1
0
forked from cerc-io/plugeth
plugeth/les/downloader/downloader_test.go

1623 lines
58 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package downloader
import (
"errors"
"fmt"
"math/big"
"strings"
"sync"
"sync/atomic"
"testing"
"time"
"github.com/ethereum/go-ethereum"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/state/snapshot"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/trie"
)
// Reduce some of the parameters to make the tester faster.
func init() {
fullMaxForkAncestry = 10000
lightMaxForkAncestry = 10000
blockCacheMaxItems = 1024
fsHeaderContCheck = 500 * time.Millisecond
}
// downloadTester is a test simulator for mocking out local block chain.
type downloadTester struct {
downloader *Downloader
genesis *types.Block // Genesis blocks used by the tester and peers
stateDb ethdb.Database // Database used by the tester for syncing from peers
peerDb ethdb.Database // Database of the peers containing all data
peers map[string]*downloadTesterPeer
ownHashes []common.Hash // Hash chain belonging to the tester
ownHeaders map[common.Hash]*types.Header // Headers belonging to the tester
ownBlocks map[common.Hash]*types.Block // Blocks belonging to the tester
ownReceipts map[common.Hash]types.Receipts // Receipts belonging to the tester
ownChainTd map[common.Hash]*big.Int // Total difficulties of the blocks in the local chain
ancientHeaders map[common.Hash]*types.Header // Ancient headers belonging to the tester
ancientBlocks map[common.Hash]*types.Block // Ancient blocks belonging to the tester
ancientReceipts map[common.Hash]types.Receipts // Ancient receipts belonging to the tester
ancientChainTd map[common.Hash]*big.Int // Ancient total difficulties of the blocks in the local chain
lock sync.RWMutex
}
// newTester creates a new downloader test mocker.
func newTester() *downloadTester {
tester := &downloadTester{
genesis: testGenesis,
peerDb: testDB,
peers: make(map[string]*downloadTesterPeer),
ownHashes: []common.Hash{testGenesis.Hash()},
ownHeaders: map[common.Hash]*types.Header{testGenesis.Hash(): testGenesis.Header()},
ownBlocks: map[common.Hash]*types.Block{testGenesis.Hash(): testGenesis},
ownReceipts: map[common.Hash]types.Receipts{testGenesis.Hash(): nil},
ownChainTd: map[common.Hash]*big.Int{testGenesis.Hash(): testGenesis.Difficulty()},
// Initialize ancient store with test genesis block
ancientHeaders: map[common.Hash]*types.Header{testGenesis.Hash(): testGenesis.Header()},
ancientBlocks: map[common.Hash]*types.Block{testGenesis.Hash(): testGenesis},
ancientReceipts: map[common.Hash]types.Receipts{testGenesis.Hash(): nil},
ancientChainTd: map[common.Hash]*big.Int{testGenesis.Hash(): testGenesis.Difficulty()},
}
tester.stateDb = rawdb.NewMemoryDatabase()
tester.stateDb.Put(testGenesis.Root().Bytes(), []byte{0x00})
tester.downloader = New(0, tester.stateDb, trie.NewSyncBloom(1, tester.stateDb), new(event.TypeMux), tester, nil, tester.dropPeer)
return tester
}
// terminate aborts any operations on the embedded downloader and releases all
// held resources.
func (dl *downloadTester) terminate() {
dl.downloader.Terminate()
}
// sync starts synchronizing with a remote peer, blocking until it completes.
func (dl *downloadTester) sync(id string, td *big.Int, mode SyncMode) error {
dl.lock.RLock()
hash := dl.peers[id].chain.headBlock().Hash()
// If no particular TD was requested, load from the peer's blockchain
if td == nil {
td = dl.peers[id].chain.td(hash)
}
dl.lock.RUnlock()
// Synchronise with the chosen peer and ensure proper cleanup afterwards
err := dl.downloader.synchronise(id, hash, td, mode)
select {
case <-dl.downloader.cancelCh:
// Ok, downloader fully cancelled after sync cycle
default:
// Downloader is still accepting packets, can block a peer up
panic("downloader active post sync cycle") // panic will be caught by tester
}
return err
}
// HasHeader checks if a header is present in the testers canonical chain.
func (dl *downloadTester) HasHeader(hash common.Hash, number uint64) bool {
return dl.GetHeaderByHash(hash) != nil
}
// HasBlock checks if a block is present in the testers canonical chain.
func (dl *downloadTester) HasBlock(hash common.Hash, number uint64) bool {
return dl.GetBlockByHash(hash) != nil
}
// HasFastBlock checks if a block is present in the testers canonical chain.
func (dl *downloadTester) HasFastBlock(hash common.Hash, number uint64) bool {
dl.lock.RLock()
defer dl.lock.RUnlock()
if _, ok := dl.ancientReceipts[hash]; ok {
return true
}
_, ok := dl.ownReceipts[hash]
return ok
}
// GetHeader retrieves a header from the testers canonical chain.
func (dl *downloadTester) GetHeaderByHash(hash common.Hash) *types.Header {
dl.lock.RLock()
defer dl.lock.RUnlock()
return dl.getHeaderByHash(hash)
}
// getHeaderByHash returns the header if found either within ancients or own blocks)
// This method assumes that the caller holds at least the read-lock (dl.lock)
func (dl *downloadTester) getHeaderByHash(hash common.Hash) *types.Header {
header := dl.ancientHeaders[hash]
if header != nil {
return header
}
return dl.ownHeaders[hash]
}
// GetBlock retrieves a block from the testers canonical chain.
func (dl *downloadTester) GetBlockByHash(hash common.Hash) *types.Block {
dl.lock.RLock()
defer dl.lock.RUnlock()
block := dl.ancientBlocks[hash]
if block != nil {
return block
}
return dl.ownBlocks[hash]
}
// CurrentHeader retrieves the current head header from the canonical chain.
func (dl *downloadTester) CurrentHeader() *types.Header {
dl.lock.RLock()
defer dl.lock.RUnlock()
for i := len(dl.ownHashes) - 1; i >= 0; i-- {
if header := dl.ancientHeaders[dl.ownHashes[i]]; header != nil {
return header
}
if header := dl.ownHeaders[dl.ownHashes[i]]; header != nil {
return header
}
}
return dl.genesis.Header()
}
// CurrentBlock retrieves the current head block from the canonical chain.
func (dl *downloadTester) CurrentBlock() *types.Block {
dl.lock.RLock()
defer dl.lock.RUnlock()
for i := len(dl.ownHashes) - 1; i >= 0; i-- {
if block := dl.ancientBlocks[dl.ownHashes[i]]; block != nil {
if _, err := dl.stateDb.Get(block.Root().Bytes()); err == nil {
return block
}
return block
}
if block := dl.ownBlocks[dl.ownHashes[i]]; block != nil {
if _, err := dl.stateDb.Get(block.Root().Bytes()); err == nil {
return block
}
}
}
return dl.genesis
}
// CurrentFastBlock retrieves the current head fast-sync block from the canonical chain.
