plugeth/core/types/transaction_test.go
Péter Szilágyi d40a255e97
all: move main transaction pool into a subpool (#27463)
* all: move main transaction pool into a subpool

* go.mod: remove superfluous updates

* core/txpool: review fixes, handle txs rejected by all subpools

* core/txpool: typos
2023-06-16 15:29:40 +03:00

602 lines
19 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package types
import (
"bytes"
"crypto/ecdsa"
"encoding/json"
"errors"
"fmt"
"math/big"
"math/rand"
"reflect"
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/rlp"
)
// The values in those tests are from the Transaction Tests
// at github.com/ethereum/tests.
var (
testAddr = common.HexToAddress("b94f5374fce5edbc8e2a8697c15331677e6ebf0b")
emptyTx = NewTransaction(
0,
common.HexToAddress("095e7baea6a6c7c4c2dfeb977efac326af552d87"),
big.NewInt(0), 0, big.NewInt(0),
nil,
)
rightvrsTx, _ = NewTransaction(
3,
testAddr,
big.NewInt(10),
2000,
big.NewInt(1),
common.FromHex("5544"),
).WithSignature(
HomesteadSigner{},
common.Hex2Bytes("98ff921201554726367d2be8c804a7ff89ccf285ebc57dff8ae4c44b9c19ac4a8887321be575c8095f789dd4c743dfe42c1820f9231f98a962b210e3ac2452a301"),
)
emptyEip2718Tx = NewTx(&AccessListTx{
ChainID: big.NewInt(1),
Nonce: 3,
To: &testAddr,
Value: big.NewInt(10),
Gas: 25000,
GasPrice: big.NewInt(1),
Data: common.FromHex("5544"),
})
signedEip2718Tx, _ = emptyEip2718Tx.WithSignature(
NewEIP2930Signer(big.NewInt(1)),
common.Hex2Bytes("c9519f4f2b30335884581971573fadf60c6204f59a911df35ee8a540456b266032f1e8e2c5dd761f9e4f88f41c8310aeaba26a8bfcdacfedfa12ec3862d3752101"),
)
)
func TestDecodeEmptyTypedTx(t *testing.T) {
input := []byte{0x80}
var tx Transaction
err := rlp.DecodeBytes(input, &tx)
if err != errShortTypedTx {
t.Fatal("wrong error:", err)
}
}
func TestTransactionSigHash(t *testing.T) {
var homestead HomesteadSigner
if homestead.Hash(emptyTx) != common.HexToHash("c775b99e7ad12f50d819fcd602390467e28141316969f4b57f0626f74fe3b386") {
t.Errorf("empty transaction hash mismatch, got %x", emptyTx.Hash())
}
if homestead.Hash(rightvrsTx) != common.HexToHash("fe7a79529ed5f7c3375d06b26b186a8644e0e16c373d7a12be41c62d6042b77a") {
t.Errorf("RightVRS transaction hash mismatch, got %x", rightvrsTx.Hash())
}
}
func TestTransactionEncode(t *testing.T) {
txb, err := rlp.EncodeToBytes(rightvrsTx)
if err != nil {
t.Fatalf("encode error: %v", err)
}
should := common.FromHex("f86103018207d094b94f5374fce5edbc8e2a8697c15331677e6ebf0b0a8255441ca098ff921201554726367d2be8c804a7ff89ccf285ebc57dff8ae4c44b9c19ac4aa08887321be575c8095f789dd4c743dfe42c1820f9231f98a962b210e3ac2452a3")
if !bytes.Equal(txb, should) {
t.Errorf("encoded RLP mismatch, got %x", txb)
}
}
func TestEIP2718TransactionSigHash(t *testing.T) {
s := NewEIP2930Signer(big.NewInt(1))
if s.Hash(emptyEip2718Tx) != common.HexToHash("49b486f0ec0a60dfbbca2d30cb07c9e8ffb2a2ff41f29a1ab6737475f6ff69f3") {
t.Errorf("empty EIP-2718 transaction hash mismatch, got %x", s.Hash(emptyEip2718Tx))
}
if s.Hash(signedEip2718Tx) != common.HexToHash("49b486f0ec0a60dfbbca2d30cb07c9e8ffb2a2ff41f29a1ab6737475f6ff69f3") {
t.Errorf("signed EIP-2718 transaction hash mismatch, got %x", s.Hash(signedEip2718Tx))
}
}
// This test checks signature operations on access list transactions.
