// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package snapshot import ( "bytes" "math/big" "math/rand" "testing" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/rlp" ) func randomAccount() []byte { root := randomHash() a := Account{ Balance: big.NewInt(rand.Int63()), Nonce: rand.Uint64(), Root: root[:], CodeHash: emptyCode[:], } data, _ := rlp.EncodeToBytes(a) return data } // TestMergeBasics tests some simple merges func TestMergeBasics(t *testing.T) { var ( accounts = make(map[common.Hash][]byte) storage = make(map[common.Hash]map[common.Hash][]byte) ) // Fill up a parent for i := 0; i < 100; i++ { h := randomHash() data := randomAccount() accounts[h] = data if rand.Intn(20) < 10 { accStorage := make(map[common.Hash][]byte) value := make([]byte, 32) rand.Read(value) accStorage[randomHash()] = value storage[h] = accStorage } } // Add some (identical) layers on top parent := newDiffLayer(emptyLayer{}, 1, common.Hash{}, accounts, storage) child := newDiffLayer(parent, 1, common.Hash{}, accounts, storage) child = newDiffLayer(child, 1, common.Hash{}, accounts, storage) child = newDiffLayer(child, 1, common.Hash{}, accounts, storage) child = newDiffLayer(child, 1, common.Hash{}, accounts, storage) // And flatten merged := (child.flatten()).(*diffLayer) { // Check account lists // Should be zero/nil first if got, exp := len(merged.accountList), 0; got != exp { t.Errorf("accountList wrong, got %v exp %v", got, exp) } // Then set when we call AccountList if got, exp := len(merged.AccountList()), len(accounts); got != exp { t.Errorf("AccountList() wrong, got %v exp %v", got, exp) } if got, exp := len(merged.accountList), len(accounts); got != exp { t.Errorf("accountList [2] wrong, got %v exp %v", got, exp) } } { // Check storage lists i := 0 for aHash, sMap := range storage { if got, exp := len(merged.storageList), i; got != exp { t.Errorf("[1] storageList wrong, got %v exp %v", got, exp) } if got, exp := len(merged.StorageList(aHash)), len(sMap); got != exp { t.Errorf("[2] StorageList() wrong, got %v exp %v", got, exp) } if got, exp := len(merged.storageList[aHash]), len(sMap); got != exp { t.Errorf("storageList wrong, got %v exp %v", got, exp) } i++ } } } // TestMergeDelete tests some deletion func TestMergeDelete(t *testing.T) { var ( storage = make(map[common.Hash]map[common.Hash][]byte) ) // Fill up a parent h1 := common.HexToHash("0x01") h2 := common.HexToHash("0x02") flip := func() map[common.Hash][]byte { accs := make(map[common.Hash][]byte) accs[h1] = randomAccount() accs[h2] = nil return accs } flop := func() map[common.Hash][]byte { accs := make(map[common.Hash][]byte) accs[h1] = nil accs[h2] = randomAccount() return accs } // Add some flip-flopping layers on top parent := newDiffLayer(emptyLayer{}, 1, common.Hash{}, flip(), storage) child := parent.Update(common.Hash{}, flop(), storage) child = child.Update(common.Hash{}, flip(), storage) child = child.Update(common.Hash{}, flop(), storage) child = child.Update(common.Hash{}, flip(), storage) child = child.Update(common.Hash{}, flop(), storage) child = child.Update(common.Hash{}, flip(), storage) if data, _ := child.Account(h1); data == nil { t.Errorf("last diff layer: expected %x to be non-nil", h1) } if data, _ := child.Account(h2); data != nil { t.Errorf("last diff layer: expected %x to be nil", h2) } // And flatten merged := (child.flatten()).(*diffLayer) // check number if got, exp := merged.number, child.number; got != exp { t.Errorf("merged layer: wrong number - exp %d got %d", exp, got) } if data, _ := merged.Account(h1); data == nil { t.Errorf("merged layer: expected %x to be non-nil", h1) } if data, _ := merged.Account(h2); data != nil { t.Errorf("merged layer: expected %x to be nil", h2) } // If we add more granular metering of memory, we can enable this again, // but it's not implemented for now //if got, exp := merged.memory, child.memory; got != exp { // t.Errorf("mem wrong, got %d, exp %d", got, exp) //} } // This tests that if we create a new account, and set a slot, and then merge // it, the lists will be correct. func TestInsertAndMerge(t *testing.T) { // Fill up a parent var ( acc = common.HexToHash("0x01") slot = common.HexToHash("0x02") parent *diffLayer child *diffLayer ) { var accounts = make(map[common.Hash][]byte) var storage = make(map[common.Hash]map[common.Hash][]byte) parent = newDiffLayer(emptyLayer{}, 1, common.Hash{}, accounts, storage) } { var accounts = make(map[common.Hash][]byte) var storage = make(map[common.Hash]map[common.Hash][]byte) accounts[acc] = randomAccount() accstorage := make(map[common.Hash][]byte) storage[acc] = accstorage storage[acc][slot] = []byte{0x01} child = newDiffLayer(parent, 2, common.Hash{}, accounts, storage) } // And flatten merged := (child.flatten()).