func (dl *downloadTester) CurrentFastBlock() *types.Block {
dl.lock.RLock()
defer dl.lock.RUnlock()
for i := len(dl.ownHashes) - 1; i >= 0; i-- {
if block := dl.ancientBlocks[dl.ownHashes[i]]; block != nil {
return block
}
if block := dl.ownBlocks[dl.ownHashes[i]]; block != nil {
return block
}
}
return dl.genesis
}
// FastSyncCommitHead manually sets the head block to a given hash.
func (dl *downloadTester) FastSyncCommitHead(hash common.Hash) error {
// For now only check that the state trie is correct
if block := dl.GetBlockByHash(hash); block != nil {
_, err := trie.NewSecure(block.Root(), trie.NewDatabase(dl.stateDb))
return err
}
return fmt.Errorf("non existent block: %x", hash[:4])
}
// GetTd retrieves the block's total difficulty from the canonical chain.
func (dl *downloadTester) GetTd(hash common.Hash, number uint64) *big.Int {
dl.lock.RLock()
defer dl.lock.RUnlock()
return dl.getTd(hash)
}
// getTd retrieves the block's total difficulty if found either within
// ancients or own blocks).
// This method assumes that the caller holds at least the read-lock (dl.lock)
func (dl *downloadTester) getTd(hash common.Hash) *big.Int {
if td := dl.ancientChainTd[hash]; td != nil {
return td
}
return dl.ownChainTd[hash]
}
// InsertHeaderChain injects a new batch of headers into the simulated chain.
func (dl *downloadTester) InsertHeaderChain(headers []*types.Header, checkFreq int) (i int, err error) {
dl.lock.Lock()
defer dl.lock.Unlock()
// Do a quick check, as the blockchain.InsertHeaderChain doesn't insert anything in case of errors
if dl.getHeaderByHash(headers[0].ParentHash) == nil {
return 0, fmt.Errorf("InsertHeaderChain: unknown parent at first position, parent of number %d", headers[0].Number)
}
var hashes []common.Hash
for i := 1; i < len(headers); i++ {
hash := headers[i-1].Hash()
if headers[i].ParentHash != headers[i-1].Hash() {
return i, fmt.Errorf("non-contiguous import at position %d", i)
}
hashes = append(hashes, hash)
}
hashes = append(hashes, headers[len(headers)-1].Hash())
// Do a full insert if pre-checks passed
for i, header := range headers {
hash := hashes[i]
if dl.getHeaderByHash(hash) != nil {
continue
}
if dl.getHeaderByHash(header.ParentHash) == nil {
// This _should_ be impossible, due to precheck and induction
return i, fmt.Errorf("InsertHeaderChain: unknown parent at position %d", i)
}
dl.ownHashes = append(dl.ownHashes, hash)
dl.ownHeaders[hash] = header
td := dl.getTd(header.ParentHash)
dl.ownChainTd[hash] = new(big.Int).Add(td, header.Difficulty)
}
return len(headers), nil
}
// InsertChain injects a new batch of blocks into the simulated chain.
func (dl *downloadTester) InsertChain(blocks types.Blocks) (i int, err error) {
dl.lock.Lock()
defer dl.lock.Unlock()
for i, block := range blocks {
if parent, ok := dl.ownBlocks[block.ParentHash()]; !ok {
return i, fmt.Errorf("InsertChain: unknown parent at position %d / %d", i, len(blocks))
} else if _, err := dl.stateDb.Get(parent.Root().Bytes()); err != nil {
return i, fmt.Errorf("InsertChain: unknown parent state %x: %v", parent.Root(), err)
}
if hdr := dl.getHeaderByHash(block.Hash()); hdr == nil {
dl.ownHashes = append(dl.ownHashes, block.Hash())
dl.ownHeaders[block.Hash()] = block.Header()
}
dl.ownBlocks[block.Hash()] = block
dl.ownReceipts[block.Hash()] = make(types.Receipts, 0)
dl.stateDb.Put(block.Root().Bytes(), []byte{0x00})
td := dl.getTd(block.ParentHash())
dl.ownChainTd[block.Hash()] = new(big.Int).Add(td, block.Difficulty())
}
return len(blocks), nil
}
// InsertReceiptChain injects a new batch of receipts into the simulated chain.
func (dl *downloadTester) InsertReceiptChain(blocks types.Blocks, receipts []types.Receipts, ancientLimit uint64) (i int, err error) {
dl.lock.Lock()
defer dl.lock.Unlock()
for i := 0; i < len(blocks) && i < len(receipts); i++ {
if _, ok := dl.ownHeaders[blocks[i].Hash()]; !ok {
return i, errors.New("unknown owner")
}
if _, ok := dl.ancientBlocks[blocks[i].ParentHash()]; !ok {
if _, ok := dl.ownBlocks[blocks[i].ParentHash()]; !ok {
return i, errors.New("InsertReceiptChain: unknown parent")
}
}
if blocks[i].NumberU64() <= ancientLimit {
dl.ancientBlocks[blocks[i].Hash()] = blocks[i]
dl.ancientReceipts[blocks[i].Hash()] = receipts[i]
// Migrate from active db to ancient db
dl.ancientHeaders[blocks[i].Hash()] = blocks[i].Header()
dl.ancientChainTd[blocks[i].Hash()] = new(big.Int).Add(dl.ancientChainTd[blocks[i].ParentHash()], blocks[i].Difficulty())
delete(dl.ownHeaders, blocks[i].Hash())
delete(dl.ownChainTd, blocks[i].Hash())
} else {
dl.ownBlocks[blocks[i].Hash()] = blocks[i]
dl.ownReceipts[blocks[i].Hash()] = receipts[i]
}
}
return len(blocks), nil
}
// SetHead rewinds the local chain to a new head.
func (dl *downloadTester) SetHead(head uint64) error {
dl.lock.Lock()
defer dl.lock.Unlock()
// Find the hash of the head to reset to
var hash common.Hash
for h, header := range dl.ownHeaders {
if header.Number.Uint64() == head {
hash = h
}
}
for h, header := range dl.ancientHeaders {
if header.Number.Uint64() == head {
hash = h
}
}
if hash == (common.Hash{}) {
return fmt.Errorf("unknown head to set: %d", head)
}
// Find the offset in the header chain
var offset int
for o, h := range dl.ownHashes {
if h == hash {
offset = o
break
}
}
// Remove all the hashes and associated data afterwards
for i := offset + 1; i < len(dl.ownHashes); i++ {
delete(dl.ownChainTd, dl.ownHashes[i])
delete(dl.ownHeaders, dl.ownHashes[i])
delete(dl.ownReceipts, dl.ownHashes[i])
delete(dl.ownBlocks, dl.ownHashes[i])
delete(dl.ancientChainTd, dl.ownHashes[i])
delete(dl.ancientHeaders, dl.ownHashes[i])
delete(dl.ancientReceipts, dl.ownHashes[i])
delete(dl.ancientBlocks, dl.ownHashes[i])
}
dl.ownHashes = dl.ownHashes[:offset+1]
return nil
}
// Rollback removes some recently added elements from the chain.
