forked from cerc-io/plugeth
e85b68ef53
We need those operations for p2p/enr. Also upgrade github.com/btcsuite/btcd/btcec to the latest version and improve BenchmarkSha3. The benchmark printed extra output that confused tools like benchstat and ignored N.
959 lines
37 KiB
Go
959 lines
37 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Copyright 2011 ThePiachu. All rights reserved.
|
|
// Copyright 2013-2014 The btcsuite developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package btcec
|
|
|
|
// References:
|
|
// [SECG]: Recommended Elliptic Curve Domain Parameters
|
|
// http://www.secg.org/sec2-v2.pdf
|
|
//
|
|
// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)
|
|
|
|
// This package operates, internally, on Jacobian coordinates. For a given
|
|
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
|
|
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
|
|
// calculation can be performed within the transform (as in ScalarMult and
|
|
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
|
|
// reverse the transform than to operate in affine coordinates.
|
|
|
|
import (
|
|
"crypto/elliptic"
|
|
"math/big"
|
|
"sync"
|
|
)
|
|
|
|
var (
|
|
// fieldOne is simply the integer 1 in field representation. It is
|
|
// used to avoid needing to create it multiple times during the internal
|
|
// arithmetic.
|
|
fieldOne = new(fieldVal).SetInt(1)
|
|
)
|
|
|
|
// KoblitzCurve supports a koblitz curve implementation that fits the ECC Curve
|
|
// interface from crypto/elliptic.
|
|
type KoblitzCurve struct {
|
|
*elliptic.CurveParams
|
|
q *big.Int
|
|
H int // cofactor of the curve.
|
|
halfOrder *big.Int // half the order N
|
|
|
|
// byteSize is simply the bit size / 8 and is provided for convenience
|
|
// since it is calculated repeatedly.
|
|
byteSize int
|
|
|
|
// bytePoints
|
|
bytePoints *[32][256][3]fieldVal
|
|
|
|
// The next 6 values are used specifically for endomorphism
|
|
// optimizations in ScalarMult.
|
|
|
|
// lambda must fulfill lambda^3 = 1 mod N where N is the order of G.
|
|
lambda *big.Int
|
|
|
|
// beta must fulfill beta^3 = 1 mod P where P is the prime field of the
|
|
// curve.
|
|
beta *fieldVal
|
|
|
|
// See the EndomorphismVectors in gensecp256k1.go to see how these are
|
|
// derived.
|
|
a1 *big.Int
|
|
b1 *big.Int
|
|
a2 *big.Int
|
|
b2 *big.Int
|
|
}
|
|
|
|
// Params returns the parameters for the curve.
|
|
func (curve *KoblitzCurve) Params() *elliptic.CurveParams {
|
|
return curve.CurveParams
|
|
}
|
|
|
|
// bigAffineToField takes an affine point (x, y) as big integers and converts
|
|
// it to an affine point as field values.
|
|
func (curve *KoblitzCurve) bigAffineToField(x, y *big.Int) (*fieldVal, *fieldVal) {
|
|
x3, y3 := new(fieldVal), new(fieldVal)
|
|
x3.SetByteSlice(x.Bytes())
|
|
y3.SetByteSlice(y.Bytes())
|
|
|
|
return x3, y3
|
|
}
|
|
|
|
// fieldJacobianToBigAffine takes a Jacobian point (x, y, z) as field values and
|
|
// converts it to an affine point as big integers.
|
|
func (curve *KoblitzCurve) fieldJacobianToBigAffine(x, y, z *fieldVal) (*big.Int, *big.Int) {
|
|
// Inversions are expensive and both point addition and point doubling
|
|
// are faster when working with points that have a z value of one. So,
|
|
// if the point needs to be converted to affine, go ahead and normalize
|
|
// the point itself at the same time as the calculation is the same.
|
|
var zInv, tempZ fieldVal
|
|
zInv.Set(z).Inverse() // zInv = Z^-1
|
|
tempZ.SquareVal(&zInv) // tempZ = Z^-2
|
|
x.Mul(&tempZ) // X = X/Z^2 (mag: 1)
|
|
y.Mul(tempZ.Mul(&zInv)) // Y = Y/Z^3 (mag: 1)
|
|
z.SetInt(1) // Z = 1 (mag: 1)
|
|
|
|
// Normalize the x and y values.
|
|
x.Normalize()
|
|
y.Normalize()
|
|
|
|
// Convert the field values for the now affine point to big.Ints.
|
|
x3, y3 := new(big.Int), new(big.Int)
|
|
x3.SetBytes(x.Bytes()[:])
|
|
y3.SetBytes(y.Bytes()[:])
|
|
return x3, y3
|
|
}
|
|
|
|
// IsOnCurve returns boolean if the point (x,y) is on the curve.
|
|
// Part of the elliptic.Curve interface. This function differs from the
|
|
// crypto/elliptic algorithm since a = 0 not -3.
|
|
func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool {
|
|
// Convert big ints to field values for faster arithmetic.
|
|
fx, fy := curve.bigAffineToField(x, y)
|
|
|
|
// Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
|
|
y2 := new(fieldVal).SquareVal(fy).Normalize()
|
|
result := new(fieldVal).SquareVal(fx).Mul(fx).AddInt(7).Normalize()
|
|
return y2.Equals(result)
|
|
}
|
|
|
|
// addZ1AndZ2EqualsOne adds two Jacobian points that are already known to have
|
|
// z values of 1 and stores the result in (x3, y3, z3). That is to say
|
|
// (x1, y1, 1) + (x2, y2, 1) = (x3, y3, z3). It performs faster addition than
|
|
// the generic add routine since less arithmetic is needed due to the ability to
|
|
// avoid the z value multiplications.
