forked from cerc-io/plugeth
250 lines
7.1 KiB
Go
250 lines
7.1 KiB
Go
package bip39
|
|
|
|
import (
|
|
"crypto/rand"
|
|
"crypto/sha256"
|
|
"crypto/sha512"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"math/big"
|
|
"strings"
|
|
|
|
"golang.org/x/crypto/pbkdf2"
|
|
)
|
|
|
|
// Some bitwise operands for working with big.Ints
|
|
var (
|
|
Last11BitsMask = big.NewInt(2047)
|
|
RightShift11BitsDivider = big.NewInt(2048)
|
|
BigOne = big.NewInt(1)
|
|
BigTwo = big.NewInt(2)
|
|
)
|
|
|
|
// NewEntropy will create random entropy bytes
|
|
// so long as the requested size bitSize is an appropriate size.
|
|
func NewEntropy(bitSize int) ([]byte, error) {
|
|
err := validateEntropyBitSize(bitSize)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
entropy := make([]byte, bitSize/8)
|
|
_, err = rand.Read(entropy)
|
|
return entropy, err
|
|
}
|
|
|
|
// NewMnemonic will return a string consisting of the mnemonic words for
|
|
// the given entropy.
|
|
// If the provide entropy is invalid, an error will be returned.
|
|
func NewMnemonic(entropy []byte) (string, error) {
|
|
// Compute some lengths for convenience
|
|
entropyBitLength := len(entropy) * 8
|
|
checksumBitLength := entropyBitLength / 32
|
|
sentenceLength := (entropyBitLength + checksumBitLength) / 11
|
|
|
|
err := validateEntropyBitSize(entropyBitLength)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
|
|
// Add checksum to entropy
|
|
entropy = addChecksum(entropy)
|
|
|
|
// Break entropy up into sentenceLength chunks of 11 bits
|
|
// For each word AND mask the rightmost 11 bits and find the word at that index
|
|
// Then bitshift entropy 11 bits right and repeat
|
|
// Add to the last empty slot so we can work with LSBs instead of MSB
|
|
|
|
// Entropy as an int so we can bitmask without worrying about bytes slices
|
|
entropyInt := new(big.Int).SetBytes(entropy)
|
|
|
|
// Slice to hold words in
|
|
words := make([]string, sentenceLength)
|
|
|
|
// Throw away big int for AND masking
|
|
word := big.NewInt(0)
|
|
|
|
for i := sentenceLength - 1; i >= 0; i-- {
|
|
// Get 11 right most bits and bitshift 11 to the right for next time
|
|
word.And(entropyInt, Last11BitsMask)
|
|
entropyInt.Div(entropyInt, RightShift11BitsDivider)
|
|
|
|
// Get the bytes representing the 11 bits as a 2 byte slice
|
|
wordBytes := padByteSlice(word.Bytes(), 2)
|
|
|
|
// Convert bytes to an index and add that word to the list
|
|
words[i] = WordList[binary.BigEndian.Uint16(wordBytes)]
|
|
}
|
|
|
|
return strings.Join(words, " "), nil
|
|
}
|
|
|
|
// MnemonicToByteArray takes a mnemonic string and turns it into a byte array
|
|
// suitable for creating another mnemonic.
|
|
// An error is returned if the mnemonic is invalid.
|
|
// FIXME
|
|
// This does not work for all values in
|
|
// the test vectors. Namely
|
|
// Vectors 0, 4, and 8.
|
|
// This is not really important because BIP39 doesnt really define a conversion
|
|
// from string to bytes.
|
|
func MnemonicToByteArray(mnemonic string) ([]byte, error) {
|
|
if IsMnemonicValid(mnemonic) == false {
|
|
return nil, fmt.Errorf("Invalid mnemonic")
|
|
}
|
|
mnemonicSlice := strings.Split(mnemonic, " ")
|
|
|
|
bitSize := len(mnemonicSlice) * 11
|
|
err := validateEntropyWithChecksumBitSize(bitSize)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
checksumSize := bitSize % 32
|
|
|
|
b := big.NewInt(0)
|
|
modulo := big.NewInt(2048)
|
|
for _, v := range mnemonicSlice {
|
|
index, found := ReverseWordMap[v]
|
|
if found == false {
|
|
return nil, fmt.Errorf("Word `%v` not found in reverse map", v)
|
|
}
|
|
add := big.NewInt(int64(index))
|
|
b = b.Mul(b, modulo)
|
|
b = b.Add(b, add)
|
|
}
|
|
hex := b.Bytes()
|
|
checksumModulo := big.NewInt(0).Exp(big.NewInt(2), big.NewInt(int64(checksumSize)), nil)
|
|
entropy, _ := big.NewInt(0).DivMod(b, checksumModulo, big.NewInt(0))
|
|
|
|
entropyHex := entropy.Bytes()
|
|
|
|
byteSize := bitSize/8 + 1
|
|
if len(hex) != byteSize {
|
|
tmp := make([]byte, byteSize)
|
|
diff := byteSize - len(hex)
|
|
for i := 0; i < len(hex); i++ {
|
|
tmp[i+diff] = hex[i]
|
|
}
|
|
hex = tmp
|
|
}
|
|
|
|
validationHex := addChecksum(entropyHex)
|
|
if len(validationHex) != byteSize {
|
|
tmp2 := make([]byte, byteSize)
|
|
diff2 := byteSize - len(validationHex)
|
|
for i := 0; i < len(validationHex); i++ {
|
|
tmp2[i+diff2] = validationHex[i]
|
|
}
|
|
validationHex = tmp2
|
|
}
|
|
|
|
if len(hex) != len(validationHex) {
|
|
panic("[]byte len mismatch - it shouldn't happen")
|
|
}
|
|
for i := range validationHex {
|
|
if hex[i] != validationHex[i] {
|
|
return nil, fmt.Errorf("Invalid byte at position %v", i)
|
|
}
|
|
}
|
|
return hex, nil
|
|
}
|
|
|
|
// NewSeedWithErrorChecking creates a hashed seed output given the mnemonic string and a password.
