// Copyright 2018 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package trie import ( "errors" "fmt" "io" "reflect" "sync" "time" "github.com/VictoriaMetrics/fastcache" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/metrics" "github.com/ethereum/go-ethereum/rlp" ) var ( memcacheCleanHitMeter = metrics.NewRegisteredMeter("trie/memcache/clean/hit", nil) memcacheCleanMissMeter = metrics.NewRegisteredMeter("trie/memcache/clean/miss", nil) memcacheCleanReadMeter = metrics.NewRegisteredMeter("trie/memcache/clean/read", nil) memcacheCleanWriteMeter = metrics.NewRegisteredMeter("trie/memcache/clean/write", nil) memcacheDirtyHitMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/hit", nil) memcacheDirtyMissMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/miss", nil) memcacheDirtyReadMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/read", nil) memcacheDirtyWriteMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/write", nil) memcacheFlushTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/flush/time", nil) memcacheFlushNodesMeter = metrics.NewRegisteredMeter("trie/memcache/flush/nodes", nil) memcacheFlushSizeMeter = metrics.NewRegisteredMeter("trie/memcache/flush/size", nil) memcacheGCTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/gc/time", nil) memcacheGCNodesMeter = metrics.NewRegisteredMeter("trie/memcache/gc/nodes", nil) memcacheGCSizeMeter = metrics.NewRegisteredMeter("trie/memcache/gc/size", nil) memcacheCommitTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/commit/time", nil) memcacheCommitNodesMeter = metrics.NewRegisteredMeter("trie/memcache/commit/nodes", nil) memcacheCommitSizeMeter = metrics.NewRegisteredMeter("trie/memcache/commit/size", nil) ) // secureKeyPrefix is the database key prefix used to store trie node preimages. var secureKeyPrefix = []byte("secure-key-") // secureKeyPrefixLength is the length of the above prefix const secureKeyPrefixLength = 11 // secureKeyLength is the length of the above prefix + 32byte hash. const secureKeyLength = secureKeyPrefixLength + 32 // Database is an intermediate write layer between the trie data structures and // the disk database. The aim is to accumulate trie writes in-memory and only // periodically flush a couple tries to disk, garbage collecting the remainder. // // Note, the trie Database is **not** thread safe in its mutations, but it **is** // thread safe in providing individual, independent node access. The rationale // behind this split design is to provide read access to RPC handlers and sync // servers even while the trie is executing expensive garbage collection. type Database struct { diskdb ethdb.KeyValueStore // Persistent storage for matured trie nodes cleans *fastcache.Cache // GC friendly memory cache of clean node RLPs dirties map[common.Hash]*cachedNode // Data and references relationships of dirty nodes oldest common.Hash // Oldest tracked node, flush-list head newest common.Hash // Newest tracked node, flush-list tail preimages map[common.Hash][]byte // Preimages of nodes from the secure trie gctime time.Duration // Time spent on garbage collection since last commit gcnodes uint64 // Nodes garbage collected since last commit gcsize common.StorageSize // Data storage garbage collected since last commit flushtime time.Duration // Time spent on data flushing since last commit flushnodes uint64 // Nodes flushed since last commit flushsize common.StorageSize // Data storage flushed since last commit dirtiesSize common.StorageSize // Storage size of the dirty node cache (exc. metadata) childrenSize common.StorageSize // Storage size of the external children tracking preimagesSize common.StorageSize // Storage size of the preimages cache lock sync.RWMutex } // rawNode is a simple binary blob used to differentiate between collapsed trie // nodes and already encoded RLP binary blobs (while at the same time store them // in the same cache fields). type rawNode []byte func (n rawNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") } func (n rawNode) fstring(ind string) string { panic("this should never end up in a live trie") } // rawFullNode represents only the useful data content of a full node, with the // caches and flags stripped out to minimize its data storage. This type honors // the same RLP encoding as the original parent. type rawFullNode [17]node func (n rawFullNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") } func (n rawFullNode) fstring(ind string) string { panic("this should never end up in a live trie") } func (n rawFullNode) EncodeRLP(w io.Writer) error { var nodes [17]node for i, child := range n { if child != nil { nodes[i] = child } else { nodes[i] = nilValueNode } } return