|
|
func (curve *KoblitzCurve) addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
|
|
// To compute the point addition efficiently, this implementation splits
|
|
// the equation into intermediate elements which are used to minimize
|
|
// the number of field multiplications using the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// H = X2-X1, HH = H^2, I = 4*HH, J = H*I, r = 2*(Y2-Y1), V = X1*I
|
|
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = 2*H
|
|
//
|
|
// This results in a cost of 4 field multiplications, 2 field squarings,
|
|
// 6 field additions, and 5 integer multiplications.
|
|
|
|
// When the x coordinates are the same for two points on the curve, the
|
|
// y coordinates either must be the same, in which case it is point
|
|
// doubling, or they are opposite and the result is the point at
|
|
// infinity per the group law for elliptic curve cryptography.
|
|
x1.Normalize()
|
|
y1.Normalize()
|
|
x2.Normalize()
|
|
y2.Normalize()
|
|
if x1.Equals(x2) {
|
|
if y1.Equals(y2) {
|
|
// Since x1 == x2 and y1 == y2, point doubling must be
|
|
// done, otherwise the addition would end up dividing
|
|
// by zero.
|
|
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
|
// infinity per the group law.
|
|
x3.SetInt(0)
|
|
y3.SetInt(0)
|
|
z3.SetInt(0)
|
|
return
|
|
}
|
|
|
|
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
|
// breakdown above.
|
|
var h, i, j, r, v fieldVal
|
|
var negJ, neg2V, negX3 fieldVal
|
|
h.Set(x1).Negate(1).Add(x2) // H = X2-X1 (mag: 3)
|
|
i.SquareVal(&h).MulInt(4) // I = 4*H^2 (mag: 4)
|
|
j.Mul2(&h, &i) // J = H*I (mag: 1)
|
|
r.Set(y1).Negate(1).Add(y2).MulInt(2) // r = 2*(Y2-Y1) (mag: 6)
|
|
v.Mul2(x1, &i) // V = X1*I (mag: 1)
|
|
negJ.Set(&j).Negate(1) // negJ = -J (mag: 2)
|
|
neg2V.Set(&v).MulInt(2).Negate(2) // neg2V = -(2*V) (mag: 3)
|
|
x3.Set(&r).Square().Add(&negJ).Add(&neg2V) // X3 = r^2-J-2*V (mag: 6)
|
|
negX3.Set(x3).Negate(6) // negX3 = -X3 (mag: 7)
|
|
j.Mul(y1).MulInt(2).Negate(2) // J = -(2*Y1*J) (mag: 3)
|
|
y3.Set(&v).Add(&negX3).Mul(&r).Add(&j) // Y3 = r*(V-X3)-2*Y1*J (mag: 4)
|
|
z3.Set(&h).MulInt(2) // Z3 = 2*H (mag: 6)
|
|
|
|
// Normalize the resulting field values to a magnitude of 1 as needed.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
z3.Normalize()
|
|
}
|
|
|
|
// addZ1EqualsZ2 adds two Jacobian points that are already known to have the
|
|
// same z value and stores the result in (x3, y3, z3). That is to say
|
|
// (x1, y1, z1) + (x2, y2, z1) = (x3, y3, z3). It performs faster addition than
|
|
// the generic add routine since less arithmetic is needed due to the known
|
|
// equivalence.
|
|
func (curve *KoblitzCurve) addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
|
|
// To compute the point addition efficiently, this implementation splits
|
|
// the equation into intermediate elements which are used to minimize
|
|
// the number of field multiplications using a slightly modified version
|
|
// of the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// A = X2-X1, B = A^2, C=Y2-Y1, D = C^2, E = X1*B, F = X2*B
|
|
// X3 = D-E-F, Y3 = C*(E-X3)-Y1*(F-E), Z3 = Z1*A
|
|
//
|
|
// This results in a cost of 5 field multiplications, 2 field squarings,
|
|
// 9 field additions, and 0 integer multiplications.
|
|
|
|
// When the x coordinates are the same for two points on the curve, the
|
|
// y coordinates either must be the same, in which case it is point
|
|
// doubling, or they are opposite and the result is the point at
|
|
// infinity per the group law for elliptic curve cryptography.
|
|
x1.Normalize()
|
|
y1.Normalize()
|
|
x2.Normalize()
|
|
y2.Normalize()
|
|
if x1.Equals(x2) {
|
|
if y1.Equals(y2) {
|
|
// Since x1 == x2 and y1 == y2, point doubling must be
|
|
// done, otherwise the addition would end up dividing
|
|
// by zero.
|
|
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
|
// infinity per the group law.
|
|
x3.SetInt(0)
|
|
y3.SetInt(0)
|
|
z3.SetInt(0)
|
|
return
|
|
}
|
|
|
|
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
|
// breakdown above.
