forked from cerc-io/plugeth
8564eb9f7e
The discovery RPC protocol does not yet distinguish TCP and UDP ports. But it can't hurt to do so in our internal model.
280 lines
7.4 KiB
Go
280 lines
7.4 KiB
Go
// Package discover implements the Node Discovery Protocol.
|
|
//
|
|
// The Node Discovery protocol provides a way to find RLPx nodes that
|
|
// can be connected to. It uses a Kademlia-like protocol to maintain a
|
|
// distributed database of the IDs and endpoints of all listening
|
|
// nodes.
|
|
package discover
|
|
|
|
import (
|
|
"net"
|
|
"sort"
|
|
"sync"
|
|
"time"
|
|
)
|
|
|
|
const (
|
|
alpha = 3 // Kademlia concurrency factor
|
|
bucketSize = 16 // Kademlia bucket size
|
|
nBuckets = len(NodeID{})*8 + 1 // Number of buckets
|
|
)
|
|
|
|
type Table struct {
|
|
mutex sync.Mutex // protects buckets, their content, and nursery
|
|
buckets [nBuckets]*bucket // index of known nodes by distance
|
|
nursery []*Node // bootstrap nodes
|
|
|
|
net transport
|
|
self *Node // metadata of the local node
|
|
}
|
|
|
|
// transport is implemented by the UDP transport.
|
|
// it is an interface so we can test without opening lots of UDP
|
|
// sockets and without generating a private key.
|
|
type transport interface {
|
|
ping(*Node) error
|
|
findnode(e *Node, target NodeID) ([]*Node, error)
|
|
close()
|
|
}
|
|
|
|
// bucket contains nodes, ordered by their last activity.
|
|
type bucket struct {
|
|
lastLookup time.Time
|
|
entries []*Node
|
|
}
|
|
|
|
func newTable(t transport, ourID NodeID, ourAddr *net.UDPAddr) *Table {
|
|
tab := &Table{net: t, self: newNode(ourID, ourAddr)}
|
|
for i := range tab.buckets {
|
|
tab.buckets[i] = new(bucket)
|
|
}
|
|
return tab
|
|
}
|
|
|
|
// Self returns the local node ID.
|
|
func (tab *Table) Self() NodeID {
|
|
return tab.self.ID
|
|
}
|
|
|
|
// Close terminates the network listener.
|
|
func (tab *Table) Close() {
|
|
tab.net.close()
|
|
}
|
|
|
|
// Bootstrap sets the bootstrap nodes. These nodes are used to connect
|
|
// to the network if the table is empty. Bootstrap will also attempt to
|
|
// fill the table by performing random lookup operations on the
|
|
// network.
|
|
func (tab *Table) Bootstrap(nodes []Node) {
|
|
tab.mutex.Lock()
|
|
// TODO: maybe filter nodes with bad fields (nil, etc.) to avoid strange crashes
|
|
tab.nursery = make([]*Node, 0, len(nodes))
|
|
for _, n := range nodes {
|
|
cpy := n
|
|
tab.nursery = append(tab.nursery, &cpy)
|
|
}
|
|
tab.mutex.Unlock()
|
|
tab.refresh()
|
|
}
|
|
|
|
// Lookup performs a network search for nodes close
|
|
// to the given target. It approaches the target by querying
|
|
// nodes that are closer to it on each iteration.
|
|
func (tab *Table) Lookup(target NodeID) []*Node {
|
|
var (
|
|
asked = make(map[NodeID]bool)
|
|
seen = make(map[NodeID]bool)
|
|
reply = make(chan []*Node, alpha)
|
|
pendingQueries = 0
|
|
)
|
|
// don't query further if we hit the target.
|
|
// unlikely to happen often in practice.
|
|
asked[target] = true
|
|
|
|
tab.mutex.Lock()
|
|
// update last lookup stamp (for refresh logic)
|
|
tab.buckets[logdist(tab.self.ID, target)].lastLookup = time.Now()
|
|
// generate initial result set
|
|
result := tab.closest(target, bucketSize)
|
|
tab.mutex.Unlock()
|
|
|
|
for {
|
|
// ask the closest nodes that we haven't asked yet
|
|
for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
|
|
n := result.entries[i]
|
|
if !asked[n.ID] {
|
|
asked[n.ID] = true
|
|
pendingQueries++
|
|
go func() {
|
|
result, _ := tab.net.findnode(n, target)
|
|
reply <- result
|
|
}()
|
|
}
|
|
}
|
|
if pendingQueries == 0 {
|
|
// we have asked all closest nodes, stop the search
|
|
break
|
|
}
|
|
|
|
// wait for the next reply
|
|
for _, n := range <-reply {
|
|
cn := n
|
|
if !seen[n.ID] {
|
|
seen[n.ID] = true
|
|
result.push(cn, bucketSize)
|
|
}
|
|
}
|
|
pendingQueries--
|
|
}
|
|
return result.entries
|
|
}
|
|
|
|
// refresh performs a lookup for a random target to keep buckets full.