func TestEIP2930Signer(t *testing.T) {
var (
key, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
keyAddr = crypto.PubkeyToAddress(key.PublicKey)
signer1 = NewEIP2930Signer(big.NewInt(1))
signer2 = NewEIP2930Signer(big.NewInt(2))
tx0 = NewTx(&AccessListTx{Nonce: 1})
tx1 = NewTx(&AccessListTx{ChainID: big.NewInt(1), Nonce: 1})
tx2, _ = SignNewTx(key, signer2, &AccessListTx{ChainID: big.NewInt(2), Nonce: 1})
)
tests := []struct {
tx *Transaction
signer Signer
wantSignerHash common.Hash
wantSenderErr error
wantSignErr error
wantHash common.Hash // after signing
}{
{
tx: tx0,
signer: signer1,
wantSignerHash: common.HexToHash("846ad7672f2a3a40c1f959cd4a8ad21786d620077084d84c8d7c077714caa139"),
wantSenderErr: ErrInvalidChainId,
wantHash: common.HexToHash("1ccd12d8bbdb96ea391af49a35ab641e219b2dd638dea375f2bc94dd290f2549"),
},
{
tx: tx1,
signer: signer1,
wantSenderErr: ErrInvalidSig,
wantSignerHash: common.HexToHash("846ad7672f2a3a40c1f959cd4a8ad21786d620077084d84c8d7c077714caa139"),
wantHash: common.HexToHash("1ccd12d8bbdb96ea391af49a35ab641e219b2dd638dea375f2bc94dd290f2549"),
},
{
// This checks what happens when trying to sign an unsigned tx for the wrong chain.
tx: tx1,
signer: signer2,
wantSenderErr: ErrInvalidChainId,
wantSignerHash: common.HexToHash("367967247499343401261d718ed5aa4c9486583e4d89251afce47f4a33c33362"),
wantSignErr: ErrInvalidChainId,
},
{
// This checks what happens when trying to re-sign a signed tx for the wrong chain.
tx: tx2,
signer: signer1,
wantSenderErr: ErrInvalidChainId,
wantSignerHash: common.HexToHash("846ad7672f2a3a40c1f959cd4a8ad21786d620077084d84c8d7c077714caa139"),
wantSignErr: ErrInvalidChainId,
},
}
for i, test := range tests {
sigHash := test.signer.Hash(test.tx)
if sigHash != test.wantSignerHash {
t.Errorf("test %d: wrong sig hash: got %x, want %x", i, sigHash, test.wantSignerHash)
}
sender, err := Sender(test.signer, test.tx)
if !errors.Is(err, test.wantSenderErr) {
t.Errorf("test %d: wrong Sender error %q", i, err)
}
if err == nil && sender != keyAddr {
t.Errorf("test %d: wrong sender address %x", i, sender)
}
signedTx, err := SignTx(test.tx, test.signer, key)
if !errors.Is(err, test.wantSignErr) {
t.Fatalf("test %d: wrong SignTx error %q", i, err)
}
if signedTx != nil {
if signedTx.Hash() != test.wantHash {
t.Errorf("test %d: wrong tx hash after signing: got %x, want %x", i, signedTx.Hash(), test.wantHash)
}
}
}
}
func TestEIP2718TransactionEncode(t *testing.T) {
// RLP representation
{
have, err := rlp.EncodeToBytes(signedEip2718Tx)
if err != nil {
t.Fatalf("encode error: %v", err)
}
want := common.FromHex("b86601f8630103018261a894b94f5374fce5edbc8e2a8697c15331677e6ebf0b0a825544c001a0c9519f4f2b30335884581971573fadf60c6204f59a911df35ee8a540456b2660a032f1e8e2c5dd761f9e4f88f41c8310aeaba26a8bfcdacfedfa12ec3862d37521")
if !bytes.Equal(have, want) {
t.Errorf("encoded RLP mismatch, got %x", have)
}
}
// Binary representation
{
have, err := signedEip2718Tx.MarshalBinary()
if err != nil {
t.Fatalf("encode error: %v", err)
}
want := common.FromHex("01f8630103018261a894b94f5374fce5edbc8e2a8697c15331677e6ebf0b0a825544c001a0c9519f4f2b30335884581971573fadf60c6204f59a911df35ee8a540456b2660a032f1e8e2c5dd761f9e4f88f41c8310aeaba26a8bfcdacfedfa12ec3862d37521")
if !bytes.Equal(have, want) {
t.Errorf("encoded RLP mismatch, got %x", have)
}
}
}
func decodeTx(data []byte) (*Transaction, error) {
var tx Transaction
t, err := &tx, rlp.Decode(bytes.NewReader(data), &tx)
return t, err
}
func defaultTestKey() (*ecdsa.PrivateKey, common.Address) {
key, _ := crypto.HexToECDSA("45a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8")
addr := crypto.PubkeyToAddress(key.PublicKey)
return key, addr
}
func TestRecipientEmpty(t *testing.T) {
_, addr := defaultTestKey()