rlp.Encode(w, nodes) } // rawShortNode represents only the useful data content of a short node, with the // caches and flags stripped out to minimize its data storage. This type honors // the same RLP encoding as the original parent. type rawShortNode struct { Key []byte Val node } func (n rawShortNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") } func (n rawShortNode) fstring(ind string) string { panic("this should never end up in a live trie") } // cachedNode is all the information we know about a single cached node in the // memory database write layer. type cachedNode struct { node node // Cached collapsed trie node, or raw rlp data size uint16 // Byte size of the useful cached data parents uint32 // Number of live nodes referencing this one children map[common.Hash]uint16 // External children referenced by this node flushPrev common.Hash // Previous node in the flush-list flushNext common.Hash // Next node in the flush-list } // cachedNodeSize is the raw size of a cachedNode data structure without any // node data included. It's an approximate size, but should be a lot better // than not counting them. var cachedNodeSize = int(reflect.TypeOf(cachedNode{}).Size()) // cachedNodeChildrenSize is the raw size of an initialized but empty external // reference map. const cachedNodeChildrenSize = 48 // rlp returns the raw rlp encoded blob of the cached node, either directly from // the cache, or by regenerating it from the collapsed node. func (n *cachedNode) rlp() []byte { if node, ok := n.node.(rawNode); ok { return node } blob, err := rlp.EncodeToBytes(n.node) if err != nil { panic(err) } return blob } // obj returns the decoded and expanded trie node, either directly from the cache, // or by regenerating it from the rlp encoded blob. func (n *cachedNode) obj(hash common.Hash) node { if node, ok := n.node.(rawNode); ok { return mustDecodeNode(hash[:], node) } return expandNode(hash[:], n.node) } // forChilds invokes the callback for all the tracked children of this node, // both the implicit ones from inside the node as well as the explicit ones //from outside the node. func (n *cachedNode) forChilds(onChild func(hash common.Hash)) { for child := range n.children { onChild(child) } if _, ok := n.node.(rawNode); !ok { forGatherChildren(n.node, onChild) } } // forGatherChildren traverses the node hierarchy of a collapsed storage node and // invokes the callback for all the hashnode children. func forGatherChildren(n node, onChild func(hash common.Hash)) { switch n := n.(type) { case *rawShortNode: forGatherChildren(n.Val, onChild) case rawFullNode: for i := 0; i < 16; i++ { forGatherChildren(n[i], onChild) } case hashNode: onChild(common.BytesToHash(n)) case valueNode, nil: default: panic(fmt.Sprintf("unknown node type: %T", n)) } } // simplifyNode traverses the hierarchy of an expanded memory node and discards // all the internal caches, returning a node that only contains the raw data. func simplifyNode(n node) node { switch n := n.(type) { case *shortNode: // Short nodes discard the flags and cascade return &rawShortNode{Key: n.Key, Val: simplifyNode(n.Val)} case *fullNode: // Full nodes discard the flags and cascade node := rawFullNode(n.Children) for i := 0; i < len(node); i++ { if node[i] != nil { node[i] = simplifyNode(node[i]) } } return node case valueNode, hashNode, rawNode: return n default: panic(fmt.Sprintf("unknown node type: %T", n)) } } // expandNode traverses the node hierarchy of a collapsed storage node and converts // all fields and keys into expanded memory form. func expandNode(hash hashNode, n node) node { switch n := n.(type) { case *rawShortNode: // Short nodes need key and child expansion return &shortNode{ Key: compactToHex(n.Key), Val: expandNode(nil, n.Val), flags: nodeFlag{ hash: hash, }, } case rawFullNode: // Full nodes need child expansion node := &fullNode{ flags: nodeFlag{ hash: hash, }, } for i := 0; i < len(node.Children); i++ { if n[i] != nil { node.Children[i] = expandNode(nil, n[i]) } } return node case valueNode, hashNode: return n default: panic(fmt.Sprintf("unknown node type: %T", n)) } } // NewDatabase creates a new trie database to store ephemeral trie content before // its written out to disk or garbage collected. No read cache is created, so all // data retrievals will hit the underlying disk database. func NewDatabase(diskdb ethdb.KeyValueStore) *Database { return NewDatabaseWithCache(diskdb, 0) } // NewDatabaseWithCache creates a new trie database to store ephemeral trie content // before its written out to disk or garbage collected. It also acts as a read cache // for nodes loaded from disk. func NewDatabaseWithCache(diskdb ethdb.KeyValueStore, cache