|
|
var a, b, c, d, e, f fieldVal
|
|
var negX1, negY1, negE, negX3 fieldVal
|
|
negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
|
|
negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
|
|
a.Set(&negX1).Add(x2) // A = X2-X1 (mag: 3)
|
|
b.SquareVal(&a) // B = A^2 (mag: 1)
|
|
c.Set(&negY1).Add(y2) // C = Y2-Y1 (mag: 3)
|
|
d.SquareVal(&c) // D = C^2 (mag: 1)
|
|
e.Mul2(x1, &b) // E = X1*B (mag: 1)
|
|
negE.Set(&e).Negate(1) // negE = -E (mag: 2)
|
|
f.Mul2(x2, &b) // F = X2*B (mag: 1)
|
|
x3.Add2(&e, &f).Negate(3).Add(&d) // X3 = D-E-F (mag: 5)
|
|
negX3.Set(x3).Negate(5).Normalize() // negX3 = -X3 (mag: 1)
|
|
y3.Set(y1).Mul(f.Add(&negE)).Negate(3) // Y3 = -(Y1*(F-E)) (mag: 4)
|
|
y3.Add(e.Add(&negX3).Mul(&c)) // Y3 = C*(E-X3)+Y3 (mag: 5)
|
|
z3.Mul2(z1, &a) // Z3 = Z1*A (mag: 1)
|
|
|
|
// Normalize the resulting field values to a magnitude of 1 as needed.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
}
|
|
|
|
// addZ2EqualsOne adds two Jacobian points when the second point is already
|
|
// known to have a z value of 1 (and the z value for the first point is not 1)
|
|
// and stores the result in (x3, y3, z3). That is to say (x1, y1, z1) +
|
|
// (x2, y2, 1) = (x3, y3, z3). It performs faster addition than the generic
|
|
// add routine since less arithmetic is needed due to the ability to avoid
|
|
// multiplications by the second point's z value.
|
|
func (curve *KoblitzCurve) addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
|
|
// To compute the point addition efficiently, this implementation splits
|
|
// the equation into intermediate elements which are used to minimize
|
|
// the number of field multiplications using the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// Z1Z1 = Z1^2, U2 = X2*Z1Z1, S2 = Y2*Z1*Z1Z1, H = U2-X1, HH = H^2,
|
|
// I = 4*HH, J = H*I, r = 2*(S2-Y1), V = X1*I
|
|
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = (Z1+H)^2-Z1Z1-HH
|
|
//
|
|
// This results in a cost of 7 field multiplications, 4 field squarings,
|
|
// 9 field additions, and 4 integer multiplications.
|
|
|
|
// When the x coordinates are the same for two points on the curve, the
|
|
// y coordinates either must be the same, in which case it is point
|
|
// doubling, or they are opposite and the result is the point at
|
|
// infinity per the group law for elliptic curve cryptography. Since
|
|
// any number of Jacobian coordinates can represent the same affine
|
|
// point, the x and y values need to be converted to like terms. Due to
|
|
// the assumption made for this function that the second point has a z
|
|
// value of 1 (z2=1), the first point is already "converted".
|
|
var z1z1, u2, s2 fieldVal
|
|
x1.Normalize()
|
|
y1.Normalize()
|
|
z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
|
|
u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
|
|
s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
|
|
if x1.Equals(&u2) {
|
|
if y1.Equals(&s2) {
|
|
// Since x1 == x2 and y1 == y2, point doubling must be
|
|
// done, otherwise the addition would end up dividing
|
|
// by zero.
|
|
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
|
// infinity per the group law.
|
|
x3.SetInt(0)
|
|
y3.SetInt(0)
|
|
z3.SetInt(0)
|
|
return
|
|
}
|
|
|
|
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
|
// breakdown above.
|
|
var h, hh, i, j, r, rr, v fieldVal
|
|
var negX1, negY1, negX3 fieldVal
|
|
negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
|
|
h.Add2(&u2, &negX1) // H = U2-X1 (mag: 3)
|
|
hh.SquareVal(&h) // HH = H^2 (mag: 1)
|
|
i.Set(&hh).MulInt(4) // I = 4 * HH (mag: 4)
|
|
j.Mul2(&h, &i) // J = H*I (mag: 1)
|
|
negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
|
|
r.Set(&s2).Add(&negY1).MulInt(2) // r = 2*(S2-Y1) (mag: 6)
|
|
rr.SquareVal(&r) // rr = r^2 (mag: 1)
|
|
v.Mul2(x1, &i) // V = X1*I (mag: 1)
|
|
x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
|
|
x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
|
|
negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
|
|
y3.Set(y1).Mul(&j).MulInt(2).Negate(2) // Y3 = -(2*Y1*J) (mag: 3)
|
|
y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
|
|
z3.Add2(z1, &h).Square() // Z3 = (Z1+H)^2 (mag: 1)
|
|
z3.Add(z1z1.Add(&hh).Negate(2)) // Z3 = Z3-(Z1Z1+HH) (mag: 4)
|
|
|
|
// Normalize the resulting field values to a magnitude of 1 as needed.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
z3.Normalize()
|
|
}
|
|
|
|
// addGeneric adds two Jacobian points (x1, y1, z1) and (x2, y2, z2) without any
|
|
// assumptions about the z values of the two points and stores the result in
|
|
// (x3, y3, z3). That is to say (x1, y1, z1) + (x2, y2, z2) = (x3, y3, z3). It
|
|
// is the slowest of the add routines due to requiring the most arithmetic.
|
|
func (curve *KoblitzCurve) addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
|
|
// To compute the point addition efficiently, this implementation splits
|
|
// the equation into intermediate elements which are used to minimize
|
|
// the number of field multiplications using the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// Z1Z1 = Z1^2, Z2Z2 = Z2^2, U1 = X1*Z2Z2, U2 = X2*Z1Z1, S1 = Y1*Z2*Z2Z2
|
|
// S2 = Y2*Z1*Z1Z1, H = U2-U1, I = (2*H)^2, J = H*I, r = 2*(S2-S1)
|
|
// V = U1*I
|
|
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*S1*J, Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H
|
|
//
|
|
// This results in a cost of 11 field multiplications, 5 field squarings,
|
|
// 9 field additions, and 4 integer multiplications.
