TerminalString())
|
|
)
|
|
log.Info("State sync in progress", "synced", progress, "state", synced,
|
|
"accounts", accounts, "slots", storage, "codes", bytecode, "eta", common.PrettyDuration(estTime-elapsed))
|
|
}
|
|
|
|
// reportHealProgress calculates various status reports and provides it to the user.
|
|
func (s *Syncer) reportHealProgress(force bool) {
|
|
// Don't report all the events, just occasionally
|
|
if !force && time.Since(s.logTime) < 8*time.Second {
|
|
return
|
|
}
|
|
s.logTime = time.Now()
|
|
|
|
// Create a mega progress report
|
|
var (
|
|
trienode = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.trienodeHealSynced), s.trienodeHealBytes.TerminalString())
|
|
bytecode = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.bytecodeHealSynced), s.bytecodeHealBytes.TerminalString())
|
|
accounts = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.accountHealed), s.accountHealedBytes.TerminalString())
|
|
storage = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.storageHealed), s.storageHealedBytes.TerminalString())
|
|
)
|
|
log.Info("State heal in progress", "accounts", accounts, "slots", storage,
|
|
"codes", bytecode, "nodes", trienode, "pending", s.healer.scheduler.Pending())
|
|
}
|
|
|
|
// estimateRemainingSlots tries to determine roughly how many slots are left in
|
|
// a contract storage, based on the number of keys and the last hash. This method
|
|
// assumes that the hashes are lexicographically ordered and evenly distributed.
|
|
func estimateRemainingSlots(hashes int, last common.Hash) (uint64, error) {
|
|
if last == (common.Hash{}) {
|
|
return 0, errors.New("last hash empty")
|
|
}
|
|
space := new(big.Int).Mul(math.MaxBig256, big.NewInt(int64(hashes)))
|
|
space.Div(space, last.Big())
|
|
if !space.IsUint64() {
|
|
// Gigantic address space probably due to too few or malicious slots
|
|
return 0, errors.New("too few slots for estimation")
|
|
}
|
|
return space.Uint64() - uint64(hashes), nil
|
|
}
|
|
|
|
// capacitySort implements the Sort interface, allowing sorting by peer message
|
|
// throughput. Note, callers should use sort.Reverse to get the desired effect
|
|
// of highest capacity being at the front.
|
|
type capacitySort struct {
|
|
ids []string
|
|
caps []int
|
|
}
|
|
|
|
func (s *capacitySort) Len() int {
|
|
return len(s.ids)
|
|
}
|
|
|
|
func (s *capacitySort) Less(i, j int) bool {
|
|
return s.caps[i] < s.caps[j]
|
|
}
|
|
|
|
func (s *capacitySort) Swap(i, j int) {
|
|
s.ids[i], s.ids[j] = s.ids[j], s.ids[i]
|
|
s.caps[i], s.caps[j] = s.caps[j], s.caps[i]
|
|
}
|