|
|
// An error is returned if the mnemonic is not convertible to a byte array.
|
|
func NewSeedWithErrorChecking(mnemonic string, password string) ([]byte, error) {
|
|
_, err := MnemonicToByteArray(mnemonic)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return NewSeed(mnemonic, password), nil
|
|
}
|
|
|
|
// NewSeed creates a hashed seed output given a provided string and password.
|
|
// No checking is performed to validate that the string provided is a valid mnemonic.
|
|
func NewSeed(mnemonic string, password string) []byte {
|
|
return pbkdf2.Key([]byte(mnemonic), []byte("mnemonic"+password), 2048, 64, sha512.New)
|
|
}
|
|
|
|
// Appends to data the first (len(data) / 32)bits of the result of sha256(data)
|
|
// Currently only supports data up to 32 bytes
|
|
func addChecksum(data []byte) []byte {
|
|
// Get first byte of sha256
|
|
hasher := sha256.New()
|
|
hasher.Write(data)
|
|
hash := hasher.Sum(nil)
|
|
firstChecksumByte := hash[0]
|
|
|
|
// len() is in bytes so we divide by 4
|
|
checksumBitLength := uint(len(data) / 4)
|
|
|
|
// For each bit of check sum we want we shift the data one the left
|
|
// and then set the (new) right most bit equal to checksum bit at that index
|
|
// staring from the left
|
|
dataBigInt := new(big.Int).SetBytes(data)
|
|
for i := uint(0); i < checksumBitLength; i++ {
|
|
// Bitshift 1 left
|
|
dataBigInt.Mul(dataBigInt, BigTwo)
|
|
|
|
// Set rightmost bit if leftmost checksum bit is set
|
|
if uint8(firstChecksumByte&(1<<(7-i))) > 0 {
|
|
dataBigInt.Or(dataBigInt, BigOne)
|
|
}
|
|
}
|
|
|
|
return dataBigInt.Bytes()
|
|
}
|
|
|
|
func padByteSlice(slice []byte, length int) []byte {
|
|
newSlice := make([]byte, length-len(slice))
|
|
return append(newSlice, slice...)
|
|
}
|
|
|
|
func validateEntropyBitSize(bitSize int) error {
|
|
if (bitSize%32) != 0 || bitSize < 128 || bitSize > 256 {
|
|
return errors.New("Entropy length must be [128, 256] and a multiple of 32")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func validateEntropyWithChecksumBitSize(bitSize int) error {
|
|
if (bitSize != 128+4) && (bitSize != 160+5) && (bitSize != 192+6) && (bitSize != 224+7) && (bitSize != 256+8) {
|
|
return fmt.Errorf("Wrong entropy + checksum size - expected %v, got %v", int((bitSize-bitSize%32)+(bitSize-bitSize%32)/32), bitSize)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// IsMnemonicValid attempts to verify that the provided mnemonic is valid.
|
|
// Validity is determined by both the number of words being appropriate,
|
|
// and that all the words in the mnemonic are present in the word list.
|
|
func IsMnemonicValid(mnemonic string) bool {
|
|
// Create a list of all the words in the mnemonic sentence
|
|
words := strings.Fields(mnemonic)
|
|
|
|
//Get num of words
|
|
numOfWords := len(words)
|
|
|
|
// The number of words should be 12, 15, 18, 21 or 24
|
|
if numOfWords%3 != 0 || numOfWords < 12 || numOfWords > 24 {
|
|
return false
|
|
}
|
|
|
|
// Check if all words belong in the wordlist
|
|
for i := 0; i < numOfWords; i++ {
|
|
if !contains(WordList, words[i]) {
|
|
return false
|
|
}
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
func contains(s []string, e string) bool {
|
|
for _, a := range s {
|
|
if a == e {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|