func (dl *downloadTester) Rollback(hashes []common.Hash) {
}
// newPeer registers a new block download source into the downloader.
func (dl *downloadTester) newPeer(id string, version uint, chain *testChain) error {
dl.lock.Lock()
defer dl.lock.Unlock()
peer := &downloadTesterPeer{dl: dl, id: id, chain: chain}
dl.peers[id] = peer
return dl.downloader.RegisterPeer(id, version, peer)
}
// dropPeer simulates a hard peer removal from the connection pool.
func (dl *downloadTester) dropPeer(id string) {
dl.lock.Lock()
defer dl.lock.Unlock()
delete(dl.peers, id)
dl.downloader.UnregisterPeer(id)
}
// Snapshots implements the BlockChain interface for the downloader, but is a noop.
func (dl *downloadTester) Snapshots() *snapshot.Tree {
return nil
}
type downloadTesterPeer struct {
dl *downloadTester
id string
chain *testChain
missingStates map[common.Hash]bool // State entries that fast sync should not return
}
// Head constructs a function to retrieve a peer's current head hash
// and total difficulty.
func (dlp *downloadTesterPeer) Head() (common.Hash, *big.Int) {
b := dlp.chain.headBlock()
return b.Hash(), dlp.chain.td(b.Hash())
}
// RequestHeadersByHash constructs a GetBlockHeaders function based on a hashed
// origin; associated with a particular peer in the download tester. The returned
// function can be used to retrieve batches of headers from the particular peer.
func (dlp *downloadTesterPeer) RequestHeadersByHash(origin common.Hash, amount int, skip int, reverse bool) error {
result := dlp.chain.headersByHash(origin, amount, skip, reverse)
go dlp.dl.downloader.DeliverHeaders(dlp.id, result)
return nil
}
// RequestHeadersByNumber constructs a GetBlockHeaders function based on a numbered
// origin; associated with a particular peer in the download tester. The returned
// function can be used to retrieve batches of headers from the particular peer.
func (dlp *downloadTesterPeer) RequestHeadersByNumber(origin uint64, amount int, skip int, reverse bool) error {
result := dlp.chain.headersByNumber(origin, amount, skip, reverse)
go dlp.dl.downloader.DeliverHeaders(dlp.id, result)
return nil
}
// RequestBodies constructs a getBlockBodies method associated with a particular
// peer in the download tester. The returned function can be used to retrieve
// batches of block bodies from the particularly requested peer.
func (dlp *downloadTesterPeer) RequestBodies(hashes []common.Hash) error {
txs, uncles := dlp.chain.bodies(hashes)
go dlp.dl.downloader.DeliverBodies(dlp.id, txs, uncles)
return nil
}
// RequestReceipts constructs a getReceipts method associated with a particular
// peer in the download tester. The returned function can be used to retrieve
// batches of block receipts from the particularly requested peer.
func (dlp *downloadTesterPeer) RequestReceipts(hashes []common.Hash) error {
receipts := dlp.chain.receipts(hashes)
go dlp.dl.downloader.DeliverReceipts(dlp.id, receipts)
return nil
}
// RequestNodeData constructs a getNodeData method associated with a particular
// peer in the download tester. The returned function can be used to retrieve
// batches of node state data from the particularly requested peer.
func (dlp *downloadTesterPeer) RequestNodeData(hashes []common.Hash) error {
dlp.dl.lock.RLock()
defer dlp.dl.lock.RUnlock()
results := make([][]byte, 0, len(hashes))
for _, hash := range hashes {
if data, err := dlp.dl.peerDb.Get(hash.Bytes()); err == nil {
if !dlp.missingStates[hash] {
results = append(results, data)
}
}
}
go dlp.dl.downloader.DeliverNodeData(dlp.id, results)
return nil
}
// assertOwnChain checks if the local chain contains the correct number of items
// of the various chain components.
func assertOwnChain(t *testing.T, tester *downloadTester, length int) {
// Mark this method as a helper to report errors at callsite, not in here
t.Helper()
assertOwnForkedChain(t, tester, 1, []int{length})
}
// assertOwnForkedChain checks if the local forked chain contains the correct
// number of items of the various chain components.
func assertOwnForkedChain(t *testing.T, tester *downloadTester, common int, lengths []int) {
// Mark this method as a helper to report errors at callsite, not in here
t.Helper()
// Initialize the counters for the first fork
headers, blocks, receipts := lengths[0], lengths[0], lengths[0]
// Update the counters for each subsequent fork
for _, length := range lengths[1:] {
headers += length - common
blocks += length - common
receipts += length - common
}
if tester.downloader.getMode() == LightSync {
blocks, receipts = 1, 1
}
if hs := len(tester.ownHeaders) + len(tester.ancientHeaders) - 1; hs != headers {
t.Fatalf("synchronised headers mismatch: have %v, want %v", hs, headers)
}
if bs := len(tester.ownBlocks) + len(tester.ancientBlocks) - 1; bs != blocks {
t.Fatalf("synchronised blocks mismatch: have %v, want %v", bs, blocks)
}
if rs := len(tester.ownReceipts) + len(tester.ancientReceipts) - 1; rs != receipts {
t.Fatalf("synchronised receipts mismatch: have %v, want %v", rs, receipts)
}
}
func TestCanonicalSynchronisation66Full(t *testing.T) { testCanonSync(t, eth.ETH66, FullSync) }
func TestCanonicalSynchronisation66Fast(t *testing.T) { testCanonSync(t, eth.ETH66, FastSync) }
func TestCanonicalSynchronisation66Light(t *testing.T) { testCanonSync(t, eth.ETH66, LightSync) }
func testCanonSync(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
defer tester.terminate()
// Create a small enough block chain to download
chain := testChainBase.shorten(blockCacheMaxItems - 15)
tester.newPeer("peer", protocol, chain)
// Synchronise with the peer and make sure all relevant data was retrieved
if err := tester.sync("peer", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, chain.len())
}
// Tests that if a large batch of blocks are being downloaded, it is throttled
// until the cached blocks are retrieved.