(*diffLayer) { // Check that slot value is present got, _ := merged.Storage(acc, slot) if exp := []byte{0x01}; bytes.Compare(got, exp) != 0 { t.Errorf("merged slot value wrong, got %x, exp %x", got, exp) } } } type emptyLayer struct{} func (emptyLayer) Update(blockRoot common.Hash, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) *diffLayer { panic("implement me") } func (emptyLayer) Journal() error { panic("implement me") } func (emptyLayer) Info() (uint64, common.Hash) { return 0, common.Hash{} } func (emptyLayer) Number() uint64 { return 0 } func (emptyLayer) Account(hash common.Hash) (*Account, error) { return nil, nil } func (emptyLayer) AccountRLP(hash common.Hash) ([]byte, error) { return nil, nil } func (emptyLayer) Storage(accountHash, storageHash common.Hash) ([]byte, error) { return nil, nil } // BenchmarkSearch checks how long it takes to find a non-existing key // BenchmarkSearch-6 200000 10481 ns/op (1K per layer) // BenchmarkSearch-6 200000 10760 ns/op (10K per layer) // BenchmarkSearch-6 100000 17866 ns/op // // BenchmarkSearch-6 500000 3723 ns/op (10k per layer, only top-level RLock() func BenchmarkSearch(b *testing.B) { // First, we set up 128 diff layers, with 1K items each blocknum := uint64(0) fill := func(parent snapshot) *diffLayer { accounts := make(map[common.Hash][]byte) storage := make(map[common.Hash]map[common.Hash][]byte) for i := 0; i < 10000; i++ { accounts[randomHash()] = randomAccount() } blocknum++ return newDiffLayer(parent, blocknum, common.Hash{}, accounts, storage) } var layer snapshot layer = emptyLayer{} for i := 0; i < 128; i++ { layer = fill(layer) } key := common.Hash{} b.ResetTimer() for i := 0; i < b.N; i++ { layer.AccountRLP(key) } } // BenchmarkSearchSlot checks how long it takes to find a non-existing key // - Number of layers: 128 // - Each layers contains the account, with a couple of storage slots // BenchmarkSearchSlot-6 100000 14554 ns/op // BenchmarkSearchSlot-6 100000 22254 ns/op (when checking parent root using mutex) // BenchmarkSearchSlot-6 100000 14551 ns/op (when checking parent number using atomic) func BenchmarkSearchSlot(b *testing.B) { // First, we set up 128 diff layers, with 1K items each blocknum := uint64(0) accountKey := common.Hash{} storageKey := common.HexToHash("0x1337") accountRLP := randomAccount() fill := func(parent snapshot) *diffLayer { accounts := make(map[common.Hash][]byte) accounts[accountKey] = accountRLP storage := make(map[common.Hash]map[common.Hash][]byte) accStorage := make(map[common.Hash][]byte) for i := 0; i < 5; i++ { value := make([]byte, 32) rand.Read(value) accStorage[randomHash()] = value storage[accountKey] = accStorage } blocknum++ return newDiffLayer(parent, blocknum, common.Hash{}, accounts, storage) } var layer snapshot layer = emptyLayer{} for i := 0; i < 128; i++ { layer = fill(layer) } b.ResetTimer() for i := 0; i < b.N; i++ { layer.Storage(accountKey, storageKey) } } // With accountList and sorting //BenchmarkFlatten-6 50 29890856 ns/op // // Without sorting and tracking accountlist // BenchmarkFlatten-6 300 5511511 ns/op func BenchmarkFlatten(b *testing.B) { fill := func(parent snapshot, blocknum int) *diffLayer { accounts := make(map[common.Hash][]byte) storage := make(map[common.Hash]map[common.Hash][]byte) for i := 0; i < 100; i++ { accountKey := randomHash() accounts[accountKey] = randomAccount() accStorage := make(map[common.Hash][]byte) for i := 0; i < 20; i++ { value := make([]byte, 32) rand.Read(value) accStorage[randomHash()] = value } storage[accountKey] = accStorage } return newDiffLayer(parent, uint64(blocknum), common.Hash{}, accounts, storage) } b.ResetTimer() for i := 0; i < b.N; i++ { b.StopTimer() var layer snapshot layer = emptyLayer{} for i := 1; i < 128; i++ { layer = fill(layer, i) } b.StartTimer() for i := 1; i < 128; i++ { dl, ok := layer.(*diffLayer) if !ok { break } layer = dl.flatten() } b.StopTimer() } }