// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "errors" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/logger" "github.com/ethereum/go-ethereum/logger/glog" ) var ( big8 = big.NewInt(8) big32 = big.NewInt(32) blockedCodeHashErr = errors.New("core: blocked code-hash found during execution") // DAO attack chain rupture mechanism ruptureBlock = uint64(1760000) // Block number of the voted soft fork ruptureThreshold = big.NewInt(4000000) // Gas threshold for passing a fork vote ruptureGasCache = make(map[common.Hash]*big.Int) // Amount of gas in the point of rupture ruptureCodeHashes = map[common.Hash]struct{}{ common.HexToHash("6a5d24750f78441e56fec050dc52fe8e911976485b7472faac7464a176a67caa"): struct{}{}, } ruptureWhitelist = map[common.Address]bool{ common.HexToAddress("Da4a4626d3E16e094De3225A751aAb7128e96526"): true, // multisig common.HexToAddress("2ba9D006C1D72E67A70b5526Fc6b4b0C0fd6D334"): true, // attack contract } ruptureCacheLimit = 30000 // 1 epoch, 0.5 per possible fork ) // StateProcessor is a basic Processor, which takes care of transitioning // state from one point to another. // // StateProcessor implements Processor. type StateProcessor struct { config *ChainConfig bc *BlockChain } // NewStateProcessor initialises a new StateProcessor. func NewStateProcessor(config *ChainConfig, bc *BlockChain) *StateProcessor { return &StateProcessor{ config: config, bc: bc, } } // Process processes the state changes according to the Ethereum rules by running // the transaction messages using the statedb and applying any rewards to both // the processor (coinbase) and any included uncles. // // Process returns the receipts and logs accumulated during the process and // returns the amount of gas that was used in the process. If any of the // transactions failed to execute due to insufficient gas it will return an error. func (p *StateProcessor) Process(block *types.Block, statedb *state.StateDB, cfg vm.Config) (types.Receipts, vm.Logs, *big.Int, error) { var ( receipts types.Receipts totalUsedGas = big.NewInt(0) err error header = block.Header() allLogs vm.Logs gp = new(GasPool).AddGas(block.GasLimit()) ) for i, tx := range block.Transactions() { statedb.StartRecord(tx.Hash(), block.Hash(), i) receipt, logs, _, err := ApplyTransaction(p.config, p.bc, gp, statedb, header, tx, totalUsedGas, cfg) if err != nil { return nil, nil, totalUsedGas, err } receipts = append(receipts, receipt) allLogs = append(allLogs, logs...) } AccumulateRewards(statedb, header, block.Uncles()) return receipts, allLogs, totalUsedGas, err } // ApplyTransaction attempts to apply a transaction to the given state database // and uses the input parameters for its environment. // // ApplyTransactions returns the generated receipts and vm logs during the // execution of the state transition phase. func ApplyTransaction(config *ChainConfig, bc *BlockChain, gp *GasPool, statedb *state.StateDB, header *types.Header, tx *types.Transaction, usedGas *big.Int, cfg vm.Config) (*types.Receipt, vm.Logs, *big.Int, error) { env := NewEnv(statedb, config, bc, tx, header, cfg) _, gas, err := ApplyMessage(env, tx, gp) if err != nil { return nil, nil, nil, err } // Check whether the DAO needs to be blocked or not if bc != nil { // Test chain maker uses nil to construct the potential chain blockRuptureCodes := false if number := header.Number.Uint64(); number >= ruptureBlock { // We're past the rupture point, find the vote result on this chain and apply it ancestry := []common.Hash{header.Hash(), header.ParentHash} for _, ok := ruptureGasCache[ancestry[len(ancestry)-1]]; !ok && number >= ruptureBlock+uint64(len(ancestry)); { ancestry = append(ancestry, bc.GetHeaderByHash(ancestry[len(ancestry)-1]).ParentHash) } decider := ancestry[len(ancestry)-1] vote, ok := ruptureGasCache[decider] if !ok { // We've reached the rupture point, retrieve the vote vote = bc.GetHeaderByHash(decider).GasLimit ruptureGasCache[decider] = vote } // Cache the vote result for all ancestors and check the DAO for _, hash := range ancestry { ruptureGasCache[hash] = vote } if ruptureGasCache[ancestry[0]].Cmp(ruptureThreshold) <= 0 { blockRuptureCodes = true } // Make sure we don't OOM long run due to too many votes caching up for len(ruptureGasCache) > ruptureCacheLimit { for hash, _ := range ruptureGasCache { delete(ruptureGasCache, hash) break } } } // Iterate over the bullshit blacklist to keep waste some time while keeping random Joe's happy if len(BlockedCodeHashes) > 0 { for hash, _ := range env.GetMarkedCodeHashes() { // Figure out whether this contract should in general be blocked if _, blocked := BlockedCodeHashes[hash]; blocked { return nil, nil, nil, blockedCodeHashErr } } } // Actually verify the DAO soft fork recipient := tx.To() if blockRuptureCodes && (recipient == nil || !ruptureWhitelist[*recipient]) { for hash, _ := range env.GetMarkedCodeHashes() { if _, blocked := ruptureCodeHashes[hash]; blocked { return nil, nil, nil, blockedCodeHashErr } } } } // Update the state with pending changes usedGas.Add(usedGas, gas) receipt := types.NewReceipt(statedb.IntermediateRoot().Bytes(), usedGas) receipt.TxHash = tx.Hash() receipt.GasUsed = new(big.Int).Set(gas) if MessageCreatesContract(tx) { from, _ := tx.From() receipt.ContractAddress = crypto.CreateAddress(from, tx.Nonce()) } logs := statedb.GetLogs(tx.Hash()) receipt.Logs = logs receipt.Bloom = types.CreateBloom(types.Receipts{receipt}) glog.V(logger.Debug).Infoln(receipt) return receipt, logs, gas, err } // AccumulateRewards credits the coinbase of the given block with the // mining reward. The total reward consists of the static block reward // and rewards for included uncles. The coinbase of each uncle block is // also rewarded. func AccumulateRewards(statedb *state.StateDB, header *types.Header, uncles []*types.Header) { reward := new(big.Int).Set(BlockReward) r := new(big.Int) for _, uncle := range uncles { r.Add(uncle.Number, big8) r.Sub(r, header.Number) r.Mul(r, BlockReward) r.Div(r, big8) statedb.AddBalance(uncle.Coinbase, r) r.Div(BlockReward, big32) reward.Add(reward, r) } statedb.AddBalance(header.Coinbase, reward) }