// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package core import ( "container/heap" "math" "math/big" "sort" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" ) // nonceHeap is a heap.Interface implementation over 64bit unsigned integers for // retrieving sorted transactions from the possibly gapped future queue. type nonceHeap []uint64 func (h nonceHeap) Len() int { return len(h) } func (h nonceHeap) Less(i, j int) bool { return h[i] < h[j] } func (h nonceHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *nonceHeap) Push(x interface{}) { *h = append(*h, x.(uint64)) } func (h *nonceHeap) Pop() interface{} { old := *h n := len(old) x := old[n-1] *h = old[0 : n-1] return x } // txSortedMap is a nonce->transaction hash map with a heap based index to allow // iterating over the contents in a nonce-incrementing way. type txSortedMap struct { items map[uint64]*types.Transaction // Hash map storing the transaction data index *nonceHeap // Heap of nonces of all the stored transactions (non-strict mode) cache types.Transactions // Cache of the transactions already sorted } // newTxSortedMap creates a new nonce-sorted transaction map. func newTxSortedMap() *txSortedMap { return &txSortedMap{ items: make(map[uint64]*types.Transaction), index: new(nonceHeap), } } // Get retrieves the current transactions associated with the given nonce. func (m *txSortedMap) Get(nonce uint64) *types.Transaction { return m.items[nonce] } // Put inserts a new transaction into the map, also updating the map's nonce // index. If a transaction already exists with the same nonce, it's overwritten. func (m *txSortedMap) Put(tx *types.Transaction) { nonce := tx.Nonce() if m.items[nonce] == nil { heap.Push(m.index, nonce) } m.items[nonce], m.cache = tx, nil } // Forward removes all transactions from the map with a nonce lower than the // provided threshold. Every removed transaction is returned for any post-removal // maintenance. func (m *txSortedMap) Forward(threshold uint64) types.Transactions { var removed types.Transactions // Pop off heap items until the threshold is reached for m.index.Len() > 0 && (*m.index)[0] < threshold { nonce := heap.Pop(m.index).(uint64) removed = append(removed, m.items[nonce]) delete(m.items, nonce) } // If we had a cached order, shift the front if m.cache != nil { m.cache = m.cache[len(removed):] } return removed } // Filter iterates over the list of transactions and removes all of them for which // the specified function evaluates to true. // Filter, as opposed to 'filter', re-initialises the heap after the operation is done. // If you want to do several consecutive filterings, it's therefore better to first // do a .filter(func1) followed by .Filter(func2) or reheap() func (m *txSortedMap) Filter(filter func(*types.Transaction) bool) types.Transactions { removed := m.filter(filter) // If transactions were removed, the heap and cache are ruined if len(removed) > 0 { m.reheap() } return removed } func (m *txSortedMap) reheap() { *m.index = make([]uint64, 0, len(m.items)) for nonce := range m.items { *m.index = append(*m.index, nonce) } heap.Init(m.index) m.cache = nil } // filter is identical to Filter, but **does not** regenerate the heap. This method // should only be used if followed immediately by a call to Filter or reheap() func (m *txSortedMap) filter(filter func(*types.Transaction) bool) types.Transactions { var removed types.Transactions // Collect all the transactions to filter out for nonce, tx := range m.items { if filter(tx) { removed = append(removed, tx) delete(m.items, nonce) } } if len(removed) > 0 { m.cache = nil } return removed } // Cap places a hard limit on the number of items, returning all transactions // exceeding that limit. func (m *txSortedMap) Cap(threshold int) types.Transactions { // Short circuit if the number of items is under the limit if len(m.items) <= threshold { return nil } // Otherwise gather and drop the highest nonce'd transactions var drops types.Transactions sort.Sort(*m.index) for size := len(m.items); size > threshold; size-- { drops = append(drops, m.items[(*m.index)[size-1]]) delete(m.items, (*m.index)[size-1]) } *m.index = (*m.index)[:threshold] heap.Init(m.index) // If we had a cache, shift the back if m.cache != nil { m.cache = m.cache[:len(m.cache)-len(drops)] } return drops } // Remove deletes a transaction from the maintained map, returning whether the // transaction was found. func (m *txSortedMap) Remove(nonce uint64) bool { // Short circuit if no transaction is present _, ok := m.items[nonce] if !ok { return false } // Otherwise delete the transaction and fix the heap index for i := 0; i < m.index.Len(); i++ { if (*m.index)[i] == nonce { heap.Remove(m.index, i) break } } delete(m.items, nonce) m.cache = nil return true } // Ready retrieves a sequentially increasing list of transactions starting at the // provided nonce that is ready for processing. The returned transactions will be // removed from the list. // // Note, all transactions with nonces lower than start will also be returned to // prevent