func TestThrottling66Full(t *testing.T) { testThrottling(t, eth.ETH66, FullSync) }
func TestThrottling66Fast(t *testing.T) { testThrottling(t, eth.ETH66, FastSync) }
func testThrottling(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
// Create a long block chain to download and the tester
targetBlocks := testChainBase.len() - 1
tester.newPeer("peer", protocol, testChainBase)
// Wrap the importer to allow stepping
blocked, proceed := uint32(0), make(chan struct{})
tester.downloader.chainInsertHook = func(results []*fetchResult) {
atomic.StoreUint32(&blocked, uint32(len(results)))
<-proceed
}
// Start a synchronisation concurrently
errc := make(chan error, 1)
go func() {
errc <- tester.sync("peer", nil, mode)
}()
// Iteratively take some blocks, always checking the retrieval count
for {
// Check the retrieval count synchronously (! reason for this ugly block)
tester.lock.RLock()
retrieved := len(tester.ownBlocks)
tester.lock.RUnlock()
if retrieved >= targetBlocks+1 {
break
}
// Wait a bit for sync to throttle itself
var cached, frozen int
for start := time.Now(); time.Since(start) < 3*time.Second; {
time.Sleep(25 * time.Millisecond)
tester.lock.Lock()
tester.downloader.queue.lock.Lock()
tester.downloader.queue.resultCache.lock.Lock()
{
cached = tester.downloader.queue.resultCache.countCompleted()
frozen = int(atomic.LoadUint32(&blocked))
retrieved = len(tester.ownBlocks)
}
tester.downloader.queue.resultCache.lock.Unlock()
tester.downloader.queue.lock.Unlock()
tester.lock.Unlock()
if cached == blockCacheMaxItems ||
cached == blockCacheMaxItems-reorgProtHeaderDelay ||
retrieved+cached+frozen == targetBlocks+1 ||
retrieved+cached+frozen == targetBlocks+1-reorgProtHeaderDelay {
break
}
}
// Make sure we filled up the cache, then exhaust it
time.Sleep(25 * time.Millisecond) // give it a chance to screw up
tester.lock.RLock()
retrieved = len(tester.ownBlocks)
tester.lock.RUnlock()
if cached != blockCacheMaxItems && cached != blockCacheMaxItems-reorgProtHeaderDelay && retrieved+cached+frozen != targetBlocks+1 && retrieved+cached+frozen != targetBlocks+1-reorgProtHeaderDelay {
t.Fatalf("block count mismatch: have %v, want %v (owned %v, blocked %v, target %v)", cached, blockCacheMaxItems, retrieved, frozen, targetBlocks+1)
}
// Permit the blocked blocks to import
if atomic.LoadUint32(&blocked) > 0 {
atomic.StoreUint32(&blocked, uint32(0))
proceed <- struct{}{}
}
}
// Check that we haven't pulled more blocks than available
assertOwnChain(t, tester, targetBlocks+1)
if err := <-errc; err != nil {
t.Fatalf("block synchronization failed: %v", err)
}
tester.terminate()
}
// Tests that simple synchronization against a forked chain works correctly. In
// this test common ancestor lookup should *not* be short circuited, and a full
// binary search should be executed.
func TestForkedSync66Full(t *testing.T) { testForkedSync(t, eth.ETH66, FullSync) }
func TestForkedSync66Fast(t *testing.T) { testForkedSync(t, eth.ETH66, FastSync) }
func TestForkedSync66Light(t *testing.T) { testForkedSync(t, eth.ETH66, LightSync) }
func testForkedSync(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
defer tester.terminate()
chainA := testChainForkLightA.shorten(testChainBase.len() + 80)
chainB := testChainForkLightB.shorten(testChainBase.len() + 80)
tester.newPeer("fork A", protocol, chainA)
tester.newPeer("fork B", protocol, chainB)
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("fork A", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, chainA.len())
// Synchronise with the second peer and make sure that fork is pulled too
if err := tester.sync("fork B", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnForkedChain(t, tester, testChainBase.len(), []int{chainA.len(), chainB.len()})
}
// Tests that synchronising against a much shorter but much heavyer fork works
// corrently and is not dropped.
func TestHeavyForkedSync66Full(t *testing.T) { testHeavyForkedSync(t, eth.ETH66, FullSync) }
func TestHeavyForkedSync66Fast(t *testing.T) { testHeavyForkedSync(t, eth.ETH66, FastSync) }
func TestHeavyForkedSync66Light(t *testing.T) { testHeavyForkedSync(t, eth.ETH66, LightSync) }
func testHeavyForkedSync(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
defer tester.terminate()
chainA := testChainForkLightA.shorten(testChainBase.len() + 80)
chainB := testChainForkHeavy.shorten(testChainBase.len() + 80)
tester.newPeer("light", protocol, chainA)
tester.newPeer("heavy", protocol, chainB)
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("light", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, chainA.len())
// Synchronise with the second peer and make sure that fork is pulled too
if err := tester.sync("heavy", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnForkedChain(t, tester, testChainBase.len(), []int{chainA.len(), chainB.len()})
}
// Tests that chain forks are contained within a certain interval of the current
// chain head, ensuring that malicious peers cannot waste resources by feeding
// long dead chains.
func TestBoundedForkedSync66Full(t *testing.T) { testBoundedForkedSync(t, eth.ETH66, FullSync) }
func TestBoundedForkedSync66Fast(t *testing.T) { testBoundedForkedSync(t, eth.ETH66, FastSync) }
func TestBoundedForkedSync66Light(t *testing.T) { testBoundedForkedSync(t, eth.ETH66, LightSync) }
func testBoundedForkedSync(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
defer tester.terminate()
chainA := testChainForkLightA
chainB := testChainForkLightB
tester.newPeer("original", protocol, chainA)
tester.newPeer("rewriter", protocol, chainB)
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("original", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, chainA.len())
// Synchronise with the second peer and ensure that the fork is rejected to being too old
if err := tester.sync("rewriter", nil, mode); err != errInvalidAncestor {
t.Fatalf("sync failure mismatch: have %v, want %v", err, errInvalidAncestor)
}
}
// Tests that chain forks are contained within a certain interval of the current
// chain head for short but heavy forks too. These are a bit special because they
// take different ancestor lookup paths.
func TestBoundedHeavyForkedSync66Full(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH66, FullSync)
}
func TestBoundedHeavyForkedSync66Fast(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH66, FastSync)
}
func TestBoundedHeavyForkedSync66Light(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH66, LightSync)
}
func testBoundedHeavyForkedSync(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
// Create a long enough forked chain
chainA := testChainForkLightA
chainB := testChainForkHeavy
tester.newPeer("original", protocol, chainA)
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("original", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, chainA.len())
tester.newPeer("heavy-rewriter", protocol, chainB)
// Synchronise with the second peer and ensure that the fork is rejected to being too old
if err := tester.sync("heavy-rewriter", nil, mode); err != errInvalidAncestor {
t.Fatalf("sync failure mismatch: have %v, want %v", err, errInvalidAncestor)
}
tester.terminate()
}
// Tests that an inactive downloader will not accept incoming block headers,
// bodies and receipts.
func TestInactiveDownloader63(t *testing.T) {
t.Parallel()
tester := newTester()
defer tester.terminate()
// Check that neither block headers nor bodies are accepted
if err := tester.downloader.DeliverHeaders("bad peer", []*types.Header{}); err != errNoSyncActive {
t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive)
}
if err := tester.downloader.DeliverBodies("bad peer", [][]*types.Transaction{}, [][]*types.Header{}); err != errNoSyncActive {
t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive)
}
if err := tester.downloader.DeliverReceipts("bad peer", [][]*types.Receipt{}); err != errNoSyncActive {
t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive)
}
}
// Tests that a canceled download wipes all previously accumulated state.