|
|
|
|
// When the x coordinates are the same for two points on the curve, the
|
|
// y coordinates either must be the same, in which case it is point
|
|
// doubling, or they are opposite and the result is the point at
|
|
// infinity. Since any number of Jacobian coordinates can represent the
|
|
// same affine point, the x and y values need to be converted to like
|
|
// terms.
|
|
var z1z1, z2z2, u1, u2, s1, s2 fieldVal
|
|
z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
|
|
z2z2.SquareVal(z2) // Z2Z2 = Z2^2 (mag: 1)
|
|
u1.Set(x1).Mul(&z2z2).Normalize() // U1 = X1*Z2Z2 (mag: 1)
|
|
u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
|
|
s1.Set(y1).Mul(&z2z2).Mul(z2).Normalize() // S1 = Y1*Z2*Z2Z2 (mag: 1)
|
|
s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
|
|
if u1.Equals(&u2) {
|
|
if s1.Equals(&s2) {
|
|
// Since x1 == x2 and y1 == y2, point doubling must be
|
|
// done, otherwise the addition would end up dividing
|
|
// by zero.
|
|
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
|
// infinity per the group law.
|
|
x3.SetInt(0)
|
|
y3.SetInt(0)
|
|
z3.SetInt(0)
|
|
return
|
|
}
|
|
|
|
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
|
// breakdown above.
|
|
var h, i, j, r, rr, v fieldVal
|
|
var negU1, negS1, negX3 fieldVal
|
|
negU1.Set(&u1).Negate(1) // negU1 = -U1 (mag: 2)
|
|
h.Add2(&u2, &negU1) // H = U2-U1 (mag: 3)
|
|
i.Set(&h).MulInt(2).Square() // I = (2*H)^2 (mag: 2)
|
|
j.Mul2(&h, &i) // J = H*I (mag: 1)
|
|
negS1.Set(&s1).Negate(1) // negS1 = -S1 (mag: 2)
|
|
r.Set(&s2).Add(&negS1).MulInt(2) // r = 2*(S2-S1) (mag: 6)
|
|
rr.SquareVal(&r) // rr = r^2 (mag: 1)
|
|
v.Mul2(&u1, &i) // V = U1*I (mag: 1)
|
|
x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
|
|
x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
|
|
negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
|
|
y3.Mul2(&s1, &j).MulInt(2).Negate(2) // Y3 = -(2*S1*J) (mag: 3)
|
|
y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
|
|
z3.Add2(z1, z2).Square() // Z3 = (Z1+Z2)^2 (mag: 1)
|
|
z3.Add(z1z1.Add(&z2z2).Negate(2)) // Z3 = Z3-(Z1Z1+Z2Z2) (mag: 4)
|
|
z3.Mul(&h) // Z3 = Z3*H (mag: 1)
|
|
|
|
// Normalize the resulting field values to a magnitude of 1 as needed.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
}
|
|
|
|
// addJacobian adds the passed Jacobian points (x1, y1, z1) and (x2, y2, z2)
|
|
// together and stores the result in (x3, y3, z3).
|
|
func (curve *KoblitzCurve) addJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
|
|
// A point at infinity is the identity according to the group law for
|
|
// elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
|
|
if (x1.IsZero() && y1.IsZero()) || z1.IsZero() {
|
|
x3.Set(x2)
|
|
y3.Set(y2)
|
|
z3.Set(z2)
|
|
return
|
|
}
|
|
if (x2.IsZero() && y2.IsZero()) || z2.IsZero() {
|
|
x3.Set(x1)
|
|
y3.Set(y1)
|
|
z3.Set(z1)
|
|
return
|
|
}
|
|
|
|
// Faster point addition can be achieved when certain assumptions are
|
|
// met. For example, when both points have the same z value, arithmetic
|
|
// on the z values can be avoided. This section thus checks for these
|
|
// conditions and calls an appropriate add function which is accelerated
|
|
// by using those assumptions.
|
|
z1.Normalize()
|
|
z2.Normalize()
|
|
isZ1One := z1.Equals(fieldOne)
|
|
isZ2One := z2.Equals(fieldOne)
|
|
switch {
|
|
case isZ1One && isZ2One:
|
|
curve.addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
|
|
return
|
|
case z1.Equals(z2):
|
|
curve.addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3)
|
|
return
|
|
case isZ2One:
|
|
curve.addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// None of the above assumptions are true, so fall back to generic
|
|
// point addition.
|
|
curve.addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3)
|
|
}
|
|
|
|
// Add returns the sum of (x1,y1) and (x2,y2). Part of the elliptic.Curve
|
|
// interface.
|
|
func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
|
|
// A point at infinity is the identity according to the group law for
|
|
// elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
|
|
if x1.Sign() == 0 && y1.Sign() == 0 {
|
|
return x2, y2
|
|
}
|
|
if x2.Sign() == 0 && y2.Sign() == 0 {
|
|
return x1, y1
|
|
}
|
|
|
|
// Convert the affine coordinates from big integers to field values
|
|
// and do the point addition in Jacobian projective space.
|
|
fx1, fy1 := curve.bigAffineToField(x1, y1)
|
|
fx2, fy2 := curve.bigAffineToField(x2, y2)
|
|
fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
|
|
fOne := new(fieldVal).SetInt(1)
|
|
curve.addJacobian(fx1, fy1, fOne, fx2, fy2, fOne, fx3, fy3, fz3)
|
|
|
|
// Convert the Jacobian coordinate field values back to affine big
|
|
// integers.