int) *Database { var cleans *fastcache.Cache if cache > 0 { cleans = fastcache.New(cache * 1024 * 1024) } return &Database{ diskdb: diskdb, cleans: cleans, dirties: map[common.Hash]*cachedNode{{}: { children: make(map[common.Hash]uint16), }}, preimages: make(map[common.Hash][]byte), } } // DiskDB retrieves the persistent storage backing the trie database. func (db *Database) DiskDB() ethdb.KeyValueReader { return db.diskdb } // InsertBlob writes a new reference tracked blob to the memory database if it's // yet unknown. This method should only be used for non-trie nodes that require // reference counting, since trie nodes are garbage collected directly through // their embedded children. func (db *Database) InsertBlob(hash common.Hash, blob []byte) { db.lock.Lock() defer db.lock.Unlock() db.insert(hash, len(blob), rawNode(blob)) } // insert inserts a collapsed trie node into the memory database. This method is // a more generic version of InsertBlob, supporting both raw blob insertions as // well ex trie node insertions. The blob size must be specified to allow proper // size tracking. func (db *Database) insert(hash common.Hash, size int, node node) { // If the node's already cached, skip if _, ok := db.dirties[hash]; ok { return } memcacheDirtyWriteMeter.Mark(int64(size)) // Create the cached entry for this node entry := &cachedNode{ node: simplifyNode(node), size: uint16(size), flushPrev: db.newest, } entry.forChilds(func(child common.Hash) { if c := db.dirties[child]; c != nil { c.parents++ } }) db.dirties[hash] = entry // Update the flush-list endpoints if db.oldest == (common.Hash{}) { db.oldest, db.newest = hash, hash } else { db.dirties[db.newest].flushNext, db.newest = hash, hash } db.dirtiesSize += common.StorageSize(common.HashLength + entry.size) } // insertPreimage writes a new trie node pre-image to the memory database if it's // yet unknown. The method will NOT make a copy of the slice, // only use if the preimage will NOT be changed later on. // // Note, this method assumes that the database's lock is held! func (db *Database) insertPreimage(hash common.Hash, preimage []byte) { if _, ok := db.preimages[hash]; ok { return } db.preimages[hash] = preimage db.preimagesSize += common.StorageSize(common.HashLength + len(preimage)) } // node retrieves a cached trie node from memory, or returns nil if none can be // found in the memory cache. func (db *Database) node(hash common.Hash) node { // Retrieve the node from the clean cache if available if db.cleans != nil { if enc := db.cleans.Get(nil, hash[:]); enc != nil { memcacheCleanHitMeter.Mark(1) memcacheCleanReadMeter.Mark(int64(len(enc))) return mustDecodeNode(hash[:], enc) } } // Retrieve the node from the dirty cache if available db.lock.RLock() dirty := db.dirties[hash] db.lock.RUnlock() if dirty != nil { memcacheDirtyHitMeter.Mark(1) memcacheDirtyReadMeter.Mark(int64(dirty.size)) return dirty.obj(hash) } memcacheDirtyMissMeter.Mark(1) // Content unavailable in memory, attempt to retrieve from disk enc, err := db.diskdb.Get(hash[:]) if err != nil || enc == nil { return nil } if db.cleans != nil { db.cleans.Set(hash[:], enc) memcacheCleanMissMeter.Mark(1) memcacheCleanWriteMeter.Mark(int64(len(enc))) } return mustDecodeNode(hash[:], enc) } // Node retrieves an encoded cached trie node from memory. If it cannot be found // cached, the method queries the persistent database for the content. func (db *Database) Node(hash common.Hash) ([]byte, error) { // It doesn't make sense to retrieve the metaroot if hash == (common.Hash{}) { return nil, errors.New("not found") } // Retrieve the node from the clean cache if available if db.cleans != nil { if enc := db.cleans.Get(nil, hash[:]); enc != nil { memcacheCleanHitMeter.Mark(1) memcacheCleanReadMeter.Mark(int64(len(enc))) return enc, nil } } // Retrieve the node from the dirty cache if available db.lock.RLock() dirty := db.dirties[hash] db.lock.RUnlock() if dirty != nil { memcacheDirtyHitMeter.Mark(1) memcacheDirtyReadMeter.Mark(int64(dirty.size)) return dirty.rlp(), nil } memcacheDirtyMissMeter.Mark(1) // Content unavailable in memory, attempt to retrieve from disk enc, err := db.diskdb.Get(hash[:]) if err == nil && enc != nil { if db.cleans != nil { db.cleans.Set(hash[:], enc) memcacheCleanMissMeter.Mark(1) memcacheCleanWriteMeter.Mark(int64(len(enc))) } } return enc, err } // preimage retrieves a cached trie node pre-image from memory. If it cannot be // found cached, the method queries the persistent database for the content. func (db *Database) preimage(hash common.Hash) ([]byte, error) { // Retrieve the node from cache if available db.lock.RLock() preimage := db.preimages[hash] db.lock.RUnlock() if