package ethvm import ( "fmt" "math/big" "github.com/ethereum/eth-go/ethcrypto" "github.com/ethereum/eth-go/ethstate" "github.com/ethereum/eth-go/ethutil" ) type Debugger interface { BreakHook(step int, op OpCode, mem *Memory, stack *Stack, object *ethstate.StateObject) bool StepHook(step int, op OpCode, mem *Memory, stack *Stack, object *ethstate.StateObject) bool BreakPoints() []int64 SetCode(byteCode []byte) } type Vm struct { env Environment Verbose bool logTy byte logStr string err error // Debugging Dbg Debugger BreakPoints []int64 Stepping bool Fn string Recoverable bool } type Environment interface { State() *ethstate.State Origin() []byte BlockNumber() *big.Int PrevHash() []byte Coinbase() []byte Time() int64 Difficulty() *big.Int Value() *big.Int BlockHash() []byte } type Object interface { GetStorage(key *big.Int) *ethutil.Value SetStorage(key *big.Int, value *ethutil.Value) } func New(env Environment) *Vm { lt := LogTyPretty if ethutil.Config.Diff { lt = LogTyDiff } return &Vm{env: env, logTy: lt, Recoverable: true} } func calcMemSize(off, l *big.Int) *big.Int { if l.Cmp(ethutil.Big0) == 0 { return ethutil.Big0 } return new(big.Int).Add(off, l) } // Simple helper func u256(n int64) *big.Int { return big.NewInt(n) } func (self *Vm) RunClosure(closure *Closure) (ret []byte, err error) { if self.Recoverable { // Recover from any require exception defer func() { if r := recover(); r != nil { ret = closure.Return(nil) err = fmt.Errorf("%v", r) } }() } // Debug hook if self.Dbg != nil { self.Dbg.SetCode(closure.Code) } // Don't bother with the execution if there's no code. if len(closure.Code) == 0 { return closure.Return(nil), nil } vmlogger.Debugf("(%s) %x gas: %v (d) %x\n", self.Fn, closure.Address(), closure.Gas, closure.Args) var ( op OpCode mem = &Memory{} stack = NewStack() pc = big.NewInt(0) step = 0 prevStep = 0 require = func(m int) { if stack.Len() < m { panic(fmt.Sprintf("%04v (%v) stack err size = %d, required = %d", pc, op, stack.Len(), m)) } } ) for { prevStep = step // The base for all big integer arithmetic base := new(big.Int) step++ // Get the memory location of pc val := closure.Get(pc) // Get the opcode (it must be an opcode!) op = OpCode(val.Uint()) // XXX Leave this Println intact. Don't change this to the log system. // Used for creating diffs between implementations if self.logTy == LogTyDiff { switch op { case STOP, RETURN, SUICIDE: closure.object.EachStorage(func(key string, value *ethutil.Value) { value.Decode() fmt.Printf("%x %x\n", new(big.Int).SetBytes([]byte(key)).Bytes(), value.Bytes()) }) } b := pc.Bytes() if len(b) == 0 { b = []byte{0} } fmt.Printf("%x %x %x %x\n", closure.Address(), b, []byte{byte(op)}, closure.Gas.Bytes()) } gas := new(big.Int) addStepGasUsage := func(amount *big.Int) { if amount.Cmp(ethutil.Big0) >= 0 { gas.Add(gas, amount) } } addStepGasUsage(GasStep) var newMemSize *big.Int = ethutil.Big0 switch op { case STOP: gas.Set(ethutil.Big0) case SUICIDE: gas.Set(ethutil.Big0) case SLOAD: gas.Set(GasSLoad) case SSTORE: var mult *big.Int y, x := stack.Peekn() val := closure.GetStorage(x) if val.BigInt().Cmp(ethutil.Big0) == 0 && len(y.Bytes()) > 0 { mult = ethutil.Big2 } else if val.BigInt().Cmp(ethutil.Big0) != 0 && len(y.Bytes()) == 0 { mult = ethutil.Big0 } else { mult = ethutil.Big1 } gas = new(big.Int).Mul(mult, GasSStore) case BALANCE: gas.Set(GasBalance) case MSTORE: require(2) newMemSize = calcMemSize(stack.Peek(), u256(32)) case MLOAD: require(1) newMemSize = calcMemSize(stack.Peek(), u256(32)) case MSTORE8: require(2) newMemSize = calcMemSize(stack.Peek(), u256(1)) case RETURN: require(2) newMemSize = calcMemSize(stack.Peek(), stack.data[stack.Len()-2]) case SHA3: require(2) gas.Set(GasSha) newMemSize = calcMemSize(stack.Peek(), stack.data[stack.Len()-2]) case