tx, err := decodeTx(common.Hex2Bytes("f8498080808080011ca09b16de9d5bdee2cf56c28d16275a4da68cd30273e2525f3959f5d62557489921a0372ebd8fb3345f7db7b5a86d42e24d36e983e259b0664ceb8c227ec9af572f3d"))
if err != nil {
t.Fatal(err)
}
from, err := Sender(HomesteadSigner{}, tx)
if err != nil {
t.Fatal(err)
}
if addr != from {
t.Fatal("derived address doesn't match")
}
}
func TestRecipientNormal(t *testing.T) {
_, addr := defaultTestKey()
tx, err := decodeTx(common.Hex2Bytes("f85d80808094000000000000000000000000000000000000000080011ca0527c0d8f5c63f7b9f41324a7c8a563ee1190bcbf0dac8ab446291bdbf32f5c79a0552c4ef0a09a04395074dab9ed34d3fbfb843c2f2546cc30fe89ec143ca94ca6"))
if err != nil {
t.Fatal(err)
}
from, err := Sender(HomesteadSigner{}, tx)
if err != nil {
t.Fatal(err)
}
if addr != from {
t.Fatal("derived address doesn't match")
}
}
func TestTransactionPriceNonceSortLegacy(t *testing.T) {
testTransactionPriceNonceSort(t, nil)
}
func TestTransactionPriceNonceSort1559(t *testing.T) {
testTransactionPriceNonceSort(t, big.NewInt(0))
testTransactionPriceNonceSort(t, big.NewInt(5))
testTransactionPriceNonceSort(t, big.NewInt(50))
}
// Tests that transactions can be correctly sorted according to their price in
// decreasing order, but at the same time with increasing nonces when issued by
// the same account.
func testTransactionPriceNonceSort(t *testing.T, baseFee *big.Int) {
// Generate a batch of accounts to start with
keys := make([]*ecdsa.PrivateKey, 25)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
}
signer := LatestSignerForChainID(common.Big1)
// Generate a batch of transactions with overlapping values, but shifted nonces
groups := map[common.Address][]*Transaction{}
expectedCount := 0
for start, key := range keys {
addr := crypto.PubkeyToAddress(key.PublicKey)
count := 25
for i := 0; i < 25; i++ {
var tx *Transaction
gasFeeCap := rand.Intn(50)
if baseFee == nil {
tx = NewTx(&LegacyTx{
Nonce: uint64(start + i),
To: &common.Address{},
Value: big.NewInt(100),
Gas: 100,
GasPrice: big.NewInt(int64(gasFeeCap)),
Data: nil,
})
} else {
tx = NewTx(&DynamicFeeTx{
Nonce: uint64(start + i),
To: &common.Address{},
Value: big.NewInt(100),
Gas: 100,
GasFeeCap: big.NewInt(int64(gasFeeCap)),
GasTipCap: big.NewInt(int64(rand.Intn(gasFeeCap + 1))),
Data: nil,
})
if count == 25 && int64(gasFeeCap) < baseFee.Int64() {
count = i
}
}
tx, err := SignTx(tx, signer, key)
if err != nil {
t.Fatalf("failed to sign tx: %s", err)
}
groups[addr] = append(groups[addr], tx)
}
expectedCount += count
}
// Sort the transactions and cross check the nonce ordering
txset := NewTransactionsByPriceAndNonce(signer, groups, baseFee)
txs := Transactions{}
for tx := txset.Peek(); tx != nil; tx = txset.Peek() {
txs = append(txs, tx)
txset.Shift()
}
if len(txs) != expectedCount {
t.Errorf("expected %d transactions, found %d", expectedCount, len(txs))
}
for i, txi := range txs {
fromi, _ := Sender(signer, txi)
// Make sure the nonce order is valid
for j, txj := range txs[i+1:] {
fromj, _ := Sender(signer, txj)
if fromi == fromj && txi.Nonce() > txj.Nonce() {
t.Errorf("invalid nonce ordering: tx #%d (A=%x N=%v) < tx #%d (A=%x N=%v)", i, fromi[:4], txi.Nonce(), i+j, fromj[:4], txj.Nonce())
}
}
// If the next tx has different from account, the price must be lower than the current one
if i+1 < len(txs) {
next := txs[i+1]
fromNext, _ := Sender(signer, next)
tip, err := txi.EffectiveGasTip(baseFee)
nextTip, nextErr := next.EffectiveGasTip(baseFee)
if err != nil || nextErr != nil {
t.Errorf("error calculating effective tip")
}
if fromi != fromNext && tip.Cmp(nextTip) < 0 {
t.Errorf("invalid gasprice ordering: tx #%d (A=%x P=%v) < tx #%d (A=%x P=%v)", i, fromi[:4], txi.GasPrice(), i+1, fromNext[:4], next.GasPrice())
}
}
}
}
// Tests that if multiple transactions have the same price, the ones seen earlier
// are prioritized to avoid network spam attacks aiming for a specific ordering.