preimage != nil { return preimage, nil } // Content unavailable in memory, attempt to retrieve from disk return db.diskdb.Get(secureKey(hash)) } // secureKey returns the database key for the preimage of key (as a newly // allocated byte-slice) func secureKey(hash common.Hash) []byte { buf := make([]byte, secureKeyLength) copy(buf, secureKeyPrefix) copy(buf[secureKeyPrefixLength:], hash[:]) return buf } // Nodes retrieves the hashes of all the nodes cached within the memory database. // This method is extremely expensive and should only be used to validate internal // states in test code. func (db *Database) Nodes() []common.Hash { db.lock.RLock() defer db.lock.RUnlock() var hashes = make([]common.Hash, 0, len(db.dirties)) for hash := range db.dirties { if hash != (common.Hash{}) { // Special case for "root" references/nodes hashes = append(hashes, hash) } } return hashes } // Reference adds a new reference from a parent node to a child node. func (db *Database) Reference(child common.Hash, parent common.Hash) { db.lock.Lock() defer db.lock.Unlock() db.reference(child, parent) } // reference is the private locked version of Reference. func (db *Database) reference(child common.Hash, parent common.Hash) { // If the node does not exist, it's a node pulled from disk, skip node, ok := db.dirties[child] if !ok { return } // If the reference already exists, only duplicate for roots if db.dirties[parent].children == nil { db.dirties[parent].children = make(map[common.Hash]uint16) db.childrenSize += cachedNodeChildrenSize } else if _, ok = db.dirties[parent].children[child]; ok && parent != (common.Hash{}) { return } node.parents++ db.dirties[parent].children[child]++ if db.dirties[parent].children[child] == 1 { db.childrenSize += common.HashLength + 2 // uint16 counter } } // Dereference removes an existing reference from a root node. func (db *Database) Dereference(root common.Hash) { // Sanity check to ensure that the meta-root is not removed if root == (common.Hash{}) { log.Error("Attempted to dereference the trie cache meta root") return } db.lock.Lock() defer db.lock.Unlock() nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now() db.dereference(root, common.Hash{}) db.gcnodes += uint64(nodes - len(db.dirties)) db.gcsize += storage - db.dirtiesSize db.gctime += time.Since(start) memcacheGCTimeTimer.Update(time.Since(start)) memcacheGCSizeMeter.Mark(int64(storage - db.dirtiesSize)) memcacheGCNodesMeter.Mark(int64(nodes - len(db.dirties))) log.Debug("Dereferenced trie from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start), "gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize) } // dereference is the private locked version of Dereference. func (db *Database) dereference(child common.Hash, parent common.Hash) { // Dereference the parent-child node := db.dirties[parent] if node.children != nil && node.children[child] > 0 { node.children[child]-- if node.children[child] == 0 { delete(node.children, child) db.childrenSize -= (common.HashLength + 2) // uint16 counter } } // If the child does not exist, it's a previously committed node. node, ok := db.dirties[child] if !ok { return } // If there are no more references to the child, delete it and cascade if node.parents > 0 { // This is a special cornercase where a node loaded from disk (i.e. not in the // memcache any more) gets reinjected as a new node (short node split into full, // then reverted into short), causing a cached node to have no parents. That is // no problem in itself, but don't make maxint parents out of it. node.parents-- } if node.parents == 0 { // Remove the node from the flush-list switch child { case db.oldest: db.oldest = node.flushNext db.dirties[node.flushNext].flushPrev = common.Hash{} case db.newest: db.newest = node.flushPrev db.dirties[node.flushPrev].flushNext = common.Hash{} default: db.dirties[node.flushPrev].flushNext = node.flushNext db.dirties[node.flushNext].flushPrev = node.flushPrev } // Dereference all children and delete the node node.forChilds(func(hash common.Hash) { db.dereference(hash, child) }) delete(db.dirties, child) db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size)) if node.children != nil { db.childrenSize -= cachedNodeChildrenSize } } } // Cap iteratively flushes old but still referenced trie nodes until the total // memory usage goes below the given threshold. // // Note, this method is a non-synchronized mutator. It is unsafe to call this // concurrently with other mutators. func (db *Database) Cap(limit common.StorageSize) error { // Create a database batch to flush persistent data out. It is important that // outside code doesn't see an inconsistent state (referenced data removed