getting into and invalid state. This is not something that should ever // happen but better to be self correcting than failing! func (m *txSortedMap) Ready(start uint64) types.Transactions { // Short circuit if no transactions are available if m.index.Len() == 0 || (*m.index)[0] > start { return nil } // Otherwise start accumulating incremental transactions var ready types.Transactions for next := (*m.index)[0]; m.index.Len() > 0 && (*m.index)[0] == next; next++ { ready = append(ready, m.items[next]) delete(m.items, next) heap.Pop(m.index) } m.cache = nil return ready } // Len returns the length of the transaction map. func (m *txSortedMap) Len() int { return len(m.items) } func (m *txSortedMap) flatten() types.Transactions { // If the sorting was not cached yet, create and cache it if m.cache == nil { m.cache = make(types.Transactions, 0, len(m.items)) for _, tx := range m.items { m.cache = append(m.cache, tx) } sort.Sort(types.TxByNonce(m.cache)) } return m.cache } // Flatten creates a nonce-sorted slice of transactions based on the loosely // sorted internal representation. The result of the sorting is cached in case // it's requested again before any modifications are made to the contents. func (m *txSortedMap) Flatten() types.Transactions { // Copy the cache to prevent accidental modifications cache := m.flatten() txs := make(types.Transactions, len(cache)) copy(txs, cache) return txs } // LastElement returns the last element of a flattened list, thus, the // transaction with the highest nonce func (m *txSortedMap) LastElement() *types.Transaction { cache := m.flatten() return cache[len(cache)-1] } // txList is a "list" of transactions belonging to an account, sorted by account // nonce. The same type can be used both for storing contiguous transactions for // the executable/pending queue; and for storing gapped transactions for the non- // executable/future queue, with minor behavioral changes. type txList struct { strict bool // Whether nonces are strictly continuous or not txs *txSortedMap // Heap indexed sorted hash map of the transactions costcap *big.Int // Price of the highest costing transaction (reset only if exceeds balance) gascap uint64 // Gas limit of the highest spending transaction (reset only if exceeds block limit) } // newTxList create a new transaction list for maintaining nonce-indexable fast, // gapped, sortable transaction lists. func newTxList(strict bool) *txList { return &txList{ strict: strict, txs: newTxSortedMap(), costcap: new(big.Int), } } // Overlaps returns whether the transaction specified has the same nonce as one // already contained within the list. func (l *txList) Overlaps(tx *types.Transaction) bool { return l.txs.Get(tx.Nonce()) != nil } // Add tries to insert a new transaction into the list, returning whether the // transaction was accepted, and if yes, any previous transaction it replaced. // // If the new transaction is accepted into the list, the lists' cost and gas // thresholds are also potentially updated. func (l *txList) Add(tx *types.Transaction, priceBump uint64) (bool, *types.Transaction) { // If there's an older better transaction, abort old := l.txs.Get(tx.Nonce()) if old != nil { if old.GasFeeCapCmp(tx) >= 0 || old.GasTipCapCmp(tx) >= 0 { return false, nil } // thresholdFeeCap = oldFC * (100 + priceBump) / 100 a := big.NewInt(100 + int64(priceBump)) aFeeCap := new(big.Int).Mul(a, old.GasFeeCap()) aTip := a.Mul(a, old.GasTipCap()) // thresholdTip = oldTip * (100 + priceBump) / 100 b := big.NewInt(100) thresholdFeeCap := aFeeCap.Div(aFeeCap, b) thresholdTip := aTip.Div(aTip, b) // Have to ensure that either the new fee cap or tip is higher than the // old ones as well as checking the percentage threshold to ensure that // this is accurate for low (Wei-level) gas price replacements if tx.GasFeeCapIntCmp(thresholdFeeCap) < 0 || tx.GasTipCapIntCmp(thresholdTip) < 0 { return false, nil } } // Otherwise overwrite the old transaction with the current one l.txs.Put(tx) if cost := tx.Cost(); l.costcap.Cmp(cost) < 0 { l.costcap = cost } if gas := tx.Gas(); l.gascap < gas { l.gascap = gas } return true, old } // Forward removes all transactions from the list with a nonce lower than the // provided threshold. Every removed transaction is returned for any post-removal // maintenance. func (l *txList) Forward(threshold uint64) types.Transactions { return l.txs.Forward(threshold) } // Filter removes all transactions from the list with a cost or gas limit higher // than the provided thresholds. Every removed transaction is returned for any // post-removal maintenance. Strict-mode invalidated transactions are also // returned. // // This method uses the cached costcap and gascap to quickly decide if there's even // a point in calculating all the costs or if the balance covers all. If the threshold // is lower than the costgas cap, the caps will be reset to a new high after removing // the newly invalidated transactions. func (l *txList) Filter(costLimit *big.Int, gasLimit uint64) (types.Transactions, types.Transactions) { // If