// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package forkid implements EIP-2124 (https://eips.ethereum.org/EIPS/eip-2124). package forkid import ( "encoding/binary" "errors" "hash/crc32" "math" "math/big" "reflect" "strings" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/params" "golang.org/x/exp/slices" ) var ( // ErrRemoteStale is returned by the validator if a remote fork checksum is a // subset of our already applied forks, but the announced next fork block is // not on our already passed chain. ErrRemoteStale = errors.New("remote needs update") // ErrLocalIncompatibleOrStale is returned by the validator if a remote fork // checksum does not match any local checksum variation, signalling that the // two chains have diverged in the past at some point (possibly at genesis). ErrLocalIncompatibleOrStale = errors.New("local incompatible or needs update") ) // timestampThreshold is the Ethereum mainnet genesis timestamp. It is used to // differentiate if a forkid.next field is a block number or a timestamp. Whilst // very hacky, something's needed to split the validation during the transition // period (block forks -> time forks). const timestampThreshold = 1438269973 // Blockchain defines all necessary method to build a forkID. type Blockchain interface { // Config retrieves the chain's fork configuration. Config() *params.ChainConfig // Genesis retrieves the chain's genesis block. Genesis() *types.Block // CurrentHeader retrieves the current head header of the canonical chain. CurrentHeader() *types.Header } // ID is a fork identifier as defined by EIP-2124. type ID struct { Hash [4]byte // CRC32 checksum of the genesis block and passed fork block numbers Next uint64 // Block number of the next upcoming fork, or 0 if no forks are known } // Filter is a fork id filter to validate a remotely advertised ID. type Filter func(id ID) error // NewID calculates the Ethereum fork ID from the chain config, genesis hash, head and time. func NewID(config *params.ChainConfig, genesis *types.Block, head, time uint64) ID { // Calculate the starting checksum from the genesis hash hash := crc32.ChecksumIEEE(genesis.Hash().Bytes()) // Calculate the current fork checksum and the next fork block forksByBlock, forksByTime := gatherForks(config, genesis.Time()) for _, fork := range forksByBlock { if fork <= head { // Fork already passed, checksum the previous hash and the fork number hash = checksumUpdate(hash, fork) continue } return ID{Hash: checksumToBytes(hash), Next: fork} } for _, fork := range forksByTime { if fork <= time { // Fork already passed, checksum the previous hash and fork timestamp hash = checksumUpdate(hash, fork) continue } return ID{Hash: checksumToBytes(hash), Next: fork} } return ID{Hash: checksumToBytes(hash), Next: 0} } // NewIDWithChain calculates the Ethereum fork ID from an existing chain instance. func NewIDWithChain(chain Blockchain) ID { head := chain.CurrentHeader() return NewID( chain.Config(), chain.Genesis(), head.Number.Uint64(), head.Time, ) } // NewFilter creates a filter that returns if a fork ID should be rejected or not // based on the local chain's status. func NewFilter(chain Blockchain) Filter { return newFilter( chain.Config(), chain.Genesis(), func() (uint64, uint64) { head := chain.CurrentHeader() return head.Number.Uint64(), head.Time }, ) } // NewStaticFilter creates a filter at block zero. func NewStaticFilter(config *params.ChainConfig, genesis *types.Block) Filter { head := func() (uint64, uint64) { return 0, 0 } return newFilter(config, genesis, head) } // newFilter is the internal version of NewFilter, taking closures as its arguments // instead of a chain. The reason is to allow testing it without having to simulate // an entire blockchain. func newFilter(config *params.ChainConfig, genesis *types.Block, headfn func() (uint64, uint64)) Filter { // Calculate the all the valid fork hash and fork next combos var ( forksByBlock, forksByTime = gatherForks(config, genesis.Time()) forks = append(append([]uint64{}, forksByBlock...), forksByTime...) sums = make([][4]byte, len(forks)+1) // 0th is the genesis ) hash := crc32.ChecksumIEEE(genesis.Hash().Bytes()) sums[0] = checksumToBytes(hash) for i, fork := range forks { hash = checksumUpdate(hash, fork) sums[i+1] = checksumToBytes(hash) } // Add two sentries to simplify the fork checks and don't require special // casing the last one. forks = append(forks, math.MaxUint64) // Last fork will never be passed if len(forksByTime) == 0 { // In purely block based forks, avoid the sentry spilling into timestapt territory forksByBlock = append(forksByBlock, math.MaxUint64) // Last fork will never be passed } // Create a validator that will filter out incompatible chains return func(id ID) error { // Run the fork checksum validation ruleset: // 1. If local and remote FORK_CSUM matches, compare local head to FORK_NEXT. // The two nodes are in the same fork state currently. They might know // of differing future forks, but that's