forked from cerc-io/plugeth
468 lines
15 KiB
Go
468 lines
15 KiB
Go
package pss
|
|
|
|
import (
|
|
"context"
|
|
"crypto/ecdsa"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"sync"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/common/hexutil"
|
|
"github.com/ethereum/go-ethereum/log"
|
|
"github.com/ethereum/go-ethereum/node"
|
|
"github.com/ethereum/go-ethereum/p2p"
|
|
"github.com/ethereum/go-ethereum/p2p/enode"
|
|
"github.com/ethereum/go-ethereum/p2p/simulations/adapters"
|
|
"github.com/ethereum/go-ethereum/rpc"
|
|
"github.com/ethereum/go-ethereum/swarm/network"
|
|
"github.com/ethereum/go-ethereum/swarm/network/simulation"
|
|
"github.com/ethereum/go-ethereum/swarm/pot"
|
|
"github.com/ethereum/go-ethereum/swarm/state"
|
|
)
|
|
|
|
// needed to make the enode id of the receiving node available to the handler for triggers
|
|
type handlerContextFunc func(*testData, *adapters.NodeConfig) *handler
|
|
|
|
// struct to notify reception of messages to simulation driver
|
|
// TODO To make code cleaner:
|
|
// - consider a separate pss unwrap to message event in sim framework (this will make eventual message propagation analysis with pss easier/possible in the future)
|
|
// - consider also test api calls to inspect handling results of messages
|
|
type handlerNotification struct {
|
|
id enode.ID
|
|
serial uint64
|
|
}
|
|
|
|
type testData struct {
|
|
sim *simulation.Simulation
|
|
kademlias map[enode.ID]*network.Kademlia
|
|
nodeAddresses map[enode.ID][]byte // make predictable overlay addresses from the generated random enode ids
|
|
senders map[int]enode.ID // originating nodes of the messages (intention is to choose as far as possible from the receiving neighborhood)
|
|
recipientAddresses [][]byte
|
|
|
|
requiredMsgCount int
|
|
requiredMsgs map[enode.ID][]uint64 // message serials we expect respective nodes to receive
|
|
allowedMsgs map[enode.ID][]uint64 // message serials we expect respective nodes to receive
|
|
|
|
notifications []handlerNotification // notification queue
|
|
totalMsgCount int
|
|
handlerDone bool // set to true on termination of the simulation run
|
|
mu sync.Mutex
|
|
}
|
|
|
|
var (
|
|
pof = pot.DefaultPof(256) // generate messages and index them
|
|
topic = BytesToTopic([]byte{0xf3, 0x9e, 0x06, 0x82})
|
|
)
|
|
|
|
func (td *testData) pushNotification(val handlerNotification) {
|
|
td.mu.Lock()
|
|
td.notifications = append(td.notifications, val)
|
|
td.mu.Unlock()
|
|
}
|
|
|
|
func (td *testData) popNotification() (first handlerNotification, exist bool) {
|
|
td.mu.Lock()
|
|
if len(td.notifications) > 0 {
|
|
exist = true
|
|
first = td.notifications[0]
|
|
td.notifications = td.notifications[1:]
|
|
}
|
|
td.mu.Unlock()
|
|
return first, exist
|
|
}
|
|
|
|
func (td *testData) getMsgCount() int {
|
|
td.mu.Lock()
|
|
defer td.mu.Unlock()
|
|
return td.totalMsgCount
|
|
}
|
|
|
|
func (td *testData) incrementMsgCount() int {
|
|
td.mu.Lock()
|
|
defer td.mu.Unlock()
|
|
td.totalMsgCount++
|
|
return td.totalMsgCount
|
|
}
|
|
|
|
func (td *testData) isDone() bool {
|
|
td.mu.Lock()
|
|
defer td.mu.Unlock()
|
|
return td.handlerDone
|
|
}
|
|
|
|
func (td *testData) setDone() {
|
|
td.mu.Lock()
|
|
defer td.mu.Unlock()
|
|
td.handlerDone = true
