forked from cerc-io/plugeth
a5a4fa7032
This change makes use of uin256 to represent balance in state. It touches primarily upon statedb, stateobject and state processing, trying to avoid changes in transaction pools, core types, rpc and tracers.
193 lines
6.3 KiB
Go
193 lines
6.3 KiB
Go
// Copyright 2015 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package vm
|
|
|
|
import (
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/holiman/uint256"
|
|
)
|
|
|
|
// ContractRef is a reference to the contract's backing object
|
|
type ContractRef interface {
|
|
Address() common.Address
|
|
}
|
|
|
|
// AccountRef implements ContractRef.
|
|
//
|
|
// Account references are used during EVM initialisation and
|
|
// its primary use is to fetch addresses. Removing this object
|
|
// proves difficult because of the cached jump destinations which
|
|
// are fetched from the parent contract (i.e. the caller), which
|
|
// is a ContractRef.
|
|
type AccountRef common.Address
|
|
|
|
// Address casts AccountRef to an Address
|
|
func (ar AccountRef) Address() common.Address { return (common.Address)(ar) }
|
|
|
|
// Contract represents an ethereum contract in the state database. It contains
|
|
// the contract code, calling arguments. Contract implements ContractRef
|
|
type Contract struct {
|
|
// CallerAddress is the result of the caller which initialised this
|
|
// contract. However when the "call method" is delegated this value
|
|
// needs to be initialised to that of the caller's caller.
|
|
CallerAddress common.Address
|
|
caller ContractRef
|
|
self ContractRef
|
|
|
|
jumpdests map[common.Hash]bitvec // Aggregated result of JUMPDEST analysis.
|
|
analysis bitvec // Locally cached result of JUMPDEST analysis
|
|
|
|
Code []byte
|
|
CodeHash common.Hash
|
|
CodeAddr *common.Address
|
|
Input []byte
|
|
|
|
Gas uint64
|
|
value *uint256.Int
|
|
}
|
|
|
|
// NewContract returns a new contract environment for the execution of EVM.
|
|
func NewContract(caller ContractRef, object ContractRef, value *uint256.Int, gas uint64) *Contract {
|
|
c := &Contract{CallerAddress: caller.Address(), caller: caller, self: object}
|
|
|
|
if parent, ok := caller.(*Contract); ok {
|
|
// Reuse JUMPDEST analysis from parent context if available.
|
|
c.jumpdests = parent.jumpdests
|
|
} else {
|
|
c.jumpdests = make(map[common.Hash]bitvec)
|
|
}
|
|
|
|
// Gas should be a pointer so it can safely be reduced through the run
|
|
// This pointer will be off the state transition
|
|
c.Gas = gas
|
|
// ensures a value is set
|
|
c.value = value
|
|
|
|
return c
|
|
}
|
|
|
|
func (c *Contract) validJumpdest(dest *uint256.Int) bool {
|
|
udest, overflow := dest.Uint64WithOverflow()
|
|
// PC cannot go beyond len(code) and certainly can't be bigger than 63bits.
|
|
// Don't bother checking for JUMPDEST in that case.
|
|
if overflow || udest >= uint64(len(c.Code)) {
|
|
return false
|
|
}
|
|
// Only JUMPDESTs allowed for destinations
|
|
if OpCode(c.Code[udest]) != JUMPDEST {
|
|
return false
|
|
}
|
|
return c.isCode(udest)
|
|
}
|
|
|
|
// isCode returns true if the provided PC location is an actual opcode, as
|
|
// opposed to a data-segment following a PUSHN operation.
|
|
func (c *Contract) isCode(udest uint64) bool {
|
|
// Do we already have an analysis laying around?
|
|
if c.analysis != nil {
|
|
return c.analysis.codeSegment(udest)
|
|
}
|
|
// Do we have a contract hash already?
|
|
// If we do have a hash, that means it's a 'regular' contract. For regular
|
|
// contracts ( not temporary initcode), we store the analysis in a map
|
|
if c.CodeHash != (common.Hash{}) {
|
|
// Does parent context have the analysis?
|
|
analysis, exist := c.jumpdests[c.CodeHash]
|
|
if !exist {
|
|
// Do the analysis and save in parent context
|
|
// We do not need to store it in c.analysis
|
|
analysis = codeBitmap(c.Code)
|
|
c.jumpdests[c.CodeHash] = analysis
|
|
}
|
|
// Also stash it in current contract for faster access
|
|
c.analysis = analysis
|
|
return analysis.codeSegment(udest)
|
|
}
|
|
// We don't have the code hash, most likely a piece of initcode not already
|
|
// in state trie. In that case, we do an analysis, and save it locally, so
|
|
// we don't have to recalculate it for every JUMP instruction in the execution
|
|
// However, we don't save it within the parent context
|
|
if c.analysis == nil {
|
|
c.analysis = codeBitmap(c.Code)
|
|
}
|
|
return c.analysis.codeSegment(udest)
|
|
}
|
|
|
|
// AsDelegate sets the contract to be a delegate call and returns the current
|
|
// contract (for chaining calls)
|
|
func (c *Contract) AsDelegate() *Contract {
|
|
// NOTE: caller must, at all times be a contract. It should never happen
|
|
// that caller is something other than a Contract.
|
|
parent := c.caller.(*Contract)
|
|
c.CallerAddress = parent.CallerAddress
|
|
c.value = parent.value
|
|
|
|
return c
|
|
}
|
|
|
|
// GetOp returns the n'th element in the contract's byte array
|
|
func (c *Contract) GetOp(n uint64) OpCode {
|
|
if n < uint64(len(c.Code)) {
|
|
return OpCode(c.Code[n])
|
|
}
|
|
|
|
return STOP
|
|
}
|
|
|
|
// Caller returns the caller of the contract.
|
|
//
|
|
// Caller will recursively call caller when the contract is a delegate
|
|
// call, including that of caller's caller.
|
|
func (c *Contract) Caller() common.Address {
|
|
return c.CallerAddress
|
|
}
|
|
|
|
// UseGas attempts the use gas and subtracts it and returns true on success
|
|
func (c *Contract) UseGas(gas uint64) (ok bool) {
|
|
if c.Gas < gas {
|
|
return false
|
|
}
|
|
c.Gas -= gas
|
|
return true
|
|
}
|
|
|
|
// Address returns the contracts address
|
|
func (c *Contract) Address() common.Address {
|
|
return c.self.Address()
|
|
}
|
|
|
|
// Value returns the contract's value (sent to it from it's caller)
|
|
func (c *Contract) Value() *uint256.Int {
|
|
return c.value
|
|
}
|
|
|
|
// SetCallCode sets the code of the contract and address of the backing data
|
|
// object
|
|
func (c *Contract) SetCallCode(addr *common.Address, hash common.Hash, code []byte) {
|
|
c.Code = code
|
|
c.CodeHash = hash
|
|
c.CodeAddr = addr
|
|
}
|
|
|
|
// SetCodeOptionalHash can be used to provide code, but it's optional to provide hash.
|
|
// In case hash is not provided, the jumpdest analysis will not be saved to the parent context
|
|
func (c *Contract) SetCodeOptionalHash(addr *common.Address, codeAndHash *codeAndHash) {
|
|
c.Code = codeAndHash.code
|
|
c.CodeHash = codeAndHash.hash
|
|
c.CodeAddr = addr
|
|
}
|