func TestTransactionTimeSort(t *testing.T) {
// Generate a batch of accounts to start with
keys := make([]*ecdsa.PrivateKey, 5)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
}
signer := HomesteadSigner{}
// Generate a batch of transactions with overlapping prices, but different creation times
groups := map[common.Address][]*Transaction{}
for start, key := range keys {
addr := crypto.PubkeyToAddress(key.PublicKey)
tx, _ := SignTx(NewTransaction(0, common.Address{}, big.NewInt(100), 100, big.NewInt(1), nil), signer, key)
tx.time = time.Unix(0, int64(len(keys)-start))
groups[addr] = append(groups[addr], tx)
}
// Sort the transactions and cross check the nonce ordering
txset := NewTransactionsByPriceAndNonce(signer, groups, nil)
txs := Transactions{}
for tx := txset.Peek(); tx != nil; tx = txset.Peek() {
txs = append(txs, tx)
txset.Shift()
}
if len(txs) != len(keys) {
t.Errorf("expected %d transactions, found %d", len(keys), len(txs))
}
for i, txi := range txs {
fromi, _ := Sender(signer, txi)
if i+1 < len(txs) {
next := txs[i+1]
fromNext, _ := Sender(signer, next)
if txi.GasPrice().Cmp(next.GasPrice()) < 0 {
t.Errorf("invalid gasprice ordering: tx #%d (A=%x P=%v) < tx #%d (A=%x P=%v)", i, fromi[:4], txi.GasPrice(), i+1, fromNext[:4], next.GasPrice())
}
// Make sure time order is ascending if the txs have the same gas price
if txi.GasPrice().Cmp(next.GasPrice()) == 0 && txi.time.After(next.time) {
t.Errorf("invalid received time ordering: tx #%d (A=%x T=%v) > tx #%d (A=%x T=%v)", i, fromi[:4], txi.time, i+1, fromNext[:4], next.time)
}
}
}
}
// TestTransactionCoding tests serializing/de-serializing to/from rlp and JSON.
func TestTransactionCoding(t *testing.T) {
key, err := crypto.GenerateKey()
if err != nil {
t.Fatalf("could not generate key: %v", err)
}
var (
signer = NewEIP2930Signer(common.Big1)
addr = common.HexToAddress("0x0000000000000000000000000000000000000001")
recipient = common.HexToAddress("095e7baea6a6c7c4c2dfeb977efac326af552d87")
accesses = AccessList{{Address: addr, StorageKeys: []common.Hash{{0}}}}
)
for i := uint64(0); i < 500; i++ {
var txdata TxData
switch i % 5 {
case 0:
// Legacy tx.
txdata = &LegacyTx{
Nonce: i,
To: &recipient,
Gas: 1,
GasPrice: big.NewInt(2),
Data: []byte("abcdef"),
}
case 1:
// Legacy tx contract creation.
txdata = &LegacyTx{
Nonce: i,
Gas: 1,
GasPrice: big.NewInt(2),
Data: []byte("abcdef"),
}
case 2:
// Tx with non-zero access list.
txdata = &AccessListTx{
ChainID: big.NewInt(1),
Nonce: i,
To: &recipient,
Gas: 123457,
GasPrice: big.NewInt(10),
AccessList: accesses,
Data: []byte("abcdef"),
}
case 3:
// Tx with empty access list.