from // memory cache during commit but not yet in persistent storage). This is ensured // by only uncaching existing data when the database write finalizes. nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now() batch := db.diskdb.NewBatch() // db.dirtiesSize only contains the useful data in the cache, but when reporting // the total memory consumption, the maintenance metadata is also needed to be // counted. size := db.dirtiesSize + common.StorageSize((len(db.dirties)-1)*cachedNodeSize) size += db.childrenSize - common.StorageSize(len(db.dirties[common.Hash{}].children)*(common.HashLength+2)) // We reuse an ephemeral buffer for the keys. The batch Put operation // copies it internally, so we can reuse it. var keyBuf [secureKeyLength]byte copy(keyBuf[:], secureKeyPrefix) // If the preimage cache got large enough, push to disk. If it's still small // leave for later to deduplicate writes. flushPreimages := db.preimagesSize > 4*1024*1024 if flushPreimages { for hash, preimage := range db.preimages { copy(keyBuf[secureKeyPrefixLength:], hash[:]) if err := batch.Put(keyBuf[:], preimage); err != nil { log.Error("Failed to commit preimage from trie database", "err", err) return err } if batch.ValueSize() > ethdb.IdealBatchSize { if err := batch.Write(); err != nil { return err } batch.Reset() } } } // Keep committing nodes from the flush-list until we're below allowance oldest := db.oldest for size > limit && oldest != (common.Hash{}) { // Fetch the oldest referenced node and push into the batch node := db.dirties[oldest] if err := batch.Put(oldest[:], node.rlp()); err != nil { return err } // If we exceeded the ideal batch size, commit and reset if batch.ValueSize() >= ethdb.IdealBatchSize { if err := batch.Write(); err != nil { log.Error("Failed to write flush list to disk", "err", err) return err } batch.Reset() } // Iterate to the next flush item, or abort if the size cap was achieved. Size // is the total size, including the useful cached data (hash -> blob), the // cache item metadata, as well as external children mappings. size -= common.StorageSize(common.HashLength + int(node.size) + cachedNodeSize) if node.children != nil { size -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2)) } oldest = node.flushNext } // Flush out any remainder data from the last batch if err := batch.Write(); err != nil { log.Error("Failed to write flush list to disk", "err", err) return err } // Write successful, clear out the flushed data db.lock.Lock() defer db.lock.Unlock() if flushPreimages { db.preimages = make(map[common.Hash][]byte) db.preimagesSize = 0 } for db.oldest != oldest { node := db.dirties[db.oldest] delete(db.dirties, db.oldest) db.oldest = node.flushNext db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size)) if node.children != nil { db.childrenSize -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2)) } } if db.oldest != (common.Hash{}) { db.dirties[db.oldest].flushPrev = common.Hash{} } db.flushnodes += uint64(nodes - len(db.dirties)) db.flushsize += storage - db.dirtiesSize db.flushtime += time.Since(start) memcacheFlushTimeTimer.Update(time.Since(start)) memcacheFlushSizeMeter.Mark(int64(storage - db.dirtiesSize)) memcacheFlushNodesMeter.Mark(int64(nodes - len(db.dirties))) log.Debug("Persisted nodes from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start), "flushnodes", db.flushnodes, "flushsize", db.flushsize, "flushtime", db.flushtime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize) return nil } // Commit iterates over all the children of a particular node, writes them out // to disk, forcefully tearing down all references in both directions. As a side // effect, all pre-images accumulated up to this point are also written. // // Note, this method is a non-synchronized mutator. It is unsafe to call this // concurrently with other mutators. func (db *Database) Commit(node common.Hash, report bool) error { // Create a database batch to flush persistent data out. It is important that // outside code doesn't see an inconsistent state (referenced data removed from // memory cache during commit but not yet in persistent storage). This is ensured // by only uncaching existing data when the database write finalizes. start := time.Now() batch := db.diskdb.NewBatch() // We reuse an ephemeral buffer for the keys. The batch Put operation // copies it internally, so we can reuse it. var keyBuf [secureKeyLength]byte copy(keyBuf[:], secureKeyPrefix) // Move all of the accumulated preimages into a write batch for hash, preimage := range db.preimages { copy(keyBuf[secureKeyPrefixLength:], hash[:]) if err := batch.Put(keyBuf[:], preimage); err != nil { log.Error("Failed to commit