|
|
return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
|
|
}
|
|
|
|
// doubleZ1EqualsOne performs point doubling on the passed Jacobian point
|
|
// when the point is already known to have a z value of 1 and stores
|
|
// the result in (x3, y3, z3). That is to say (x3, y3, z3) = 2*(x1, y1, 1). It
|
|
// performs faster point doubling than the generic routine since less arithmetic
|
|
// is needed due to the ability to avoid multiplication by the z value.
|
|
func (curve *KoblitzCurve) doubleZ1EqualsOne(x1, y1, x3, y3, z3 *fieldVal) {
|
|
// This function uses the assumptions that z1 is 1, thus the point
|
|
// doubling formulas reduce to:
|
|
//
|
|
// X3 = (3*X1^2)^2 - 8*X1*Y1^2
|
|
// Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
|
|
// Z3 = 2*Y1
|
|
//
|
|
// To compute the above efficiently, this implementation splits the
|
|
// equation into intermediate elements which are used to minimize the
|
|
// number of field multiplications in favor of field squarings which
|
|
// are roughly 35% faster than field multiplications with the current
|
|
// implementation at the time this was written.
|
|
//
|
|
// This uses a slightly modified version of the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
|
|
// E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
|
|
// Z3 = 2*Y1
|
|
//
|
|
// This results in a cost of 1 field multiplication, 5 field squarings,
|
|
// 6 field additions, and 5 integer multiplications.
|
|
var a, b, c, d, e, f fieldVal
|
|
z3.Set(y1).MulInt(2) // Z3 = 2*Y1 (mag: 2)
|
|
a.SquareVal(x1) // A = X1^2 (mag: 1)
|
|
b.SquareVal(y1) // B = Y1^2 (mag: 1)
|
|
c.SquareVal(&b) // C = B^2 (mag: 1)
|
|
b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
|
|
d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
|
|
d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
|
|
e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
|
|
f.SquareVal(&e) // F = E^2 (mag: 1)
|
|
x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
|
|
x3.Add(&f) // X3 = F+X3 (mag: 18)
|
|
f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
|
|
y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
|
|
y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
|
|
|
|
// Normalize the field values back to a magnitude of 1.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
z3.Normalize()
|
|
}
|
|
|
|
// doubleGeneric performs point doubling on the passed Jacobian point without
|
|
// any assumptions about the z value and stores the result in (x3, y3, z3).
|
|
// That is to say (x3, y3, z3) = 2*(x1, y1, z1). It is the slowest of the point
|
|
// doubling routines due to requiring the most arithmetic.
|
|
func (curve *KoblitzCurve) doubleGeneric(x1, y1, z1, x3, y3, z3 *fieldVal) {
|
|
// Point doubling formula for Jacobian coordinates for the secp256k1
|
|
// curve:
|
|
// X3 = (3*X1^2)^2 - 8*X1*Y1^2
|
|
// Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
|
|
// Z3 = 2*Y1*Z1
|
|
//
|
|
// To compute the above efficiently, this implementation splits the
|
|
// equation into intermediate elements which are used to minimize the
|
|
// number of field multiplications in favor of field squarings which
|
|
// are roughly 35% faster than field multiplications with the current
|
|
// implementation at the time this was written.
|
|
//
|
|
// This uses a slightly modified version of the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
|
|
// E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
|
|
// Z3 = 2*Y1*Z1
|
|
//
|
|
// This results in a cost of 1 field multiplication, 5 field squarings,
|
|
// 6 field additions, and 5 integer multiplications.
|
|
var a, b, c, d, e, f fieldVal
|
|
z3.Mul2(y1, z1).MulInt(2) // Z3 = 2*Y1*Z1 (mag: 2)
|
|
a.SquareVal(x1) // A = X1^2 (mag: 1)
|
|
b.SquareVal(y1) // B = Y1^2 (mag: 1)
|
|
c.SquareVal(&b) // C = B^2 (mag: 1)
|
|
b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
|
|
d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
|
|
d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
|
|
e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
|
|
f.SquareVal(&e) // F = E^2 (mag: 1)
|
|
x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
|
|
x3.Add(&f) // X3 = F+X3 (mag: 18)
|
|
f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
|
|
y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
|
|
y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
|
|
|
|
// Normalize the field values back to a magnitude of 1.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
z3.Normalize()
|
|
}
|
|
|
|
// doubleJacobian doubles the passed Jacobian point (x1, y1, z1) and stores the
|
|
// result in (x3, y3, z3).
|
|
func (curve *KoblitzCurve) doubleJacobian(x1, y1, z1, x3, y3, z3 *fieldVal) {
|
|
// Doubling a point at infinity is still infinity.
|
|
if y1.IsZero() || z1.IsZero() {
|
|
x3.SetInt(0)
|
|
y3.SetInt(0)
|
|
z3.SetInt(0)
|
|
return
|
|
}
|
|
|
|
// Slightly faster point doubling can be achieved when the z value is 1
|
|
// by avoiding the multiplication on the z value. This section calls
|
|
// a point doubling function which is accelerated by using that
|
|
// assumption when possible.
|
|
if z1.Normalize().Equals(fieldOne) {
|
|
curve.doubleZ1EqualsOne(x1, y1, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// Fall back to generic point doubling which works with arbitrary z
|
|
// values.
|
|
curve.doubleGeneric(x1, y1, z1, x3, y3, z3)
|
|
}
|
|
|
|
// Double returns 2*(x1,y1). Part of the elliptic.Curve interface.
|
|
func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
|
|
if y1.Sign() == 0 {
|
|
return new(big.Int), new(big.Int)
|
|
}
|
|
|
|
// Convert the affine coordinates from big integers to field values
|
|
// and do the point doubling in Jacobian projective space.
