1
0
forked from cerc-io/plugeth
plugeth/crypto/signature_cgo.go
Jeremy Schlatter b5e5b3567c crypto: fix build when CGO_ENABLED=0 ()
Package crypto works with or without cgo, which is great. However, to make it
work without cgo required setting the build tag `nocgo`. It's common to disable
cgo by instead just setting the environment variable `CGO_ENABLED=0`. Setting
this environment variable does _not_ implicitly set the build tag `nocgo`. So
projects that try to build the crypto package with `CGO_ENABLED=0` will fail. I
have done this myself several times. Until today, I had just assumed that this
meant that this package requires cgo.

But a small build tag change will make this case work. Instead of using `nocgo`
and `!nocgo`, we can use `!cgo` and `cgo`, respectively. The `cgo` build tag is
automatically set if cgo is enabled, and unset if it is disabled.
2019-02-19 12:18:37 +01:00

88 lines
3.1 KiB
Go

// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// +build !nacl,!js,cgo
package crypto
import (
"crypto/ecdsa"
"crypto/elliptic"
"fmt"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/crypto/secp256k1"
)
// Ecrecover returns the uncompressed public key that created the given signature.
func Ecrecover(hash, sig []byte) ([]byte, error) {
return secp256k1.RecoverPubkey(hash, sig)
}
// SigToPub returns the public key that created the given signature.
func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
s, err := Ecrecover(hash, sig)
if err != nil {
return nil, err
}
x, y := elliptic.Unmarshal(S256(), s)
return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
}
// Sign calculates an ECDSA signature.
//
// This function is susceptible to chosen plaintext attacks that can leak
// information about the private key that is used for signing. Callers must
// be aware that the given hash cannot be chosen by an adversery. Common
// solution is to hash any input before calculating the signature.
//
// The produced signature is in the [R || S || V] format where V is 0 or 1.
func Sign(hash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
if len(hash) != 32 {
return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash))
}
seckey := math.PaddedBigBytes(prv.D, prv.Params().BitSize/8)
defer zeroBytes(seckey)
return secp256k1.Sign(hash, seckey)
}
// VerifySignature checks that the given public key created signature over hash.
// The public key should be in compressed (33 bytes) or uncompressed (65 bytes) format.
// The signature should have the 64 byte [R || S] format.
func VerifySignature(pubkey, hash, signature []byte) bool {
return secp256k1.VerifySignature(pubkey, hash, signature)
}
// DecompressPubkey parses a public key in the 33-byte compressed format.
func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) {
x, y := secp256k1.DecompressPubkey(pubkey)
if x == nil {
return nil, fmt.Errorf("invalid public key")
}
return &ecdsa.PublicKey{X: x, Y: y, Curve: S256()}, nil
}
// CompressPubkey encodes a public key to the 33-byte compressed format.
func CompressPubkey(pubkey *ecdsa.PublicKey) []byte {
return secp256k1.CompressPubkey(pubkey.X, pubkey.Y)
}
// S256 returns an instance of the secp256k1 curve.
func S256() elliptic.Curve {
return secp256k1.S256()
}