txdata = &AccessListTx{
ChainID: big.NewInt(1),
Nonce: i,
To: &recipient,
Gas: 123457,
GasPrice: big.NewInt(10),
Data: []byte("abcdef"),
}
case 4:
// Contract creation with access list.
txdata = &AccessListTx{
ChainID: big.NewInt(1),
Nonce: i,
Gas: 123457,
GasPrice: big.NewInt(10),
AccessList: accesses,
}
}
tx, err := SignNewTx(key, signer, txdata)
if err != nil {
t.Fatalf("could not sign transaction: %v", err)
}
// RLP
parsedTx, err := encodeDecodeBinary(tx)
if err != nil {
t.Fatal(err)
}
if err := assertEqual(parsedTx, tx); err != nil {
t.Fatal(err)
}
// JSON
parsedTx, err = encodeDecodeJSON(tx)
if err != nil {
t.Fatal(err)
}
if err := assertEqual(parsedTx, tx); err != nil {
t.Fatal(err)
}
}
}
func encodeDecodeJSON(tx *Transaction) (*Transaction, error) {
data, err := json.Marshal(tx)
if err != nil {
return nil, fmt.Errorf("json encoding failed: %v", err)
}
var parsedTx = &Transaction{}
if err := json.Unmarshal(data, &parsedTx); err != nil {
return nil, fmt.Errorf("json decoding failed: %v", err)
}
return parsedTx, nil
}
func encodeDecodeBinary(tx *Transaction) (*Transaction, error) {
data, err := tx.MarshalBinary()
if err != nil {
return nil, fmt.Errorf("rlp encoding failed: %v", err)
}
var parsedTx = &Transaction{}
if err := parsedTx.UnmarshalBinary(data); err != nil {
return nil, fmt.Errorf("rlp decoding failed: %v", err)
}
return parsedTx, nil
}
func assertEqual(orig *Transaction, cpy *Transaction) error {
// compare nonce, price, gaslimit, recipient, amount, payload, V, R, S
if want, got := orig.Hash(), cpy.Hash(); want != got {
return fmt.Errorf("parsed tx differs from original tx, want %v, got %v", want, got)
}
if want, got := orig.ChainId(), cpy.ChainId(); want.Cmp(got) != 0 {
return fmt.Errorf("invalid chain id, want %d, got %d", want, got)
}
if orig.AccessList() != nil {
if !reflect.DeepEqual(orig.AccessList(), cpy.AccessList()) {
return errors.New("access list wrong!")
}
}
return nil
}
func TestTransactionSizes(t *testing.T) {
signer := NewLondonSigner(big.NewInt(123))
key, _ := crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
to := common.HexToAddress("0x01")
for i, txdata := range []TxData{
&AccessListTx{
ChainID: big.NewInt(123),
Nonce: 0,
To: nil,
Value: big.NewInt(1000),
Gas: 21000,
GasPrice: big.NewInt(100000),
},
&LegacyTx{
Nonce: 1,
GasPrice: big.NewInt(500),
Gas: 1000000,
To: &to,
Value: big.NewInt(1),
},
&AccessListTx{
ChainID: big.NewInt(123),
Nonce: 1,
GasPrice: big.NewInt(500),
Gas: 1000000,
To: &to,
Value: big.NewInt(1),
AccessList: AccessList{
AccessTuple{
Address: common.HexToAddress("0x01"),
StorageKeys: []common.Hash{common.HexToHash("0x01")},
}},
},
&DynamicFeeTx{
ChainID: big.NewInt(123),
Nonce: 1,
Gas: 1000000,
To: &to,
Value: big.NewInt(1),
GasTipCap: big.NewInt(500),
GasFeeCap: big.NewInt(500),
},
} {
tx, err := SignNewTx(key, signer, txdata)
if err != nil {
t.Fatalf("test %d: %v", i, err)
}
bin, _ := tx.MarshalBinary()
// Check initial calc
if have, want := int(tx.Size()), len(bin); have != want {
t.Errorf("test %d: size wrong, have %d want %d", i, have, want)
}
// Check cached version too
if have, want := int(tx.Size()), len(bin); have != want {
t.Errorf("test %d: (cached) size wrong, have %d want %d", i, have, want)
}
// Check unmarshalled version too
utx := new(Transaction)
if err := utx.UnmarshalBinary(bin); err != nil {
t.Fatalf("test %d: failed to unmarshal tx: %v", i, err)
}
if have, want := int(utx.Size()), len(bin); have != want {
t.Errorf("test %d: (unmarshalled) size wrong, have %d want %d", i, have, want)
}
}
}