|
|
fx1, fy1 := curve.bigAffineToField(x1, y1)
|
|
fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
|
|
fOne := new(fieldVal).SetInt(1)
|
|
curve.doubleJacobian(fx1, fy1, fOne, fx3, fy3, fz3)
|
|
|
|
// Convert the Jacobian coordinate field values back to affine big
|
|
// integers.
|
|
return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
|
|
}
|
|
|
|
// splitK returns a balanced length-two representation of k and their signs.
|
|
// This is algorithm 3.74 from [GECC].
|
|
//
|
|
// One thing of note about this algorithm is that no matter what c1 and c2 are,
|
|
// the final equation of k = k1 + k2 * lambda (mod n) will hold. This is
|
|
// provable mathematically due to how a1/b1/a2/b2 are computed.
|
|
//
|
|
// c1 and c2 are chosen to minimize the max(k1,k2).
|
|
func (curve *KoblitzCurve) splitK(k []byte) ([]byte, []byte, int, int) {
|
|
// All math here is done with big.Int, which is slow.
|
|
// At some point, it might be useful to write something similar to
|
|
// fieldVal but for N instead of P as the prime field if this ends up
|
|
// being a bottleneck.
|
|
bigIntK := new(big.Int)
|
|
c1, c2 := new(big.Int), new(big.Int)
|
|
tmp1, tmp2 := new(big.Int), new(big.Int)
|
|
k1, k2 := new(big.Int), new(big.Int)
|
|
|
|
bigIntK.SetBytes(k)
|
|
// c1 = round(b2 * k / n) from step 4.
|
|
// Rounding isn't really necessary and costs too much, hence skipped
|
|
c1.Mul(curve.b2, bigIntK)
|
|
c1.Div(c1, curve.N)
|
|
// c2 = round(b1 * k / n) from step 4 (sign reversed to optimize one step)
|
|
// Rounding isn't really necessary and costs too much, hence skipped
|
|
c2.Mul(curve.b1, bigIntK)
|
|
c2.Div(c2, curve.N)
|
|
// k1 = k - c1 * a1 - c2 * a2 from step 5 (note c2's sign is reversed)
|
|
tmp1.Mul(c1, curve.a1)
|
|
tmp2.Mul(c2, curve.a2)
|
|
k1.Sub(bigIntK, tmp1)
|
|
k1.Add(k1, tmp2)
|
|
// k2 = - c1 * b1 - c2 * b2 from step 5 (note c2's sign is reversed)
|
|
tmp1.Mul(c1, curve.b1)
|
|
tmp2.Mul(c2, curve.b2)
|
|
k2.Sub(tmp2, tmp1)
|
|
|
|
// Note Bytes() throws out the sign of k1 and k2. This matters
|
|
// since k1 and/or k2 can be negative. Hence, we pass that
|
|
// back separately.
|
|
return k1.Bytes(), k2.Bytes(), k1.Sign(), k2.Sign()
|
|
}
|
|
|
|
// moduloReduce reduces k from more than 32 bytes to 32 bytes and under. This
|
|
// is done by doing a simple modulo curve.N. We can do this since G^N = 1 and
|
|
// thus any other valid point on the elliptic curve has the same order.
|
|
func (curve *KoblitzCurve) moduloReduce(k []byte) []byte {
|
|
// Since the order of G is curve.N, we can use a much smaller number
|
|
// by doing modulo curve.N
|
|
if len(k) > curve.byteSize {
|
|
// Reduce k by performing modulo curve.N.
|
|
tmpK := new(big.Int).SetBytes(k)
|
|
tmpK.Mod(tmpK, curve.N)
|
|
return tmpK.Bytes()
|
|
}
|
|
|
|
return k
|
|
}
|
|
|
|
// NAF takes a positive integer k and returns the Non-Adjacent Form (NAF) as two
|
|
// byte slices. The first is where 1s will be. The second is where -1s will
|
|
// be. NAF is convenient in that on average, only 1/3rd of its values are
|
|
// non-zero. This is algorithm 3.30 from [GECC].
|
|
//
|
|
// Essentially, this makes it possible to minimize the number of operations
|
|
// since the resulting ints returned will be at least 50% 0s.
|
|
func NAF(k []byte) ([]byte, []byte) {
|
|
// The essence of this algorithm is that whenever we have consecutive 1s
|
|
// in the binary, we want to put a -1 in the lowest bit and get a bunch
|
|
// of 0s up to the highest bit of consecutive 1s. This is due to this
|
|
// identity:
|
|
// 2^n + 2^(n-1) + 2^(n-2) + ... + 2^(n-k) = 2^(n+1) - 2^(n-k)
|
|
//
|
|
// The algorithm thus may need to go 1 more bit than the length of the
|
|
// bits we actually have, hence bits being 1 bit longer than was
|
|
// necessary. Since we need to know whether adding will cause a carry,
|
|
// we go from right-to-left in this addition.
|
|
var carry, curIsOne, nextIsOne bool
|
|
// these default to zero
|
|
retPos := make([]byte, len(k)+1)
|
|
retNeg := make([]byte, len(k)+1)
|
|
for i := len(k) - 1; i >= 0; i-- {
|
|
curByte := k[i]
|
|
for j := uint(0); j < 8; j++ {
|
|
curIsOne = curByte&1 == 1
|
|
if j == 7 {
|
|
if i == 0 {
|
|
nextIsOne = false
|
|
} else {
|
|
nextIsOne = k[i-1]&1 == 1
|
|
}
|
|
} else {
|
|
nextIsOne = curByte&2 == 2
|
|
}
|
|
if carry {
|
|
if curIsOne {
|
|
// This bit is 1, so continue to carry
|
|
// and don't need to do anything.