|
|
}
|
|
|
|
func newTestData() *testData {
|
|
return &testData{
|
|
kademlias: make(map[enode.ID]*network.Kademlia),
|
|
nodeAddresses: make(map[enode.ID][]byte),
|
|
requiredMsgs: make(map[enode.ID][]uint64),
|
|
allowedMsgs: make(map[enode.ID][]uint64),
|
|
senders: make(map[int]enode.ID),
|
|
}
|
|
}
|
|
|
|
func (td *testData) getKademlia(nodeId *enode.ID) (*network.Kademlia, error) {
|
|
kadif, ok := td.sim.NodeItem(*nodeId, simulation.BucketKeyKademlia)
|
|
if !ok {
|
|
return nil, fmt.Errorf("no kademlia entry for %v", nodeId)
|
|
}
|
|
kad, ok := kadif.(*network.Kademlia)
|
|
if !ok {
|
|
return nil, fmt.Errorf("invalid kademlia entry for %v", nodeId)
|
|
}
|
|
return kad, nil
|
|
}
|
|
|
|
func (td *testData) init(msgCount int) error {
|
|
log.Debug("TestProxNetwork start")
|
|
|
|
for _, nodeId := range td.sim.NodeIDs() {
|
|
kad, err := td.getKademlia(&nodeId)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
td.nodeAddresses[nodeId] = kad.BaseAddr()
|
|
}
|
|
|
|
for i := 0; i < int(msgCount); i++ {
|
|
msgAddr := pot.RandomAddress() // we choose message addresses randomly
|
|
td.recipientAddresses = append(td.recipientAddresses, msgAddr.Bytes())
|
|
smallestPo := 256
|
|
var targets []enode.ID
|
|
var closestPO int
|
|
|
|
// loop through all nodes and find the required and allowed recipients of each message
|
|
// (for more information, please see the comment to the main test function)
|
|
for _, nod := range td.sim.Net.GetNodes() {
|
|
po, _ := pof(td.recipientAddresses[i], td.nodeAddresses[nod.ID()], 0)
|
|
depth := td.kademlias[nod.ID()].NeighbourhoodDepth()
|
|
|
|
// only nodes with closest IDs (wrt the msg address) will be required recipients
|
|
if po > closestPO {
|
|
closestPO = po
|
|
targets = nil
|
|
targets = append(targets, nod.ID())
|
|
} else if po == closestPO {
|
|
targets = append(targets, nod.ID())
|
|
}
|
|
|
|
if po >= depth {
|
|
td.allowedMsgs[nod.ID()] = append(td.allowedMsgs[nod.ID()], uint64(i))
|
|
}
|
|
|
|
// a node with the smallest PO (wrt msg) will be the sender,
|
|
// in order to increase the distance the msg must travel
|
|
if po < smallestPo {
|
|
smallestPo = po
|
|
td.senders[i] = nod.ID()
|
|
}
|
|
}
|
|
|
|
td.requiredMsgCount += len(targets)
|
|
for _, id := range targets {
|
|
td.requiredMsgs[id] = append(td.requiredMsgs[id], uint64(i))
|
|
}
|
|
|
|
log.Debug("nn for msg", "targets", len(targets), "msgidx", i, "msg", common.Bytes2Hex(msgAddr[:8]), "sender", td.senders[i], "senderpo", smallestPo)
|
|
}
|
|
log.Debug("recipientAddresses to receive", "count", td.requiredMsgCount)
|
|
return nil
|
|
}
|
|
|
|
// Here we test specific functionality of the pss, setting the prox property of
|
|
// the handler. The tests generate a number of messages with random addresses.
|
|
// Then, for each message it calculates which nodes have the msg address
|
|
// within its nearest neighborhood depth, and stores those nodes as possible
|
|
// recipients. Those nodes that are the closest to the message address (nodes
|
|
// belonging to the deepest PO wrt the msg address) are stored as required
|
|
// recipients. The difference between allowed and required recipients results
|
|
// from the fact that the nearest neighbours are not necessarily reciprocal.