func TestCancel66Full(t *testing.T) { testCancel(t, eth.ETH66, FullSync) }
func TestCancel66Fast(t *testing.T) { testCancel(t, eth.ETH66, FastSync) }
func TestCancel66Light(t *testing.T) { testCancel(t, eth.ETH66, LightSync) }
func testCancel(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
defer tester.terminate()
chain := testChainBase.shorten(MaxHeaderFetch)
tester.newPeer("peer", protocol, chain)
// Make sure canceling works with a pristine downloader
tester.downloader.Cancel()
if !tester.downloader.queue.Idle() {
t.Errorf("download queue not idle")
}
// Synchronise with the peer, but cancel afterwards
if err := tester.sync("peer", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
tester.downloader.Cancel()
if !tester.downloader.queue.Idle() {
t.Errorf("download queue not idle")
}
}
// Tests that synchronisation from multiple peers works as intended (multi thread sanity test).
func TestMultiSynchronisation66Full(t *testing.T) { testMultiSynchronisation(t, eth.ETH66, FullSync) }
func TestMultiSynchronisation66Fast(t *testing.T) { testMultiSynchronisation(t, eth.ETH66, FastSync) }
func TestMultiSynchronisation66Light(t *testing.T) { testMultiSynchronisation(t, eth.ETH66, LightSync) }
func testMultiSynchronisation(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
defer tester.terminate()
// Create various peers with various parts of the chain
targetPeers := 8
chain := testChainBase.shorten(targetPeers * 100)
for i := 0; i < targetPeers; i++ {
id := fmt.Sprintf("peer #%d", i)
tester.newPeer(id, protocol, chain.shorten(chain.len()/(i+1)))
}
if err := tester.sync("peer #0", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, chain.len())
}
// Tests that synchronisations behave well in multi-version protocol environments
// and not wreak havoc on other nodes in the network.
func TestMultiProtoSynchronisation66Full(t *testing.T) { testMultiProtoSync(t, eth.ETH66, FullSync) }
func TestMultiProtoSynchronisation66Fast(t *testing.T) { testMultiProtoSync(t, eth.ETH66, FastSync) }
func TestMultiProtoSynchronisation66Light(t *testing.T) { testMultiProtoSync(t, eth.ETH66, LightSync) }
func testMultiProtoSync(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
defer tester.terminate()
// Create a small enough block chain to download
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Create peers of every type
tester.newPeer("peer 66", eth.ETH66, chain)
//tester.newPeer("peer 65", eth.ETH67, chain)
// Synchronise with the requested peer and make sure all blocks were retrieved
if err := tester.sync(fmt.Sprintf("peer %d", protocol), nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, chain.len())
// Check that no peers have been dropped off
for _, version := range []int{66} {
peer := fmt.Sprintf("peer %d", version)
if _, ok := tester.peers[peer]; !ok {
t.Errorf("%s dropped", peer)
}
}
}
// Tests that if a block is empty (e.g. header only), no body request should be
// made, and instead the header should be assembled into a whole block in itself.
func TestEmptyShortCircuit66Full(t *testing.T) { testEmptyShortCircuit(t, eth.ETH66, FullSync) }
func TestEmptyShortCircuit66Fast(t *testing.T) { testEmptyShortCircuit(t, eth.ETH66, FastSync) }
func TestEmptyShortCircuit66Light(t *testing.T) { testEmptyShortCircuit(t, eth.ETH66, LightSync) }
func testEmptyShortCircuit(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
defer tester.terminate()
// Create a block chain to download
chain := testChainBase
tester.newPeer("peer", protocol, chain)
// Instrument the downloader to signal body requests
bodiesHave, receiptsHave := int32(0), int32(0)
tester.downloader.bodyFetchHook = func(headers []*types.Header) {
atomic.AddInt32(&bodiesHave, int32(len(headers)))
}
tester.downloader.receiptFetchHook = func(headers []*types.Header) {
atomic.AddInt32(&receiptsHave, int32(len(headers)))
}
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("peer", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, chain.len())
// Validate the number of block bodies that should have been requested
bodiesNeeded, receiptsNeeded := 0, 0
for _, block := range chain.blockm {
if mode != LightSync && block != tester.genesis && (len(block.Transactions()) > 0 || len(block.Uncles()) > 0) {
bodiesNeeded++
}
}
for _, receipt := range chain.receiptm {
if mode == FastSync && len(receipt) > 0 {
receiptsNeeded++
}
}
if int(bodiesHave) != bodiesNeeded {
t.Errorf("body retrieval count mismatch: have %v, want %v", bodiesHave, bodiesNeeded)
}
if int(receiptsHave) != receiptsNeeded {
t.Errorf("receipt retrieval count mismatch: have %v, want %v", receiptsHave, receiptsNeeded)
}
}
// Tests that headers are enqueued continuously, preventing malicious nodes from
// stalling the downloader by feeding gapped header chains.
func TestMissingHeaderAttack66Full(t *testing.T) { testMissingHeaderAttack(t, eth.ETH66, FullSync) }
func TestMissingHeaderAttack66Fast(t *testing.T) { testMissingHeaderAttack(t, eth.ETH66, FastSync) }
func TestMissingHeaderAttack66Light(t *testing.T) { testMissingHeaderAttack(t, eth.ETH66, LightSync) }
func testMissingHeaderAttack(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
brokenChain := chain.shorten(chain.len())
delete(brokenChain.headerm, brokenChain.chain[brokenChain.len()/2])
tester.newPeer("attack", protocol, brokenChain)
if err := tester.sync("attack", nil, mode); err == nil {
t.Fatalf("succeeded attacker synchronisation")
}
// Synchronise with the valid peer and make sure sync succeeds
tester.newPeer("valid", protocol, chain)
if err := tester.sync("valid", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, chain.len())
}
// Tests that if requested headers are shifted (i.e. first is missing), the queue
// detects the invalid numbering.
func TestShiftedHeaderAttack66Full(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH66, FullSync) }
func TestShiftedHeaderAttack66Fast(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH66, FastSync) }
func TestShiftedHeaderAttack66Light(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH66, LightSync) }
func testShiftedHeaderAttack(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Attempt a full sync with an attacker feeding shifted headers
brokenChain := chain.shorten(chain.len())
delete(brokenChain.headerm, brokenChain.chain[1])
delete(brokenChain.blockm, brokenChain.chain[1])
delete(brokenChain.receiptm, brokenChain.chain[1])
tester.newPeer("attack", protocol, brokenChain)
if err := tester.sync("attack", nil, mode); err == nil {
t.Fatalf("succeeded attacker synchronisation")
}
// Synchronise with the valid peer and make sure sync succeeds
tester.newPeer("valid", protocol, chain)
if err := tester.sync("valid", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, chain.len())
}
// Tests that upon detecting an invalid header, the recent ones are rolled back
// for various failure scenarios. Afterwards a full sync is attempted to make
// sure no state was corrupted.
func TestInvalidHeaderRollback66Fast(t *testing.T) { testInvalidHeaderRollback(t, eth.ETH66, FastSync) }
func testInvalidHeaderRollback(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
// Create a small enough block chain to download
targetBlocks := 3*fsHeaderSafetyNet + 256 + fsMinFullBlocks
chain := testChainBase.shorten(targetBlocks)
// Attempt to sync with an attacker that feeds junk during the fast sync phase.