|
|
} else {
|
|
// We've hit a 0 after some number of
|
|
// 1s.
|
|
if nextIsOne {
|
|
// Start carrying again since
|
|
// a new sequence of 1s is
|
|
// starting.
|
|
retNeg[i+1] += 1 << j
|
|
} else {
|
|
// Stop carrying since 1s have
|
|
// stopped.
|
|
carry = false
|
|
retPos[i+1] += 1 << j
|
|
}
|
|
}
|
|
} else if curIsOne {
|
|
if nextIsOne {
|
|
// If this is the start of at least 2
|
|
// consecutive 1s, set the current one
|
|
// to -1 and start carrying.
|
|
retNeg[i+1] += 1 << j
|
|
carry = true
|
|
} else {
|
|
// This is a singleton, not consecutive
|
|
// 1s.
|
|
retPos[i+1] += 1 << j
|
|
}
|
|
}
|
|
curByte >>= 1
|
|
}
|
|
}
|
|
if carry {
|
|
retPos[0] = 1
|
|
return retPos, retNeg
|
|
}
|
|
return retPos[1:], retNeg[1:]
|
|
}
|
|
|
|
// ScalarMult returns k*(Bx, By) where k is a big endian integer.
|
|
// Part of the elliptic.Curve interface.
|
|
func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
|
|
// Point Q = ∞ (point at infinity).
|
|
qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
|
|
|
|
// Decompose K into k1 and k2 in order to halve the number of EC ops.
|
|
// See Algorithm 3.74 in [GECC].
|
|
k1, k2, signK1, signK2 := curve.splitK(curve.moduloReduce(k))
|
|
|
|
// The main equation here to remember is:
|
|
// k * P = k1 * P + k2 * ϕ(P)
|
|
//
|
|
// P1 below is P in the equation, P2 below is ϕ(P) in the equation
|
|
p1x, p1y := curve.bigAffineToField(Bx, By)
|
|
p1yNeg := new(fieldVal).NegateVal(p1y, 1)
|
|
p1z := new(fieldVal).SetInt(1)
|
|
|
|
// NOTE: ϕ(x,y) = (βx,y). The Jacobian z coordinate is 1, so this math
|
|
// goes through.
|
|
p2x := new(fieldVal).Mul2(p1x, curve.beta)
|
|
p2y := new(fieldVal).Set(p1y)
|
|
p2yNeg := new(fieldVal).NegateVal(p2y, 1)
|
|
p2z := new(fieldVal).SetInt(1)
|
|
|
|
// Flip the positive and negative values of the points as needed
|
|
// depending on the signs of k1 and k2. As mentioned in the equation
|
|
// above, each of k1 and k2 are multiplied by the respective point.
|
|
// Since -k * P is the same thing as k * -P, and the group law for
|
|
// elliptic curves states that P(x, y) = -P(x, -y), it's faster and
|
|
// simplifies the code to just make the point negative.
|
|
if signK1 == -1 {
|
|
p1y, p1yNeg = p1yNeg, p1y
|
|
}
|
|
if signK2 == -1 {
|
|
p2y, p2yNeg = p2yNeg, p2y
|
|
}
|
|
|
|
// NAF versions of k1 and k2 should have a lot more zeros.
|
|
//
|
|
// The Pos version of the bytes contain the +1s and the Neg versions
|
|
// contain the -1s.
|
|
k1PosNAF, k1NegNAF := NAF(k1)
|
|
k2PosNAF, k2NegNAF := NAF(k2)
|
|
k1Len := len(k1PosNAF)
|
|
k2Len := len(k2PosNAF)
|
|
|
|
m := k1Len
|
|
if m < k2Len {
|
|
m = k2Len
|
|
}
|
|
|
|
// Add left-to-right using the NAF optimization. See algorithm 3.77
|
|
// from [GECC]. This should be faster overall since there will be a lot
|
|
// more instances of 0, hence reducing the number of Jacobian additions
|
|
// at the cost of 1 possible extra doubling.
|
|
var k1BytePos, k1ByteNeg, k2BytePos, k2ByteNeg byte
|
|
for i := 0; i < m; i++ {
|
|
// Since we're going left-to-right, pad the front with 0s.
|
|
if i < m-k1Len {
|
|
k1BytePos = 0
|
|
k1ByteNeg = 0
|
|
} else {
|
|
k1BytePos = k1PosNAF[i-(m-k1Len)]
|
|
k1ByteNeg = k1NegNAF[i-(m-k1Len)]
|
|
}
|
|
if i < m-k2Len {
|
|
k2BytePos = 0
|
|
k2ByteNeg = 0
|
|
} else {
|
|
k2BytePos = k2PosNAF[i-(m-k2Len)]
|
|
k2ByteNeg = k2NegNAF[i-(m-k2Len)]
|
|
}
|
|
|
|
for j := 7; j >= 0; j-- {
|
|
// Q = 2 * Q
|
|
curve.doubleJacobian(qx, qy, qz, qx, qy, qz)
|
|
|
|
if k1BytePos&0x80 == 0x80 {
|
|
curve.addJacobian(qx, qy, qz, p1x, p1y, p1z,
|
|
qx, qy, qz)
|
|
} else if k1ByteNeg&0x80 == 0x80 {
|
|
curve.addJacobian(qx, qy, qz, p1x, p1yNeg, p1z,
|
|
qx, qy, qz)
|
|
}
|
|
|
|
if k2BytePos&0x80 == 0x80 {
|
|
curve.addJacobian(qx, qy, qz, p2x, p2y, p2z,
|
|
qx, qy, qz)
|
|
} else if k2ByteNeg&0x80 == 0x80 {
|
|
curve.addJacobian(qx, qy, qz, p2x, p2yNeg, p2z,
|
|
qx, qy, qz)
|
|
}
|
|
k1BytePos <<= 1
|
|
k1ByteNeg <<= 1
|
|
k2BytePos <<= 1
|
|
k2ByteNeg <<= 1
|
|
}
|
|
}
|
|
|
|
// Convert the Jacobian coordinate field values back to affine big.Ints.