|
|
// Upon sending the messages, the test verifies that the respective message is
|
|
// passed to the message handlers of these required recipients. The test fails
|
|
// if a message is handled by recipient which is not listed among the allowed
|
|
// recipients of this particular message. It also fails after timeout, if not
|
|
// all the required recipients have received their respective messages.
|
|
//
|
|
// For example, if proximity order of certain msg address is 4, and node X
|
|
// has PO=5 wrt the message address, and nodes Y and Z have PO=6, then:
|
|
// nodes Y and Z will be considered required recipients of the msg,
|
|
// whereas nodes X, Y and Z will be allowed recipients.
|
|
func TestProxNetwork(t *testing.T) {
|
|
t.Run("16_nodes,_16_messages,_16_seconds", func(t *testing.T) {
|
|
testProxNetwork(t, 16, 16, 16*time.Second)
|
|
})
|
|
}
|
|
|
|
func TestProxNetworkLong(t *testing.T) {
|
|
if !*longrunning {
|
|
t.Skip("run with --longrunning flag to run extensive network tests")
|
|
}
|
|
t.Run("8_nodes,_100_messages,_30_seconds", func(t *testing.T) {
|
|
testProxNetwork(t, 8, 100, 30*time.Second)
|
|
})
|
|
t.Run("16_nodes,_100_messages,_30_seconds", func(t *testing.T) {
|
|
testProxNetwork(t, 16, 100, 30*time.Second)
|
|
})
|
|
t.Run("32_nodes,_100_messages,_60_seconds", func(t *testing.T) {
|
|
testProxNetwork(t, 32, 100, 1*time.Minute)
|
|
})
|
|
t.Run("64_nodes,_100_messages,_60_seconds", func(t *testing.T) {
|
|
testProxNetwork(t, 64, 100, 1*time.Minute)
|
|
})
|
|
t.Run("128_nodes,_100_messages,_120_seconds", func(t *testing.T) {
|
|
testProxNetwork(t, 128, 100, 2*time.Minute)
|
|
})
|
|
}
|
|
|
|
func testProxNetwork(t *testing.T, nodeCount int, msgCount int, timeout time.Duration) {
|
|
td := newTestData()
|
|
handlerContextFuncs := make(map[Topic]handlerContextFunc)
|
|
handlerContextFuncs[topic] = nodeMsgHandler
|
|
services := newProxServices(td, true, handlerContextFuncs, td.kademlias)
|
|
td.sim = simulation.New(services)
|
|
defer td.sim.Close()
|
|
ctx, cancel := context.WithTimeout(context.Background(), timeout)
|
|
defer cancel()
|
|
filename := fmt.Sprintf("testdata/snapshot_%d.json", nodeCount)
|
|
err := td.sim.UploadSnapshot(ctx, filename)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
err = td.init(msgCount) // initialize the test data
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
wrapper := func(c context.Context, _ *simulation.Simulation) error {
|
|
return testRoutine(td, c)
|
|
}
|
|
result := td.sim.Run(ctx, wrapper) // call the main test function
|
|
if result.Error != nil {
|
|
timedOut := result.Error == context.DeadlineExceeded
|
|
if !timedOut || td.getMsgCount() < td.requiredMsgCount {
|
|
t.Fatal(result.Error)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (td *testData) sendAllMsgs() error {
|
|
nodes := make(map[int]*rpc.Client)
|
|
for i := range td.recipientAddresses {
|
|
nodeClient, err := td.sim.Net.GetNode(td.senders[i]).Client()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
nodes[i] = nodeClient
|
|
}
|
|
|
|
for i, msg := range td.recipientAddresses {
|
|
log.Debug("sending msg", "idx", i, "from", td.senders[i])
|
|
nodeClient := nodes[i]
|
|
var uvarByte [8]byte
|
|
binary.PutUvarint(uvarByte[:], uint64(i))
|
|
nodeClient.Call(nil, "pss_sendRaw", hexutil.Encode(msg), hexutil.Encode(topic[:]), hexutil.Encode(uvarByte[:]))
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func isMoreTimeLeft(ctx context.Context) bool {
|
|
select {
|
|
case <-ctx.Done():
|
|
return false
|
|
default:
|
|
return true
|
|
}
|
|
}
|
|
|
|
// testRoutine is the main test function, called by Simulation.Run()
|
|
func testRoutine(td *testData, ctx context.Context) error {
|
|
|
|
hasMoreRound := func(err error, hadMessage bool) bool {
|
|
return err == nil && (hadMessage || isMoreTimeLeft(ctx))
|
|
}
|
|
|
|
if err := td.sendAllMsgs(); err != nil {
|
|
return err
|
|
}
|
|
|
|
var err error
|
|
received := 0
|
|
hadMessage := false
|
|
|
|
for oneMoreRound := true; oneMoreRound; oneMoreRound = hasMoreRound(err, hadMessage) {
|
|
message, hadMessage := td.popNotification()
|
|
|
|
if !isMoreTimeLeft(ctx) {
|
|
// Stop handlers from sending more messages.