CALLDATACOPY: require(2) newMemSize = calcMemSize(stack.Peek(), stack.data[stack.Len()-3]) case CODECOPY: require(3) newMemSize = calcMemSize(stack.Peek(), stack.data[stack.Len()-3]) case EXTCODECOPY: require(4) newMemSize = calcMemSize(stack.data[stack.Len()-2], stack.data[stack.Len()-4]) case CALL, CALLCODE: require(7) gas.Set(GasCall) addStepGasUsage(stack.data[stack.Len()-1]) x := calcMemSize(stack.data[stack.Len()-6], stack.data[stack.Len()-7]) y := calcMemSize(stack.data[stack.Len()-4], stack.data[stack.Len()-5]) newMemSize = ethutil.BigMax(x, y) case CREATE: require(3) gas.Set(GasCreate) newMemSize = calcMemSize(stack.data[stack.Len()-2], stack.data[stack.Len()-3]) } if newMemSize.Cmp(ethutil.Big0) > 0 { newMemSize.Add(newMemSize, u256(31)) newMemSize.Div(newMemSize, u256(32)) newMemSize.Mul(newMemSize, u256(32)) if newMemSize.Cmp(u256(int64(mem.Len()))) > 0 { memGasUsage := new(big.Int).Sub(newMemSize, u256(int64(mem.Len()))) memGasUsage.Mul(GasMemory, memGasUsage) memGasUsage.Div(memGasUsage, u256(32)) addStepGasUsage(memGasUsage) } } if !closure.UseGas(gas) { err := fmt.Errorf("Insufficient gas for %v. req %v has %v", op, gas, closure.Gas) closure.UseGas(closure.Gas) return closure.Return(nil), err } self.Printf("(pc) %-3d -o- %-14s", pc, op.String()) self.Printf(" (g) %-3v (%v)", gas, closure.Gas) mem.Resize(newMemSize.Uint64()) switch op { case LOG: stack.Print() mem.Print() // 0x20 range case ADD: require(2) x, y := stack.Popn() self.Printf(" %v + %v", y, x) base.Add(y, x) ensure256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case SUB: require(2) x, y := stack.Popn() self.Printf(" %v - %v", y, x) base.Sub(y, x) ensure256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case MUL: require(2) x, y := stack.Popn() self.Printf(" %v * %v", y, x) base.Mul(y, x) ensure256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case DIV: require(2) x, y := stack.Popn() self.Printf(" %v / %v", y, x) if x.Cmp(ethutil.Big0) != 0 { base.Div(y, x) } ensure256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case SDIV: require(2) x, y := stack.Popn() self.Printf(" %v / %v", y, x) if x.Cmp(ethutil.Big0) != 0 { base.Div(y, x) } ensure256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case MOD: require(2) x, y := stack.Popn() self.Printf(" %v %% %v", y, x) base.Mod(y, x) ensure256(base) self.Printf(" = %v", base) stack.Push(base) case SMOD: require(2) x, y := stack.Popn() self.Printf(" %v %% %v", y, x) base.Mod(y, x) ensure256(base) self.Printf(" = %v", base) stack.Push(base) case EXP: require(2) x, y := stack.Popn() self.Printf(" %v ** %v", y, x) base.Exp(y, x, Pow256) ensure256(base) self.Printf(" = %v", base) stack.Push(base) case NEG: require(1) base.Sub(Pow256, stack.Pop()) stack.Push(base) case LT: require(2) x, y := stack.Popn() self.Printf(" %v < %v", y, x) // x < y if y.Cmp(x) < 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case GT: require(2) x, y := stack.Popn() self.Printf(" %v > %v", y, x) // x > y if y.Cmp(x) > 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case SLT: require(2) x, y := stack.Popn() self.Printf(" %v < %v", y, x) // x < y if y.Cmp(x) < 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case SGT: require(2) x, y := stack.Popn() self.Printf(" %v > %v", y, x) // x > y if y.Cmp(x) > 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case EQ: require(2) x, y := stack.Popn() self.Printf(" %v == %v", y, x) // x == y if x.Cmp(y) == 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case NOT: require(1) x := stack.Pop() if x.Cmp(ethutil.BigFalse) > 0 { stack.Push(ethutil.BigFalse) } else { stack.Push(ethutil.BigTrue) } // 0x10 range case AND: require(2) x, y := stack.Popn() self.Printf(" %v & %v", y, x) stack.Push(base.And(y, x)) case OR: require(2) x, y := stack.Popn() self.Printf(" %v | %v", y, x) stack.Push(base.Or(y, x)) case XOR: require(2) x, y := stack.Popn() self.Printf(" %v ^ %v", y, x) stack.Push(base.Xor(y, x)) case BYTE: require(2) val, th := stack.Popn() if th.Cmp(big.NewInt(32)) < 0 && th.Cmp(big.NewInt(int64(len(val.Bytes())))) < 0 { byt := big.NewInt(int64(ethutil.LeftPadBytes(val.Bytes(), 32)[th.Int64()])) stack.Push(byt) self.Printf(" => 0x%x", byt.Bytes()) } else { stack.Push(ethutil.BigFalse) } case ADDMOD: require(3) x := stack.Pop() y := stack.Pop() z := stack.Pop() base.Add(x, y) base.Mod(base, z) ensure256(base) self.Printf(" = %v", base) stack.Push(base) case MULMOD: require(3) x := stack.Pop() y := stack.Pop() z := stack.Pop() base.Mul(x, y) base.Mod(base, z) ensure256(base) self.Printf(" = %v", base) stack.Push(base) // 0x20 range case SHA3: require(2) size, offset := stack.Popn() data := ethcrypto.Sha3Bin(mem.Get(offset.Int64(), size.Int64())) stack.Push(ethutil.BigD(data)) self.Printf(" => %x", data) // 0x30 range case ADDRESS: stack.Push(ethutil.BigD(closure.Address())) self.Printf(" => %x", closure.Address()) case BALANCE: require(1) addr := stack.Pop().Bytes() balance := self.env.State().GetBalance(addr) stack.Push(balance) self.Printf(" => %v (%x)", balance, addr) case ORIGIN: origin := self.env.Origin() stack.Push(ethutil.BigD(origin)) self.Printf(" => %x", origin) case CALLER: caller := closure.caller.Address() stack.Push(ethutil.BigD(caller)) self.Printf(" => %x", caller) case CALLVALUE: value := self.env.Value() stack.Push(value) self.Printf(" => %v", value) case CALLDATALOAD: require(1) var ( offset = stack.Pop() data = make([]byte, 32) lenData = big.NewInt(int64(len(closure.Args))) ) if lenData.Cmp(offset) >= 0 { length := new(big.Int).Add(offset, ethutil.Big32) length = ethutil.BigMin(length, lenData) copy(data, closure.Args[offset.Int64():length.Int64()]) } self.Printf(" => 0x%x", data) stack.Push(ethutil.BigD(data)) case CALLDATASIZE: l := int64(len(closure.Args)) stack.Push(big.NewInt(l)) self.Printf(" => %d", l) case CALLDATACOPY: var ( size = int64(len(closure.Args)) mOff = stack.Pop().Int64() cOff = stack.Pop().Int64() l = stack.Pop().Int64() ) if cOff > size { cOff = 0 l = 0 } else if cOff+l > size { l = 0 } code := closure.Args[cOff : cOff+l] mem.Set(mOff, l, code) case CODESIZE, EXTCODESIZE: var code []byte if op == EXTCODECOPY { addr := stack.Pop().Bytes() code = self.env.State().GetCode(addr) } else { code = closure.Code } l := big.NewInt(int64(len(code))) stack.Push(l) self.Printf(" => %d", l) case CODECOPY, EXTCODECOPY: var code []byte if op == EXTCODECOPY { addr := stack.Pop().Bytes() code = self.env.State().GetCode(addr) } else { code = closure.Code } var ( size = int64(len(code)) mOff = stack.Pop().Int64() cOff = stack.Pop().Int64() l = stack.Pop().Int64() ) if cOff > size { cOff = 0 l = 0 } else if cOff+l > size { l = 0 } codeCopy := code[cOff : cOff+l] mem.Set(mOff, l, codeCopy) case GASPRICE: stack.Push(closure.Price) self.Printf(" => %v", closure.Price) // 0x40 range case PREVHASH: prevHash := self.env.PrevHash() stack.Push(ethutil.BigD(prevHash)) self.Printf(" => 0x%x", prevHash) case COINBASE: coinbase := self.env.Coinbase() stack.Push(ethutil.BigD(coinbase)) self.Printf(" => 0x%x", coinbase) case TIMESTAMP: time := self.env.Time() stack.Push(big.NewInt(time)) self.Printf(" => 0x%x", time) case NUMBER: number := self.env.BlockNumber() stack.Push(number) self.Printf(" => 0x%x", number.Bytes()) case DIFFICULTY: difficulty := self.env.Difficulty() stack.Push(difficulty) self.Printf(" => 0x%x", difficulty.Bytes()) case GASLIMIT: // TODO stack.Push(big.NewInt(0)) // 0x50 range case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32: a := big.NewInt(int64(op) - int64(PUSH1) + 1) pc.Add(pc, ethutil.Big1) data := closure.Gets(pc, a) val := ethutil.BigD(data.Bytes()) // Push value to stack stack.Push(val) pc.Add(pc, a.Sub(a, big.NewInt(1))) step += int(op) - int(PUSH1) + 1 self.Printf(" => 0x%x", data.Bytes()) case POP: require(1) stack.Pop() case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: n := int(op - DUP1 + 1) v := stack.Dupn(n) self.Printf(" => [%d] 0x%x", n, stack.Peek().Bytes()) if OpCode(closure.Get(new(big.Int).Add(pc, ethutil.Big1)).Uint()) == POP && OpCode(closure.Get(new(big.Int).Add(pc, big.NewInt(2))).Uint()) == POP { fmt.Println(toValue(v)) } case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: n := int(op - SWAP1 + 2) x, y := stack.Swapn(n) self.Printf(" => [%d] %x [0] %x", n, x.Bytes(), y.Bytes()) case MLOAD: require(1) offset := stack.Pop() val := ethutil.BigD(mem.Get(offset.Int64(), 32)) stack.Push(val) self.Printf(" => 0x%x", val.Bytes()) case MSTORE: // Store the value at stack top-1 in to memory at location stack top require(2) // Pop value of the stack val, mStart := stack.Popn() mem.Set(mStart.Int64(), 32, ethutil.BigToBytes(val, 256)) self.Printf(" => 0x%x", val) case MSTORE8: require(2) off := stack.Pop() val := stack.Pop() mem.store[off.Int64()] = byte(val.Int64() & 0xff) self.Printf(" => [%v] 0x%x", off, val) case SLOAD: require(1) loc := stack.Pop() val := closure.GetStorage(loc) stack.Push(val.BigInt()) self.Printf(" {0x%x : 0x%x}", loc.Bytes(), val.Bytes()) case SSTORE: require(2) val, loc := stack.Popn() closure.SetStorage(loc, ethutil.NewValue(val)) closure.message.AddStorageChange(loc.Bytes()) self.Printf(" {0x%x : 0x%x}", loc.Bytes(), val.Bytes()) case JUMP: require(1) pc = stack.Pop() // Reduce pc by one because of the increment that's at the end of this for loop self.Printf(" ~> %v", pc).Endl() continue case JUMPI: require(2) cond, pos := stack.Popn() if cond.Cmp(ethutil.BigTrue) >= 0 { pc = pos if OpCode(closure.Get(pc).Uint()) != JUMPDEST { return closure.Return(nil), fmt.Errorf("JUMP missed JUMPDEST %v", pc) } continue } else { self.Printf(" (f)") } case JUMPDEST: self.Printf(" ~> %v (t)", pc).Endl() case PC: stack.Push(pc) case MSIZE: stack.Push(big.NewInt(int64(mem.Len()))) case GAS: stack.Push(closure.Gas) // 0x60 range case CREATE: require(3) var ( err error value = stack.Pop() size, offset = stack.Popn() input = mem.Get(offset.Int64(), size.Int64()) gas = new(big.Int).Set(closure.Gas) // Snapshot the current stack so we are able to // revert back to it later. snapshot = self.env.State().Copy() ) // Generate a new address addr := ethcrypto.CreateAddress(closure.Address(), closure.object.Nonce) //for i := uint64(0); self.env.State().GetStateObject(addr) != nil; i++ { // ethcrypto.CreateAddress(closure.Address(), closure.object.Nonce+i) //} closure.object.Nonce++ self.Printf(" (*) %x", addr).Endl() closure.UseGas(closure.Gas) msg := NewExecution(self, addr, input, gas, closure.Price, value) ret, err := msg.Exec(addr, closure) if err != nil { stack.Push(ethutil.BigFalse) // Revert the state as it was before. self.env.State().Set(snapshot) self.Printf("CREATE err %v", err) } else { msg.object.Code = ret stack.Push(ethutil.BigD(addr)) } self.Endl() // Debug hook if self.Dbg != nil { self.Dbg.SetCode(closure.Code) } case CALL, CALLCODE: require(7) self.Endl() gas := stack.Pop() // Pop gas and value of the stack. value, addr := stack.Popn() // Pop input size and offset inSize, inOffset := stack.Popn() // Pop return size and offset retSize, retOffset := stack.Popn() // Get the arguments from the memory args := mem.Get(inOffset.Int64(), inSize.Int64()) snapshot := self.env.State().Copy() var executeAddr []byte if op == CALLCODE { executeAddr = closure.Address() } else { executeAddr = addr.Bytes() } msg := NewExecution(self, executeAddr, args, gas, closure.Price, value) ret, err := msg.Exec(addr.Bytes(), closure) if err != nil { stack.Push(ethutil.BigFalse) self.env.State().Set(snapshot) } else { stack.Push(ethutil.BigTrue) mem.Set(retOffset.Int64(), retSize.Int64(), ret) } // Debug hook if self.Dbg != nil { self.Dbg.SetCode(closure.Code) } case RETURN: require(2) size, offset := stack.Popn() ret := mem.Get(offset.Int64(), size.Int64()) self.Printf(" => (%d) 0x%x", len(ret), ret).Endl() return closure.Return(ret), nil case SUICIDE: require(1) receiver := self.env.State().GetOrNewStateObject(stack.Pop().Bytes()) receiver.AddAmount(closure.object.Balance) closure.object.MarkForDeletion() fallthrough case STOP: // Stop the closure self.Endl() return closure.Return(nil), nil default: vmlogger.Debugf("(pc) %-3v Invalid opcode %x\n", pc, op) //panic(fmt.Sprintf("Invalid opcode %x", op)) return closure.Return(nil), fmt.Errorf("Invalid opcode %x", op) } pc.Add(pc, ethutil.Big1) self.Endl() if self.Dbg != nil { for _, instrNo := range self.Dbg.BreakPoints() { if pc.Cmp(big.NewInt(instrNo)) == 0 { self.Stepping = true if !self.Dbg.BreakHook(prevStep, op, mem, stack, closure.Object()) { return nil, nil } } else if self.Stepping { if !self.Dbg.StepHook(prevStep, op, mem, stack, closure.Object()) { return nil, nil } } } } } } func (self *Vm) Printf(format string, v ...interface{}) *Vm { if self.Verbose && self.logTy == LogTyPretty { self.logStr += fmt.Sprintf(format, v...) } return self } func (self *Vm) Endl() *Vm { if self.Verbose && self.logTy == LogTyPretty { vmlogger.Debugln(self.logStr) self.logStr = "" } return self } func ensure256(x *big.Int) { //max, _ := big.NewInt(0).SetString("115792089237316195423570985008687907853269984665640564039457584007913129639936", 0) //if x.Cmp(max) >= 0 { d := big.NewInt(1) d.Lsh(d, 256).Sub(d, big.NewInt(1)) x.And(x, d) //} // Could have done this with an OR, but big ints are costly. if x.Cmp(new(big.Int)) < 0 { x.SetInt64(0) } } type Execution struct { vm *Vm closure *Closure address, input []byte gas, price, value *big.Int object *ethstate.StateObject } func NewExecution(vm *Vm, address, input []byte, gas, gasPrice, value *big.Int) *Execution { return &Execution{vm: vm, address: address, input: input, gas: gas, price: gasPrice, value: value} } func (self *Execution) Addr() []byte { return self.address } func (self *Execution) Exec(codeAddr []byte, caller ClosureRef) (ret []byte, err error) { msg := self.vm.env.State().Manifest().AddMessage(ðstate.Message{ To: self.address, From: caller.Address(), Input: self.input, Origin: self.vm.env.Origin(), Block: self.vm.env.BlockHash(), Timestamp: self.vm.env.Time(), Coinbase: self.vm.env.Coinbase(), Number: self.vm.env.BlockNumber(), Value: self.value, }) object := caller.Object() if object.Balance.Cmp(self.value) < 0 { caller.ReturnGas(self.gas, self.price) err = fmt.Errorf("Insufficient funds to transfer value. Req %v, has %v", self.value, object.Balance) } else { stateObject := self.vm.env.State().GetOrNewStateObject(self.address) self.object = stateObject caller.Object().SubAmount(self.value) stateObject.AddAmount(self.value) if p := Precompiled[ethutil.BigD(codeAddr).Uint64()]; p != nil { if self.gas.Cmp(p.Gas) >= 0 { ret = p.Call(self.input) } } else { // Retrieve the executing code code := self.vm.env.State().GetCode(codeAddr) // Create a new callable closure c := NewClosure(msg, caller, stateObject, code, self.gas, self.price) // Executer the closure and get the return value (if any) ret, _, err = c.Call(self.vm, self.input) msg.Output = ret } } return } // Mainly used for print variables and passing to Print* func toValue(val *big.Int) interface{} { // Let's assume a string on right padded zero's b := val.Bytes() if b[0] != 0 && b[len(b)-1] == 0x0 && b[len(b)-2] == 0x0 { return string(b) } return val }