// This should result in the last fsHeaderSafetyNet headers being rolled back.
missing := fsHeaderSafetyNet + MaxHeaderFetch + 1
fastAttackChain := chain.shorten(chain.len())
delete(fastAttackChain.headerm, fastAttackChain.chain[missing])
tester.newPeer("fast-attack", protocol, fastAttackChain)
if err := tester.sync("fast-attack", nil, mode); err == nil {
t.Fatalf("succeeded fast attacker synchronisation")
}
if head := tester.CurrentHeader().Number.Int64(); int(head) > MaxHeaderFetch {
t.Errorf("rollback head mismatch: have %v, want at most %v", head, MaxHeaderFetch)
}
// Attempt to sync with an attacker that feeds junk during the block import phase.
// This should result in both the last fsHeaderSafetyNet number of headers being
// rolled back, and also the pivot point being reverted to a non-block status.
missing = 3*fsHeaderSafetyNet + MaxHeaderFetch + 1
blockAttackChain := chain.shorten(chain.len())
delete(fastAttackChain.headerm, fastAttackChain.chain[missing]) // Make sure the fast-attacker doesn't fill in
delete(blockAttackChain.headerm, blockAttackChain.chain[missing])
tester.newPeer("block-attack", protocol, blockAttackChain)
if err := tester.sync("block-attack", nil, mode); err == nil {
t.Fatalf("succeeded block attacker synchronisation")
}
if head := tester.CurrentHeader().Number.Int64(); int(head) > 2*fsHeaderSafetyNet+MaxHeaderFetch {
t.Errorf("rollback head mismatch: have %v, want at most %v", head, 2*fsHeaderSafetyNet+MaxHeaderFetch)
}
if mode == FastSync {
if head := tester.CurrentBlock().NumberU64(); head != 0 {
t.Errorf("fast sync pivot block #%d not rolled back", head)
}
}
// Attempt to sync with an attacker that withholds promised blocks after the
// fast sync pivot point. This could be a trial to leave the node with a bad
// but already imported pivot block.
withholdAttackChain := chain.shorten(chain.len())
tester.newPeer("withhold-attack", protocol, withholdAttackChain)
tester.downloader.syncInitHook = func(uint64, uint64) {
for i := missing; i < withholdAttackChain.len(); i++ {
delete(withholdAttackChain.headerm, withholdAttackChain.chain[i])
}
tester.downloader.syncInitHook = nil
}
if err := tester.sync("withhold-attack", nil, mode); err == nil {
t.Fatalf("succeeded withholding attacker synchronisation")
}
if head := tester.CurrentHeader().Number.Int64(); int(head) > 2*fsHeaderSafetyNet+MaxHeaderFetch {
t.Errorf("rollback head mismatch: have %v, want at most %v", head, 2*fsHeaderSafetyNet+MaxHeaderFetch)
}
if mode == FastSync {
if head := tester.CurrentBlock().NumberU64(); head != 0 {
t.Errorf("fast sync pivot block #%d not rolled back", head)
}
}
// synchronise with the valid peer and make sure sync succeeds. Since the last rollback
// should also disable fast syncing for this process, verify that we did a fresh full
// sync. Note, we can't assert anything about the receipts since we won't purge the
// database of them, hence we can't use assertOwnChain.
tester.newPeer("valid", protocol, chain)
if err := tester.sync("valid", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
if hs := len(tester.ownHeaders); hs != chain.len() {
t.Fatalf("synchronised headers mismatch: have %v, want %v", hs, chain.len())
}
if mode != LightSync {
if bs := len(tester.ownBlocks); bs != chain.len() {
t.Fatalf("synchronised blocks mismatch: have %v, want %v", bs, chain.len())
}
}
tester.terminate()
}
// Tests that a peer advertising a high TD doesn't get to stall the downloader
// afterwards by not sending any useful hashes.
func TestHighTDStarvationAttack66Full(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH66, FullSync)
}
func TestHighTDStarvationAttack66Fast(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH66, FastSync)
}
func TestHighTDStarvationAttack66Light(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH66, LightSync)
}
func testHighTDStarvationAttack(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
chain := testChainBase.shorten(1)
tester.newPeer("attack", protocol, chain)
if err := tester.sync("attack", big.NewInt(1000000), mode); err != errStallingPeer {
t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errStallingPeer)
}
tester.terminate()
}
// Tests that misbehaving peers are disconnected, whilst behaving ones are not.
func TestBlockHeaderAttackerDropping66(t *testing.T) { testBlockHeaderAttackerDropping(t, eth.ETH66) }
func testBlockHeaderAttackerDropping(t *testing.T, protocol uint) {
t.Parallel()
// Define the disconnection requirement for individual hash fetch errors
tests := []struct {
result error
drop bool
}{
{nil, false}, // Sync succeeded, all is well
{errBusy, false}, // Sync is already in progress, no problem
{errUnknownPeer, false}, // Peer is unknown, was already dropped, don't double drop
{errBadPeer, true}, // Peer was deemed bad for some reason, drop it
{errStallingPeer, true}, // Peer was detected to be stalling, drop it
{errUnsyncedPeer, true}, // Peer was detected to be unsynced, drop it
{errNoPeers, false}, // No peers to download from, soft race, no issue
{errTimeout, true}, // No hashes received in due time, drop the peer
{errEmptyHeaderSet, true}, // No headers were returned as a response, drop as it's a dead end
{errPeersUnavailable, true}, // Nobody had the advertised blocks, drop the advertiser
{errInvalidAncestor, true}, // Agreed upon ancestor is not acceptable, drop the chain rewriter
{errInvalidChain, true}, // Hash chain was detected as invalid, definitely drop
{errInvalidBody, false}, // A bad peer was detected, but not the sync origin
{errInvalidReceipt, false}, // A bad peer was detected, but not the sync origin
{errCancelContentProcessing, false}, // Synchronisation was canceled, origin may be innocent, don't drop
}
// Run the tests and check disconnection status
tester := newTester()
defer tester.terminate()
chain := testChainBase.shorten(1)
for i, tt := range tests {
// Register a new peer and ensure its presence
id := fmt.Sprintf("test %d", i)
if err := tester.newPeer(id, protocol, chain); err != nil {
t.Fatalf("test %d: failed to register new peer: %v", i, err)
}
if _, ok := tester.peers[id]; !ok {
t.Fatalf("test %d: registered peer not found", i)
}
// Simulate a synchronisation and check the required result
tester.downloader.synchroniseMock = func(string, common.Hash) error { return tt.result }
tester.downloader.Synchronise(id, tester.genesis.Hash(), big.NewInt(1000), FullSync)
if _, ok := tester.peers[id]; !ok != tt.drop {
t.Errorf("test %d: peer drop mismatch for %v: have %v, want %v", i, tt.result, !ok, tt.drop)
}
}
}
// Tests that synchronisation progress (origin block number, current block number
// and highest block number) is tracked and updated correctly.