|
|
// Note: only best effort, race is possible.
|
|
td.setDone()
|
|
}
|
|
|
|
if hadMessage {
|
|
if td.isAllowedMessage(message) {
|
|
received++
|
|
log.Debug("msg received", "msgs_received", received, "total_expected", td.requiredMsgCount, "id", message.id, "serial", message.serial)
|
|
} else {
|
|
err = fmt.Errorf("message %d received by wrong recipient %v", message.serial, message.id)
|
|
}
|
|
} else {
|
|
time.Sleep(32 * time.Millisecond)
|
|
}
|
|
}
|
|
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if td.getMsgCount() < td.requiredMsgCount {
|
|
return ctx.Err()
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (td *testData) isAllowedMessage(n handlerNotification) bool {
|
|
// check if message serial is in expected messages for this recipient
|
|
for _, s := range td.allowedMsgs[n.id] {
|
|
if n.serial == s {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (td *testData) removeAllowedMessage(id enode.ID, index int) {
|
|
last := len(td.allowedMsgs[id]) - 1
|
|
td.allowedMsgs[id][index] = td.allowedMsgs[id][last]
|
|
td.allowedMsgs[id] = td.allowedMsgs[id][:last]
|
|
}
|
|
|
|
func nodeMsgHandler(td *testData, config *adapters.NodeConfig) *handler {
|
|
return &handler{
|
|
f: func(msg []byte, p *p2p.Peer, asymmetric bool, keyid string) error {
|
|
if td.isDone() {
|
|
return nil // terminate if simulation is over
|
|
}
|
|
|
|
td.incrementMsgCount()
|
|
|
|
// using simple serial in message body, makes it easy to keep track of who's getting what
|
|
serial, c := binary.Uvarint(msg)
|
|
if c <= 0 {
|
|
log.Crit(fmt.Sprintf("corrupt message received by %x (uvarint parse returned %d)", config.ID, c))
|
|
}
|
|
|
|
td.pushNotification(handlerNotification{id: config.ID, serial: serial})
|
|
return nil
|
|
},
|
|
caps: &handlerCaps{
|
|
raw: true, // we use raw messages for simplicity
|
|
prox: true,
|
|
},
|
|
}
|
|
}
|
|
|
|
// an adaptation of the same services setup as in pss_test.go
|
|
// replaces pss_test.go when those tests are rewritten to the new swarm/network/simulation package
|
|
func newProxServices(td *testData, allowRaw bool, handlerContextFuncs map[Topic]handlerContextFunc, kademlias map[enode.ID]*network.Kademlia) map[string]simulation.ServiceFunc {
|
|
stateStore := state.NewInmemoryStore()
|
|
kademlia := func(id enode.ID, bzzkey []byte) *network.Kademlia {
|
|
if k, ok := kademlias[id]; ok {
|
|
return k
|
|
}
|
|
params := network.NewKadParams()
|
|
params.MaxBinSize = 3
|
|
params.MinBinSize = 1
|
|
params.MaxRetries = 1000
|
|
params.RetryExponent = 2
|
|
params.RetryInterval = 1000000
|
|
kademlias[id] = network.NewKademlia(bzzkey, params)
|
|
return kademlias[id]
|
|
}
|
|
return map[string]simulation.ServiceFunc{
|
|
"bzz": func(ctx *adapters.ServiceContext, b *sync.Map) (node.Service, func(), error) {
|
|
var err error
|
|
var bzzPrivateKey *ecdsa.PrivateKey
|
|
// normally translation of enode id to swarm address is concealed by the network package
|
|
// however, we need to keep track of it in the test driver as well.
