// Copyright 2022 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/> package pathdb import ( "errors" "fmt" "sync" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/trie/trienode" "github.com/ethereum/go-ethereum/trie/triestate" ) // layerTree is a group of state layers identified by the state root. // This structure defines a few basic operations for manipulating // state layers linked with each other in a tree structure. It's // thread-safe to use. However, callers need to ensure the thread-safety // of the referenced layer by themselves. type layerTree struct { lock sync.RWMutex layers map[common.Hash]layer } // newLayerTree constructs the layerTree with the given head layer. func newLayerTree(head layer) *layerTree { tree := new(layerTree) tree.reset(head) return tree } // reset initializes the layerTree by the given head layer. // All the ancestors will be iterated out and linked in the tree. func (tree *layerTree) reset(head layer) { tree.lock.Lock() defer tree.lock.Unlock() var layers = make(map[common.Hash]layer) for head != nil { layers[head.rootHash()] = head head = head.parentLayer() } tree.layers = layers } // get retrieves a layer belonging to the given state root. func (tree *layerTree) get(root common.Hash) layer { tree.lock.RLock() defer tree.lock.RUnlock() return tree.layers[types.TrieRootHash(root)] } // forEach iterates the stored layers inside and applies the // given callback on them. func (tree *layerTree) forEach(onLayer func(layer)) { tree.lock.RLock() defer tree.lock.RUnlock() for _, layer := range tree.layers { onLayer(layer) } } // len returns the number of layers cached. func (tree *layerTree) len() int { tree.lock.RLock() defer tree.lock.RUnlock() return len(tree.layers) } // add inserts a new layer into the tree if it can be linked to an existing old parent. func (tree *layerTree) add(root common.Hash, parentRoot common.Hash, block uint64, nodes *trienode.MergedNodeSet, states *triestate.Set) error { // Reject noop updates to avoid self-loops. This is a special case that can // happen for clique networks and proof-of-stake networks where empty blocks // don't modify the state (0 block subsidy). // // Although we could silently ignore this internally, it should be the caller's // responsibility to avoid even attempting to insert such a layer. root, parentRoot = types.TrieRootHash(root), types.TrieRootHash(parentRoot) if root == parentRoot { return errors.New("layer cycle") } parent := tree.get(parentRoot) if parent == nil { return fmt.Errorf("triedb parent [%#x] layer missing", parentRoot) } l := parent.update(root, parent.stateID()+1, block, nodes.Flatten(), states) tree.lock.Lock() tree.layers[l.rootHash()] = l tree.lock.Unlock() return nil } // cap traverses downwards the diff tree until the number of allowed diff layers // are crossed. All diffs beyond the permitted number are flattened downwards. func (tree *layerTree) cap(root common.Hash, layers int) error { // Retrieve the head layer to cap from root = types.TrieRootHash(root) l := tree.get(root) if l == nil { return fmt.Errorf("triedb layer [%#x] missing", root) } diff, ok := l.(*diffLayer) if !ok { return fmt.Errorf("triedb layer [%#x] is disk layer", root) } tree.lock.Lock() defer tree.lock.Unlock() // If full commit was requested, flatten the diffs and merge onto disk if layers == 0 { base, err := diff.persist(true) if err != nil { return err } // Replace the entire layer tree with the flat base tree.layers = map[common.Hash]layer{base.rootHash(): base} return nil } // Dive until we run out of layers or reach the persistent database for i := 0; i < layers-1; i++ { // If we still have diff layers below, continue down if parent, ok := diff.parentLayer().(*diffLayer); ok { diff = parent } else { // Diff stack too shallow, return without modifications return nil } } // We're out of layers, flatten anything below, stopping if it's the disk or if // the memory limit is not yet exceeded. switch parent := diff.parentLayer().(type) { case *diskLayer: return nil case *diffLayer: // Hold the lock to prevent any read operations until the new // parent is linked correctly. diff.lock.Lock() base, err := parent.persist(false) if err != nil { diff.lock.Unlock() return err } tree.layers[base.rootHash()] = base diff.parent = base diff.lock.Unlock() default: panic(fmt.Sprintf("unknown data layer in triedb: %T", parent)) } // Remove any layer that is stale or links into a stale layer children := make(map[common.Hash][]common.Hash) for root, layer := range tree.layers { if dl, ok := layer.(*diffLayer); ok { parent := dl.parentLayer().rootHash() children[parent] = append(children[parent], root) } } var remove func(root common.Hash) remove = func(root common.Hash) { delete(tree.layers, root) for _, child := range children[root] { remove(child) } delete(children, root) } for root, layer := range tree.layers { if dl, ok := layer.(*diskLayer); ok && dl.isStale() { remove(root) } } return nil } // bottom returns the bottom-most disk layer in this tree. func (tree *layerTree) bottom() *diskLayer { tree.lock.RLock() defer tree.lock.RUnlock() if len(tree.layers) == 0 { return nil // Shouldn't happen, empty tree } // pick a random one as the entry point var current layer for _, layer := range tree.layers { current = layer break } for current.parentLayer() != nil { current = current.parentLayer() } return current.(*diskLayer) }