|
|
return curve.fieldJacobianToBigAffine(qx, qy, qz)
|
|
}
|
|
|
|
// ScalarBaseMult returns k*G where G is the base point of the group and k is a
|
|
// big endian integer.
|
|
// Part of the elliptic.Curve interface.
|
|
func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
|
|
newK := curve.moduloReduce(k)
|
|
diff := len(curve.bytePoints) - len(newK)
|
|
|
|
// Point Q = ∞ (point at infinity).
|
|
qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
|
|
|
|
// curve.bytePoints has all 256 byte points for each 8-bit window. The
|
|
// strategy is to add up the byte points. This is best understood by
|
|
// expressing k in base-256 which it already sort of is.
|
|
// Each "digit" in the 8-bit window can be looked up using bytePoints
|
|
// and added together.
|
|
for i, byteVal := range newK {
|
|
p := curve.bytePoints[diff+i][byteVal]
|
|
curve.addJacobian(qx, qy, qz, &p[0], &p[1], &p[2], qx, qy, qz)
|
|
}
|
|
return curve.fieldJacobianToBigAffine(qx, qy, qz)
|
|
}
|
|
|
|
// QPlus1Div4 returns the Q+1/4 constant for the curve for use in calculating
|
|
// square roots via exponention.
|
|
func (curve *KoblitzCurve) QPlus1Div4() *big.Int {
|
|
return curve.q
|
|
}
|
|
|
|
var initonce sync.Once
|
|
var secp256k1 KoblitzCurve
|
|
|
|
func initAll() {
|
|
initS256()
|
|
}
|
|
|
|
// fromHex converts the passed hex string into a big integer pointer and will
|
|
// panic is there is an error. This is only provided for the hard-coded
|
|
// constants so errors in the source code can bet detected. It will only (and
|
|
// must only) be called for initialization purposes.
|
|
func fromHex(s string) *big.Int {
|
|
r, ok := new(big.Int).SetString(s, 16)
|
|
if !ok {
|
|
panic("invalid hex in source file: " + s)
|
|
}
|
|
return r
|
|
}
|
|
|
|
func initS256() {
|
|
// Curve parameters taken from [SECG] section 2.4.1.
|
|
secp256k1.CurveParams = new(elliptic.CurveParams)
|
|
secp256k1.P = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F")
|
|
secp256k1.N = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141")
|
|
secp256k1.B = fromHex("0000000000000000000000000000000000000000000000000000000000000007")
|
|
secp256k1.Gx = fromHex("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798")
|
|
secp256k1.Gy = fromHex("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8")
|
|
secp256k1.BitSize = 256
|
|
secp256k1.q = new(big.Int).Div(new(big.Int).Add(secp256k1.P,
|
|
big.NewInt(1)), big.NewInt(4))
|
|
secp256k1.H = 1
|
|
secp256k1.halfOrder = new(big.Int).Rsh(secp256k1.N, 1)
|
|
|
|
// Provided for convenience since this gets computed repeatedly.
|
|
secp256k1.byteSize = secp256k1.BitSize / 8
|
|
|
|
// Deserialize and set the pre-computed table used to accelerate scalar
|
|
// base multiplication. This is hard-coded data, so any errors are
|
|
// panics because it means something is wrong in the source code.
|
|
if err := loadS256BytePoints(); err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
// Next 6 constants are from Hal Finney's bitcointalk.org post:
|
|
// https://bitcointalk.org/index.php?topic=3238.msg45565#msg45565
|
|
// May he rest in peace.
|
|
//
|
|
// They have also been independently derived from the code in the
|
|
// EndomorphismVectors function in gensecp256k1.go.
|
|
secp256k1.lambda = fromHex("5363AD4CC05C30E0A5261C028812645A122E22EA20816678DF02967C1B23BD72")
|
|
secp256k1.beta = new(fieldVal).SetHex("7AE96A2B657C07106E64479EAC3434E99CF0497512F58995C1396C28719501EE")
|
|
secp256k1.a1 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
|
|
secp256k1.b1 = fromHex("-E4437ED6010E88286F547FA90ABFE4C3")
|
|
secp256k1.a2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8")
|
|
secp256k1.b2 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
|
|
|
|
// Alternatively, we can use the parameters below, however, they seem
|
|
// to be about 8% slower.
|
|
// secp256k1.lambda = fromHex("AC9C52B33FA3CF1F5AD9E3FD77ED9BA4A880B9FC8EC739C2E0CFC810B51283CE")
|
|
// secp256k1.beta = new(fieldVal).SetHex("851695D49A83F8EF919BB86153CBCB16630FB68AED0A766A3EC693D68E6AFA40")
|
|
// secp256k1.a1 = fromHex("E4437ED6010E88286F547FA90ABFE4C3")
|
|
// secp256k1.b1 = fromHex("-3086D221A7D46BCDE86C90E49284EB15")
|
|
// secp256k1.a2 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
|
|
// secp256k1.b2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8")
|
|
}
|
|
|
|
// S256 returns a Curve which implements secp256k1.
|
|
func S256() *KoblitzCurve {
|
|
initonce.Do(initAll)
|
|
return &secp256k1
|
|
}
|