|
|
// if the translation in the network package changes, that can cause these tests to unpredictably fail
|
|
// therefore we keep a local copy of the translation here
|
|
addr := network.NewAddr(ctx.Config.Node())
|
|
bzzPrivateKey, err = simulation.BzzPrivateKeyFromConfig(ctx.Config)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
addr.OAddr = network.PrivateKeyToBzzKey(bzzPrivateKey)
|
|
b.Store(simulation.BucketKeyBzzPrivateKey, bzzPrivateKey)
|
|
hp := network.NewHiveParams()
|
|
hp.Discovery = false
|
|
config := &network.BzzConfig{
|
|
OverlayAddr: addr.Over(),
|
|
UnderlayAddr: addr.Under(),
|
|
HiveParams: hp,
|
|
}
|
|
bzzKey := network.PrivateKeyToBzzKey(bzzPrivateKey)
|
|
pskad := kademlia(ctx.Config.ID, bzzKey)
|
|
b.Store(simulation.BucketKeyKademlia, pskad)
|
|
return network.NewBzz(config, kademlia(ctx.Config.ID, addr.OAddr), stateStore, nil, nil), nil, nil
|
|
},
|
|
"pss": func(ctx *adapters.ServiceContext, b *sync.Map) (node.Service, func(), error) {
|
|
// execadapter does not exec init()
|
|
initTest()
|
|
|
|
// create keys in whisper and set up the pss object
|
|
ctxlocal, cancel := context.WithTimeout(context.Background(), time.Second*3)
|
|
defer cancel()
|
|
keys, err := wapi.NewKeyPair(ctxlocal)
|
|
privkey, err := w.GetPrivateKey(keys)
|
|
pssp := NewPssParams().WithPrivateKey(privkey)
|
|
pssp.AllowRaw = allowRaw
|
|
bzzPrivateKey, err := simulation.BzzPrivateKeyFromConfig(ctx.Config)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
bzzKey := network.PrivateKeyToBzzKey(bzzPrivateKey)
|
|
pskad := kademlia(ctx.Config.ID, bzzKey)
|
|
b.Store(simulation.BucketKeyKademlia, pskad)
|
|
ps, err := NewPss(pskad, pssp)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
// register the handlers we've been passed
|
|
var deregisters []func()
|
|
for tpc, hndlrFunc := range handlerContextFuncs {
|
|
deregisters = append(deregisters, ps.Register(&tpc, hndlrFunc(td, ctx.Config)))
|
|
}
|
|
|
|
// if handshake mode is set, add the controller
|
|
// TODO: This should be hooked to the handshake test file
|
|
if useHandshake {
|
|
SetHandshakeController(ps, NewHandshakeParams())
|
|
}
|
|
|
|
// we expose some api calls for cheating
|
|
ps.addAPI(rpc.API{
|
|
Namespace: "psstest",
|
|
Version: "0.3",
|
|
Service: NewAPITest(ps),
|
|
Public: false,
|
|
})
|
|
|
|
// return Pss and cleanups
|
|
return ps, func() {
|
|
// run the handler deregister functions in reverse order
|
|
for i := len(deregisters); i > 0; i-- {
|
|
deregisters[i-1]()
|
|
}
|
|
}, nil
|
|
},
|
|
}
|
|
}
|