not relevant until the fork // triggers (might be postponed, nodes might be updated to match). // 1a. A remotely announced but remotely not passed block is already passed // locally, disconnect, since the chains are incompatible. // 1b. No remotely announced fork; or not yet passed locally, connect. // 2. If the remote FORK_CSUM is a subset of the local past forks and the // remote FORK_NEXT matches with the locally following fork block number, // connect. // Remote node is currently syncing. It might eventually diverge from // us, but at this current point in time we don't have enough information. // 3. If the remote FORK_CSUM is a superset of the local past forks and can // be completed with locally known future forks, connect. // Local node is currently syncing. It might eventually diverge from // the remote, but at this current point in time we don't have enough // information. // 4. Reject in all other cases. block, time := headfn() for i, fork := range forks { // Pick the head comparison based on fork progression head := block if i >= len(forksByBlock) { head = time } // If our head is beyond this fork, continue to the next (we have a dummy // fork of maxuint64 as the last item to always fail this check eventually). if head >= fork { continue } // Found the first unpassed fork block, check if our current state matches // the remote checksum (rule #1). if sums[i] == id.Hash { // Fork checksum matched, check if a remote future fork block already passed // locally without the local node being aware of it (rule #1a). if id.Next > 0 && (head >= id.Next || (id.Next > timestampThreshold && time >= id.Next)) { return ErrLocalIncompatibleOrStale } // Haven't passed locally a remote-only fork, accept the connection (rule #1b). return nil } // The local and remote nodes are in different forks currently, check if the // remote checksum is a subset of our local forks (rule #2). for j := 0; j < i; j++ { if sums[j] == id.Hash { // Remote checksum is a subset, validate based on the announced next fork if forks[j] != id.Next { return ErrRemoteStale } return nil } } // Remote chain is not a subset of our local one, check if it's a superset by // any chance, signalling that we're simply out of sync (rule #3). for j := i + 1; j < len(sums); j++ { if sums[j] == id.Hash { // Yay, remote checksum is a superset, ignore upcoming forks return nil } } // No exact, subset or superset match. We are on differing chains, reject. return ErrLocalIncompatibleOrStale } log.Error("Impossible fork ID validation", "id", id) return nil // Something's very wrong, accept rather than reject } } // checksumUpdate calculates the next IEEE CRC32 checksum based on the previous // one and a fork block number (equivalent to CRC32(original-blob || fork)). func checksumUpdate(hash uint32, fork uint64) uint32 { var blob [8]byte binary.BigEndian.PutUint64(blob[:], fork) return crc32.Update(hash, crc32.IEEETable, blob[:]) } // checksumToBytes converts a uint32 checksum into a [4]byte array. func checksumToBytes(hash uint32) [4]byte { var blob [4]byte binary.BigEndian.PutUint32(blob[:], hash) return blob } // gatherForks gathers all the known forks and creates two sorted lists out of // them, one for the block number based forks and the second for the timestamps. func gatherForks(config *params.ChainConfig, genesis uint64) ([]uint64, []uint64) { // begin PluGeth injection if byBlock, byTime, ok := pluginForkIDs(); ok { return byBlock, byTime } // end PluGeth injection // Gather all the fork block numbers via reflection kind := reflect.TypeOf(params.ChainConfig{}) conf := reflect.ValueOf(config).Elem() x := uint64(0) var ( forksByBlock []uint64 forksByTime []uint64 ) for i := 0; i < kind.NumField(); i++ { // Fetch the next field and skip non-fork rules field := kind.Field(i) time := strings.HasSuffix(field.Name, "Time") if !time && !strings.HasSuffix(field.Name, "Block") { continue } // Extract the fork rule block number or timestamp and aggregate it if field.Type == reflect.TypeOf(&x) { if rule := conf.Field(i).Interface().(*uint64); rule != nil { forksByTime = append(forksByTime, *rule) } } if field.Type == reflect.TypeOf(new(big.Int)) { if rule := conf.Field(i).Interface().(*big.Int); rule != nil { forksByBlock = append(forksByBlock, rule.Uint64()) } } } slices.Sort(forksByBlock) slices.Sort(forksByTime) // Deduplicate fork identifiers applying multiple forks for i := 1; i < len(forksByBlock); i++ { if forksByBlock[i] == forksByBlock[i-1] { forksByBlock = append(forksByBlock[:i], forksByBlock[i+1:]...) i-- } } for i := 1; i < len(forksByTime); i++ { if forksByTime[i] == forksByTime[i-1] { forksByTime = append(forksByTime[:i], forksByTime[i+1:]...) i-- } } // Skip any forks in block 0, that's the genesis ruleset if len(forksByBlock) > 0 && forksByBlock[0] == 0 { forksByBlock = forksByBlock[1:] } // Skip any forks before genesis. for len(forksByTime) > 0 && forksByTime[0] <= genesis { forksByTime = forksByTime[1:] } return forksByBlock, forksByTime }