func TestSyncProgress66Full(t *testing.T) { testSyncProgress(t, eth.ETH66, FullSync) }
func TestSyncProgress66Fast(t *testing.T) { testSyncProgress(t, eth.ETH66, FastSync) }
func TestSyncProgress66Light(t *testing.T) { testSyncProgress(t, eth.ETH66, LightSync) }
func testSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Synchronise half the blocks and check initial progress
tester.newPeer("peer-half", protocol, chain.shorten(chain.len()/2))
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("peer-half", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(chain.len()/2 - 1),
})
progress <- struct{}{}
pending.Wait()
// Synchronise all the blocks and check continuation progress
tester.newPeer("peer-full", protocol, chain)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("peer-full", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "completing", ethereum.SyncProgress{
StartingBlock: uint64(chain.len()/2 - 1),
CurrentBlock: uint64(chain.len()/2 - 1),
HighestBlock: uint64(chain.len() - 1),
})
// Check final progress after successful sync
progress <- struct{}{}
pending.Wait()
checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{
StartingBlock: uint64(chain.len()/2 - 1),
CurrentBlock: uint64(chain.len() - 1),
HighestBlock: uint64(chain.len() - 1),
})
}
func checkProgress(t *testing.T, d *Downloader, stage string, want ethereum.SyncProgress) {
// Mark this method as a helper to report errors at callsite, not in here
t.Helper()
p := d.Progress()
p.KnownStates, p.PulledStates = 0, 0
want.KnownStates, want.PulledStates = 0, 0
if p != want {
t.Fatalf("%s progress mismatch:\nhave %+v\nwant %+v", stage, p, want)
}
}
// Tests that synchronisation progress (origin block number and highest block
// number) is tracked and updated correctly in case of a fork (or manual head
// revertal).
func TestForkedSyncProgress66Full(t *testing.T) { testForkedSyncProgress(t, eth.ETH66, FullSync) }
func TestForkedSyncProgress66Fast(t *testing.T) { testForkedSyncProgress(t, eth.ETH66, FastSync) }
func TestForkedSyncProgress66Light(t *testing.T) { testForkedSyncProgress(t, eth.ETH66, LightSync) }
func testForkedSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
defer tester.terminate()
chainA := testChainForkLightA.shorten(testChainBase.len() + MaxHeaderFetch)
chainB := testChainForkLightB.shorten(testChainBase.len() + MaxHeaderFetch)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Synchronise with one of the forks and check progress
tester.newPeer("fork A", protocol, chainA)
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("fork A", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(chainA.len() - 1),
})
progress <- struct{}{}
pending.Wait()
// Simulate a successful sync above the fork
tester.downloader.syncStatsChainOrigin = tester.downloader.syncStatsChainHeight
// Synchronise with the second fork and check progress resets
tester.newPeer("fork B", protocol, chainB)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("fork B", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "forking", ethereum.SyncProgress{
StartingBlock: uint64(testChainBase.len()) - 1,
CurrentBlock: uint64(chainA.len() - 1),
HighestBlock: uint64(chainB.len() - 1),
})
// Check final progress after successful sync
progress <- struct{}{}
pending.Wait()
checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{
StartingBlock: uint64(testChainBase.len()) - 1,
CurrentBlock: uint64(chainB.len() - 1),
HighestBlock: uint64(chainB.len() - 1),
})
}
// Tests that if synchronisation is aborted due to some failure, then the progress
// origin is not updated in the next sync cycle, as it should be considered the
// continuation of the previous sync and not a new instance.
func TestFailedSyncProgress66Full(t *testing.T) { testFailedSyncProgress(t, eth.ETH66, FullSync) }
func TestFailedSyncProgress66Fast(t *testing.T) { testFailedSyncProgress(t, eth.ETH66, FastSync) }
func TestFailedSyncProgress66Light(t *testing.T) { testFailedSyncProgress(t, eth.ETH66, LightSync) }
func testFailedSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Attempt a full sync with a faulty peer
brokenChain := chain.shorten(chain.len())
missing := brokenChain.len() / 2
delete(brokenChain.headerm, brokenChain.chain[missing])
delete(brokenChain.blockm, brokenChain.chain[missing])
delete(brokenChain.receiptm, brokenChain.chain[missing])
tester.newPeer("faulty", protocol, brokenChain)
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("faulty", nil, mode); err == nil {
panic("succeeded faulty synchronisation")
}
}()
<-starting
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(brokenChain.len() - 1),
})
progress <- struct{}{}
pending.Wait()
afterFailedSync := tester.downloader.Progress()
// Synchronise with a good peer and check that the progress origin remind the same
// after a failure
tester.newPeer("valid", protocol, chain)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("valid", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "completing", afterFailedSync)
// Check final progress after successful sync
progress <- struct{}{}
pending.Wait()
checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{
CurrentBlock: uint64(chain.len() - 1),
HighestBlock: uint64(chain.len() - 1),
})
}
// Tests that if an attacker fakes a chain height, after the attack is detected,
// the progress height is successfully reduced at the next sync invocation.
func TestFakedSyncProgress66Full(t *testing.T) { testFakedSyncProgress(t, eth.ETH66, FullSync) }
func TestFakedSyncProgress66Fast(t *testing.T) { testFakedSyncProgress(t, eth.ETH66, FastSync) }
func TestFakedSyncProgress66Light(t *testing.T) { testFakedSyncProgress(t, eth.ETH66, LightSync) }
func testFakedSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
tester := newTester()
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Create and sync with an attacker that promises a higher chain than available.
brokenChain := chain.shorten(chain.len())
numMissing := 5
for i := brokenChain.len() - 2; i > brokenChain.len()-numMissing; i-- {
delete(brokenChain.headerm, brokenChain.chain[i])
}
tester.newPeer("attack", protocol, brokenChain)
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("attack", nil, mode); err == nil {
panic("succeeded attacker synchronisation")
}
}()
<-starting
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(brokenChain.len() - 1),
})
progress <- struct{}{}
pending.Wait()
afterFailedSync := tester.downloader.Progress()
// Synchronise with a good peer and check that the progress height has been reduced to
// the true value.
validChain := chain.shorten(chain.len() - numMissing)
tester.newPeer("valid", protocol, validChain)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("valid", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "completing", ethereum.SyncProgress{
CurrentBlock: afterFailedSync.CurrentBlock,
HighestBlock: uint64(validChain.len() - 1),
})
// Check final progress after successful sync.