|
|
func (tab *Table) refresh() {
|
|
ld := -1 // logdist of chosen bucket
|
|
tab.mutex.Lock()
|
|
for i, b := range tab.buckets {
|
|
if i > 0 && b.lastLookup.Before(time.Now().Add(-1*time.Hour)) {
|
|
ld = i
|
|
break
|
|
}
|
|
}
|
|
tab.mutex.Unlock()
|
|
|
|
result := tab.Lookup(randomID(tab.self.ID, ld))
|
|
if len(result) == 0 {
|
|
// bootstrap the table with a self lookup
|
|
tab.mutex.Lock()
|
|
tab.add(tab.nursery)
|
|
tab.mutex.Unlock()
|
|
tab.Lookup(tab.self.ID)
|
|
// TODO: the Kademlia paper says that we're supposed to perform
|
|
// random lookups in all buckets further away than our closest neighbor.
|
|
}
|
|
}
|
|
|
|
// closest returns the n nodes in the table that are closest to the
|
|
// given id. The caller must hold tab.mutex.
|
|
func (tab *Table) closest(target NodeID, nresults int) *nodesByDistance {
|
|
// This is a very wasteful way to find the closest nodes but
|
|
// obviously correct. I believe that tree-based buckets would make
|
|
// this easier to implement efficiently.
|
|
close := &nodesByDistance{target: target}
|
|
for _, b := range tab.buckets {
|
|
for _, n := range b.entries {
|
|
close.push(n, nresults)
|
|
}
|
|
}
|
|
return close
|
|
}
|
|
|
|
func (tab *Table) len() (n int) {
|
|
for _, b := range tab.buckets {
|
|
n += len(b.entries)
|
|
}
|
|
return n
|
|
}
|
|
|
|
// bumpOrAdd updates the activity timestamp for the given node and
|
|
// attempts to insert the node into a bucket. The returned Node might
|
|
// not be part of the table. The caller must hold tab.mutex.
|
|
func (tab *Table) bumpOrAdd(node NodeID, from *net.UDPAddr) (n *Node) {
|
|
b := tab.buckets[logdist(tab.self.ID, node)]
|
|
if n = b.bump(node); n == nil {
|
|
n = newNode(node, from)
|
|
if len(b.entries) == bucketSize {
|
|
tab.pingReplace(n, b)
|
|
} else {
|
|
b.entries = append(b.entries, n)
|
|
}
|
|
}
|
|
return n
|
|
}
|
|
|
|
func (tab *Table) pingReplace(n *Node, b *bucket) {
|
|
old := b.entries[bucketSize-1]
|
|
go func() {
|
|
if err := tab.net.ping(old); err == nil {
|
|
// it responded, we don't need to replace it.
|
|
return
|
|
}
|
|
// it didn't respond, replace the node if it is still the oldest node.
|
|
tab.mutex.Lock()
|
|
if len(b.entries) > 0 && b.entries[len(b.entries)-1] == old {
|
|
// slide down other entries and put the new one in front.
|
|
// TODO: insert in correct position to keep the order
|
|
copy(b.entries[1:], b.entries)
|
|
b.entries[0] = n
|
|
}
|
|
tab.mutex.Unlock()
|
|
}()
|
|
}
|
|
|
|
// bump updates the activity timestamp for the given node.
|
|
// The caller must hold tab.mutex.
|
|
func (tab *Table) bump(node NodeID) {
|
|
tab.buckets[logdist(tab.self.ID, node)].bump(node)
|
|
}
|
|
|
|
// add puts the entries into the table if their corresponding
|
|
// bucket is not full. The caller must hold tab.mutex.
|
|
func (tab *Table) add(entries []*Node) {
|
|
outer:
|
|
for _, n := range entries {
|
|
if n == nil || n.ID == tab.self.ID {
|
|
// skip bad entries. The RLP decoder returns nil for empty
|
|
// input lists.
|
|
continue
|
|
}
|
|
bucket := tab.buckets[logdist(tab.self.ID, n.ID)]
|
|
for i := range bucket.entries {
|
|
if bucket.entries[i].ID == n.ID {
|
|
// already in bucket
|
|
continue outer
|
|
}
|
|
}
|
|
if len(bucket.entries) < bucketSize {
|
|
bucket.entries = append(bucket.entries, n)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (b *bucket) bump(id NodeID) *Node {
|
|
for i, n := range b.entries {
|
|
if n.ID == id {
|
|
n.active = time.Now()
|
|
// move it to the front
|
|
copy(b.entries[1:], b.entries[:i+1])
|
|
b.entries[0] = n
|
|
return n
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// nodesByDistance is a list of nodes, ordered by
|
|
// distance to target.
|
|
type nodesByDistance struct {
|
|
entries []*Node
|
|
target NodeID
|
|
}
|
|
|
|
// push adds the given node to the list, keeping the total size below maxElems.
|
|
func (h *nodesByDistance) push(n *Node, maxElems int) {
|
|
ix := sort.Search(len(h.entries), func(i int) bool {
|
|
return distcmp(h.target, h.entries[i].ID, n.ID) > 0
|
|
})
|
|
if len(h.entries) < maxElems {
|
|
h.entries = append(h.entries, n)
|
|
}
|
|
if ix == len(h.entries) {
|
|
// farther away than all nodes we already have.
|
|
// if there was room for it, the node is now the last element.
|
|
} else {
|
|
// slide existing entries down to make room
|
|
// this will overwrite the entry we just appended.
|
|
copy(h.entries[ix+1:], h.entries[ix:])
|
|
h.entries[ix] = n
|
|
}
|
|
}
|