preimage from trie database", "err", err) return err } // If the batch is too large, flush to disk if batch.ValueSize() > ethdb.IdealBatchSize { if err := batch.Write(); err != nil { return err } batch.Reset() } } // Since we're going to replay trie node writes into the clean cache, flush out // any batched pre-images before continuing. if err := batch.Write(); err != nil { return err } batch.Reset() // Move the trie itself into the batch, flushing if enough data is accumulated nodes, storage := len(db.dirties), db.dirtiesSize uncacher := &cleaner{db} if err := db.commit(node, batch, uncacher); err != nil { log.Error("Failed to commit trie from trie database", "err", err) return err } // Trie mostly committed to disk, flush any batch leftovers if err := batch.Write(); err != nil { log.Error("Failed to write trie to disk", "err", err) return err } // Uncache any leftovers in the last batch db.lock.Lock() defer db.lock.Unlock() batch.Replay(uncacher) batch.Reset() // Reset the storage counters and bumpd metrics db.preimages = make(map[common.Hash][]byte) db.preimagesSize = 0 memcacheCommitTimeTimer.Update(time.Since(start)) memcacheCommitSizeMeter.Mark(int64(storage - db.dirtiesSize)) memcacheCommitNodesMeter.Mark(int64(nodes - len(db.dirties))) logger := log.Info if !report { logger = log.Debug } logger("Persisted trie from memory database", "nodes", nodes-len(db.dirties)+int(db.flushnodes), "size", storage-db.dirtiesSize+db.flushsize, "time", time.Since(start)+db.flushtime, "gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize) // Reset the garbage collection statistics db.gcnodes, db.gcsize, db.gctime = 0, 0, 0 db.flushnodes, db.flushsize, db.flushtime = 0, 0, 0 return nil } // commit is the private locked version of Commit. func (db *Database) commit(hash common.Hash, batch ethdb.Batch, uncacher *cleaner) error { // If the node does not exist, it's a previously committed node node, ok := db.dirties[hash] if !ok { return nil } var err error node.forChilds(func(child common.Hash) { if err == nil { err = db.commit(child, batch, uncacher) } }) if err != nil { return err } if err := batch.Put(hash[:], node.rlp()); err != nil { return err } // If we've reached an optimal batch size, commit and start over if batch.ValueSize() >= ethdb.IdealBatchSize { if err := batch.Write(); err != nil { return err } db.lock.Lock() batch.Replay(uncacher) batch.Reset() db.lock.Unlock() } return nil } // cleaner is a database batch replayer that takes a batch of write operations // and cleans up the trie database from anything written to disk. type cleaner struct { db *Database } // Put reacts to database writes and implements dirty data uncaching. This is the // post-processing step of a commit operation where the already persisted trie is // removed from the dirty cache and moved into the clean cache. The reason behind // the two-phase commit is to ensure ensure data availability while moving from // memory to disk. func (c *cleaner) Put(key []byte, rlp []byte) error { hash := common.BytesToHash(key) // If the node does not exist, we're done on this path node, ok := c.db.dirties[hash] if !ok { return nil } // Node still exists, remove it from the flush-list switch hash { case c.db.oldest: c.db.oldest = node.flushNext c.db.dirties[node.flushNext].flushPrev = common.Hash{} case c.db.newest: c.db.newest = node.flushPrev c.db.dirties[node.flushPrev].flushNext = common.Hash{} default: c.db.dirties[node.flushPrev].flushNext = node.flushNext c.db.dirties[node.flushNext].flushPrev = node.flushPrev } // Remove the node from the dirty cache delete(c.db.dirties, hash) c.db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size)) if node.children != nil { c.db.dirtiesSize -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2)) } // Move the flushed node into the clean cache to prevent insta-reloads if c.db.cleans != nil { c.db.cleans.Set(hash[:], rlp) memcacheCleanWriteMeter.Mark(int64(len(rlp))) } return nil } func (c *cleaner) Delete(key []byte) error { panic("not implemented") } // Size returns the current storage size of the memory cache in front of the // persistent database layer. func (db *Database) Size() (common.StorageSize, common.StorageSize) { db.lock.RLock() defer db.lock.RUnlock() // db.dirtiesSize only contains the useful data in the cache, but when reporting // the total memory consumption, the maintenance metadata is also needed to be // counted. var metadataSize = common.StorageSize((len(db.dirties) - 1) * cachedNodeSize) var metarootRefs = common.StorageSize(len(db.dirties[common.Hash{}].children) * (common.HashLength + 2)) return db.dirtiesSize + db.childrenSize + metadataSize - metarootRefs, db.preimagesSize }