progress <- struct{}{}
pending.Wait()
checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{
CurrentBlock: uint64(validChain.len() - 1),
HighestBlock: uint64(validChain.len() - 1),
})
}
// This test reproduces an issue where unexpected deliveries would
// block indefinitely if they arrived at the right time.
func TestDeliverHeadersHang66Full(t *testing.T) { testDeliverHeadersHang(t, eth.ETH66, FullSync) }
func TestDeliverHeadersHang66Fast(t *testing.T) { testDeliverHeadersHang(t, eth.ETH66, FastSync) }
func TestDeliverHeadersHang66Light(t *testing.T) { testDeliverHeadersHang(t, eth.ETH66, LightSync) }
func testDeliverHeadersHang(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
master := newTester()
defer master.terminate()
chain := testChainBase.shorten(15)
for i := 0; i < 200; i++ {
tester := newTester()
tester.peerDb = master.peerDb
tester.newPeer("peer", protocol, chain)
// Whenever the downloader requests headers, flood it with
// a lot of unrequested header deliveries.
tester.downloader.peers.peers["peer"].peer = &floodingTestPeer{
peer: tester.downloader.peers.peers["peer"].peer,
tester: tester,
}
if err := tester.sync("peer", nil, mode); err != nil {
t.Errorf("test %d: sync failed: %v", i, err)
}
tester.terminate()
}
}
type floodingTestPeer struct {
peer Peer
tester *downloadTester
}
func (ftp *floodingTestPeer) Head() (common.Hash, *big.Int) { return ftp.peer.Head() }
func (ftp *floodingTestPeer) RequestHeadersByHash(hash common.Hash, count int, skip int, reverse bool) error {
return ftp.peer.RequestHeadersByHash(hash, count, skip, reverse)
}
func (ftp *floodingTestPeer) RequestBodies(hashes []common.Hash) error {
return ftp.peer.RequestBodies(hashes)
}
func (ftp *floodingTestPeer) RequestReceipts(hashes []common.Hash) error {
return ftp.peer.RequestReceipts(hashes)
}
func (ftp *floodingTestPeer) RequestNodeData(hashes []common.Hash) error {
return ftp.peer.RequestNodeData(hashes)
}
func (ftp *floodingTestPeer) RequestHeadersByNumber(from uint64, count, skip int, reverse bool) error {
deliveriesDone := make(chan struct{}, 500)
for i := 0; i < cap(deliveriesDone)-1; i++ {
peer := fmt.Sprintf("fake-peer%d", i)
go func() {
ftp.tester.downloader.DeliverHeaders(peer, []*types.Header{{}, {}, {}, {}})
deliveriesDone <- struct{}{}
}()
}
// None of the extra deliveries should block.
timeout := time.After(60 * time.Second)
launched := false
for i := 0; i < cap(deliveriesDone); i++ {
select {
case <-deliveriesDone:
if !launched {
// Start delivering the requested headers
// after one of the flooding responses has arrived.
go func() {
ftp.peer.RequestHeadersByNumber(from, count, skip, reverse)
deliveriesDone <- struct{}{}
}()
launched = true
}
case <-timeout:
panic("blocked")
}
}
return nil
}
func TestRemoteHeaderRequestSpan(t *testing.T) {
testCases := []struct {
remoteHeight uint64
localHeight uint64
expected []int
}{
// Remote is way higher. We should ask for the remote head and go backwards
{1500, 1000,
[]int{1323, 1339, 1355, 1371, 1387, 1403, 1419, 1435, 1451, 1467, 1483, 1499},
},
{15000, 13006,
[]int{14823, 14839, 14855, 14871, 14887, 14903, 14919, 14935, 14951, 14967, 14983, 14999},
},
// Remote is pretty close to us. We don't have to fetch as many
{1200, 1150,
[]int{1149, 1154, 1159, 1164, 1169, 1174, 1179, 1184, 1189, 1194, 1199},
},
// Remote is equal to us (so on a fork with higher td)
// We should get the closest couple of ancestors
{1500, 1500,
[]int{1497, 1499},
},
// We're higher than the remote! Odd
{1000, 1500,
[]int{997, 999},
},
// Check some weird edgecases that it behaves somewhat rationally
{0, 1500,
[]int{0, 2},
},
{6000000, 0,
[]int{5999823, 5999839, 5999855, 5999871, 5999887, 5999903, 5999919, 5999935, 5999951, 5999967, 5999983, 5999999},
},
{0, 0,
[]int{0, 2},
},
}
reqs := func(from, count, span int) []int {
var r []int
num := from
for len(r) < count {
r = append(r, num)
num += span + 1
}
return r
}
for i, tt := range testCases {
from, count, span, max := calculateRequestSpan(tt.remoteHeight, tt.localHeight)
data := reqs(int(from), count, span)
if max != uint64(data[len(data)-1]) {
t.Errorf("test %d: wrong last value %d != %d", i, data[len(data)-1], max)
}
failed := false
if len(data) != len(tt.expected) {
failed = true
t.Errorf("test %d: length wrong, expected %d got %d", i, len(tt.expected), len(data))
} else {
for j, n := range data {
if n != tt.expected[j] {
failed = true
break
}
}
}
if failed {
res := strings.Replace(fmt.Sprint(data), " ", ",", -1)
exp := strings.Replace(fmt.Sprint(tt.expected), " ", ",", -1)
t.Logf("got: %v\n", res)
t.Logf("exp: %v\n", exp)
t.Errorf("test %d: wrong values", i)
}
}
}
// Tests that peers below a pre-configured checkpoint block are prevented from
// being fast-synced from, avoiding potential cheap eclipse attacks.
func TestCheckpointEnforcement66Full(t *testing.T) { testCheckpointEnforcement(t, eth.ETH66, FullSync) }
func TestCheckpointEnforcement66Fast(t *testing.T) { testCheckpointEnforcement(t, eth.ETH66, FastSync) }
func TestCheckpointEnforcement66Light(t *testing.T) {
testCheckpointEnforcement(t, eth.ETH66, LightSync)
}
func testCheckpointEnforcement(t *testing.T, protocol uint, mode SyncMode) {
t.Parallel()
// Create a new tester with a particular hard coded checkpoint block
tester := newTester()
defer tester.terminate()
tester.downloader.checkpoint = uint64(fsMinFullBlocks) + 256
chain := testChainBase.shorten(int(tester.downloader.checkpoint) - 1)
// Attempt to sync with the peer and validate the result
tester.newPeer("peer", protocol, chain)
var expect error
if mode == FastSync || mode == LightSync {
expect = errUnsyncedPeer
}
if err := tester.sync("peer", nil, mode); !errors.Is(err, expect) {
t.Fatalf("block sync error mismatch: have %v, want %v", err, expect)
}
if mode == FastSync || mode == LightSync {
assertOwnChain(t, tester, 1)
} else {
assertOwnChain(t, tester, chain.len())
}
}