all transactions are below the threshold, short circuit if l.costcap.Cmp(costLimit) <= 0 && l.gascap <= gasLimit { return nil, nil } l.costcap = new(big.Int).Set(costLimit) // Lower the caps to the thresholds l.gascap = gasLimit // Filter out all the transactions above the account's funds removed := l.txs.Filter(func(tx *types.Transaction) bool { return tx.Gas() > gasLimit || tx.Cost().Cmp(costLimit) > 0 }) if len(removed) == 0 { return nil, nil } var invalids types.Transactions // If the list was strict, filter anything above the lowest nonce if l.strict { lowest := uint64(math.MaxUint64) for _, tx := range removed { if nonce := tx.Nonce(); lowest > nonce { lowest = nonce } } invalids = l.txs.filter(func(tx *types.Transaction) bool { return tx.Nonce() > lowest }) } l.txs.reheap() return removed, invalids } // Cap places a hard limit on the number of items, returning all transactions // exceeding that limit. func (l *txList) Cap(threshold int) types.Transactions { return l.txs.Cap(threshold) } // Remove deletes a transaction from the maintained list, returning whether the // transaction was found, and also returning any transaction invalidated due to // the deletion (strict mode only). func (l *txList) Remove(tx *types.Transaction) (bool, types.Transactions) { // Remove the transaction from the set nonce := tx.Nonce() if removed := l.txs.Remove(nonce); !removed { return false, nil } // In strict mode, filter out non-executable transactions if l.strict { return true, l.txs.Filter(func(tx *types.Transaction) bool { return tx.Nonce() > nonce }) } return true, nil } // Ready retrieves a sequentially increasing list of transactions starting at the // provided nonce that is ready for processing. The returned transactions will be // removed from the list. // // Note, all transactions with nonces lower than start will also be returned to // prevent getting into and invalid state. This is not something that should ever // happen but better to be self correcting than failing! func (l *txList) Ready(start uint64) types.Transactions { return l.txs.Ready(start) } // Len returns the length of the transaction list. func (l *txList) Len() int { return l.txs.Len() } // Empty returns whether the list of transactions is empty or not. func (l *txList) Empty() bool { return l.Len() == 0 } // Flatten creates a nonce-sorted slice of transactions based on the loosely // sorted internal representation. The result of the sorting is cached in case // it's requested again before any modifications are made to the contents. func (l *txList) Flatten() types.Transactions { return l.txs.Flatten() } // LastElement returns the last element of a flattened list, thus, the // transaction with the highest nonce func (l *txList) LastElement() *types.Transaction { return l.txs.LastElement() } // priceHeap is a heap.Interface implementation over transactions for retrieving // price-sorted transactions to discard when the pool fills up. If baseFee is set // then the heap is sorted based on the effective tip based on the given base fee. // If baseFee is nil then the sorting is based on gasFeeCap. type priceHeap struct { baseFee *big.Int // heap should always be re-sorted after baseFee is changed list []*types.Transaction } func (h *priceHeap) Len() int { return len(h.list) } func (h *priceHeap) Swap(i, j int) { h.list[i], h.list[j] = h.list[j], h.list[i] } func (h *priceHeap) Less(i, j int) bool { switch h.cmp(h.list[i], h.list[j]) { case -1: return true case 1: return false default: return h.list[i].Nonce() > h.list[j].Nonce() } } func (h *priceHeap) cmp(a, b *types.Transaction) int { if h.baseFee != nil { // Compare effective tips if baseFee is specified if c := a.EffectiveGasTipCmp(b, h.baseFee); c != 0 { return c } } // Compare fee caps if baseFee is not specified or effective tips are equal if c := a.GasFeeCapCmp(b); c != 0 { return c } // Compare tips if effective tips and fee caps are equal return a.GasTipCapCmp(b) } func (h *priceHeap) Push(x interface{}) { tx := x.(*types.Transaction) h.list = append(h.list, tx) } func (h *priceHeap) Pop() interface{} { old := h.list n := len(old) x := old[n-1] old[n-1] = nil h.list = old[0 : n-1] return x } // txPricedList is a price-sorted heap to allow operating on transactions pool // contents in a price-incrementing way. It's built opon the all transactions // in txpool but only interested in the remote part. It means only remote transactions // will be considered for tracking, sorting, eviction, etc. // // Two heaps are used for sorting: the urgent heap (based on effective tip in the next // block) and the floating heap (based on gasFeeCap). Always the bigger heap is chosen for // eviction. Transactions evicted from the urgent heap are first demoted into the floating heap. // In some cases (during a congestion, when blocks are full) the urgent heap can provide // better candidates for inclusion while in other cases (at the top of the baseFee peak) // the floating heap is better. When baseFee is decreasing they behave similarly. type txPricedList struct { all *txLookup // Pointer to the map of all transactions urgent, floating priceHeap // Heaps of prices of all the stored **remote** transactions stales int // Number of stale price points to (re-heap trigger) } const ( // urgentRatio : floatingRatio is the capacity ratio of the two queues urgentRatio = 4 floatingRatio = 1 ) // newTxPricedList creates a new price-sorted transaction heap. func newTxPricedList(all *txLookup) *txPricedList { return &txPricedList{ all: all, } } // Put inserts a new transaction into the heap. func (l *txPricedList) Put(tx *types.Transaction, local bool) { if local { return } // Insert every new transaction to the urgent heap first; Discard will balance the heaps heap.Push(&l.urgent, tx) } // Removed notifies the prices transaction list that an old transaction dropped // from the pool. The list will just keep a counter of stale objects and update // the heap if a large enough ratio of transactions go stale. func (l *txPricedList) Removed(count int) { // Bump the stale counter, but exit if still too low (< 25%) l.stales += count if l.stales <= (len(l.urgent.list)+len(l.floating.list))/4 { return } // Seems we've reached a critical number of stale transactions, reheap l.Reheap() } // Underpriced checks whether a transaction is cheaper than (or as cheap as) the // lowest priced (remote) transaction currently being tracked. func (l *txPricedList) Underpriced(tx *types.Transaction) bool { // Note: with two queues, being underpriced is defined as being worse than the worst item // in all non-empty queues if there is any. If both queues are empty then nothing is underpriced. return (l.underpricedFor(&l.urgent, tx) || len(l.urgent.list) == 0) && (l.underpricedFor(&l.floating, tx) || len(l.floating.list) == 0) && (len(l.urgent.list) != 0 || len(l.floating.list) != 0) } // underpricedFor checks whether a transaction is cheaper than (or as cheap as) the // lowest priced (remote) transaction in the given heap. func (l *txPricedList) underpricedFor(h *priceHeap, tx *types.Transaction) bool { // Discard stale price points if found at the heap start for len(h.list) > 0 { head := h.list[0] if l.all.GetRemote(head.Hash()) == nil { // Removed or migrated l.stales-- heap.Pop(h) continue } break } // Check if the transaction is underpriced or not if len(h.list) == 0 { return false // There is no remote transaction at all. } // If the remote transaction is even cheaper than the // cheapest one tracked locally, reject it. return h.cmp(h.list[0], tx) >= 0 } // Discard finds a number of most underpriced transactions, removes them from the // priced list and returns them for further removal from the entire pool. // // Note local transaction won't be considered for eviction. func (l *txPricedList) Discard(slots int, force bool) (types.Transactions, bool) { drop := make(types.Transactions, 0, slots) // Remote underpriced transactions to drop for slots > 0 { if len(l.urgent.list)*floatingRatio > len(l.floating.list)*urgentRatio || floatingRatio == 0 { // Discard stale transactions if found during cleanup tx := heap.Pop(&l.urgent).(*types.Transaction) if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated l.stales-- continue } // Non stale transaction found, move to floating heap heap.Push(&l.floating, tx) } else { if len(l.floating.list) == 0 { // Stop if both heaps are empty break } // Discard stale transactions if found during cleanup tx := heap.Pop(&l.floating).(*types.Transaction) if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated l.stales-- continue } // Non stale transaction found, discard it drop = append(drop, tx) slots -= numSlots(tx) } } // If we still can't make enough room for the new transaction if slots > 0 && !force { for _, tx := range drop { heap.Push(&l.urgent, tx) } return nil, false } return drop, true } // Reheap forcibly rebuilds the heap based on the current remote transaction set. func (l *txPricedList) Reheap() { start := time.Now() l.stales = 0 l.urgent.list = make([]*types.Transaction, 0, l.all.RemoteCount()) l.all.Range(func(hash common.Hash, tx *types.Transaction, local bool) bool { l.urgent.list = append(l.urgent.list, tx) return true }, false, true) // Only iterate remotes heap.Init(&l.urgent) // balance out the two heaps by moving the worse half of transactions into the // floating heap // Note: Discard would also do this before the first eviction but Reheap can do // is more efficiently. Also, Underpriced would work suboptimally the first time // if the floating queue was empty. floatingCount := len(l.urgent.list) * floatingRatio / (urgentRatio + floatingRatio) l.floating.list = make([]*types.Transaction, floatingCount) for i := 0; i < floatingCount; i++ { l.floating.list[i] = heap.Pop(&l.urgent).(*types.Transaction) } heap.Init(&l.floating) reheapTimer.Update(time.Since(start)) } // SetBaseFee updates the base fee and triggers a re-heap. Note that Removed is not // necessary to call right before SetBaseFee when processing a new block. func (l *txPricedList) SetBaseFee(baseFee *big.Int) { l.urgent.baseFee = baseFee l.Reheap() }