// Copyright 2020 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package bls12381 import ( "errors" "math/big" ) type fp2Temp struct { t [4]*fe } type fp2 struct { fp2Temp } func newFp2Temp() fp2Temp { t := [4]*fe{} for i := 0; i < len(t); i++ { t[i] = &fe{} } return fp2Temp{t} } func newFp2() *fp2 { t := newFp2Temp() return &fp2{t} } func (e *fp2) fromBytes(in []byte) (*fe2, error) { if len(in) != 96 { return nil, errors.New("length of input string should be 96 bytes") } c1, err := fromBytes(in[:48]) if err != nil { return nil, err } c0, err := fromBytes(in[48:]) if err != nil { return nil, err } return &fe2{*c0, *c1}, nil } func (e *fp2) toBytes(a *fe2) []byte { out := make([]byte, 96) copy(out[:48], toBytes(&a[1])) copy(out[48:], toBytes(&a[0])) return out } func (e *fp2) new() *fe2 { return new(fe2).zero() } func (e *fp2) zero() *fe2 { return new(fe2).zero() } func (e *fp2) one() *fe2 { return new(fe2).one() } func (e *fp2) add(c, a, b *fe2) { add(&c[0], &a[0], &b[0]) add(&c[1], &a[1], &b[1]) } func (e *fp2) addAssign(a, b *fe2) { addAssign(&a[0], &b[0]) addAssign(&a[1], &b[1]) } func (e *fp2) ladd(c, a, b *fe2) { ladd(&c[0], &a[0], &b[0]) ladd(&c[1], &a[1], &b[1]) } func (e *fp2) double(c, a *fe2) { double(&c[0], &a[0]) double(&c[1], &a[1]) } func (e *fp2) doubleAssign(a *fe2) { doubleAssign(&a[0]) doubleAssign(&a[1]) } func (e *fp2) ldouble(c, a *fe2) { ldouble(&c[0], &a[0]) ldouble(&c[1], &a[1]) } func (e *fp2) sub(c, a, b *fe2) { sub(&c[0], &a[0], &b[0]) sub(&c[1], &a[1], &b[1]) } func (e *fp2) subAssign(c, a *fe2) { subAssign(&c[0], &a[0]) subAssign(&c[1], &a[1]) } func (e *fp2) neg(c, a *fe2) { neg(&c[0], &a[0]) neg(&c[1], &a[1]) } func (e *fp2) mul(c, a, b *fe2) { t := e.t mul(t[1], &a[0], &b[0]) mul(t[2], &a[1], &b[1]) add(t[0], &a[0], &a[1]) add(t[3], &b[0], &b[1]) sub(&c[0], t[1], t[2]) addAssign(t[1], t[2]) mul(t[0], t[0], t[3]) sub(&c[1], t[0], t[1]) } func (e *fp2) mulAssign(a, b *fe2) { t := e.t mul(t[1], &a[0], &b[0]) mul(t[2], &a[1], &b[1]) add(t[0], &a[0], &a[1]) add(t[3], &b[0], &b[1]) sub(&a[0], t[1], t[2]) addAssign(t[1], t[2]) mul(t[0], t[0], t[3]) sub(&a[1], t[0], t[1]) } func (e *fp2) square(c, a *fe2) { t := e.t ladd(t[0], &a[0], &a[1]) sub(t[1], &a[0], &a[1]) ldouble(t[2], &a[0]) mul(&c[0], t[0], t[1]) mul(&c[1], t[2], &a[1]) } func (e *fp2) squareAssign(a *fe2) { t := e.t ladd(t[0], &a[0], &a[1]) sub(t[1], &a[0], &a[1]) ldouble(t[2], &a[0]) mul(&a[0], t[0], t[1]) mul(&a[1], t[2], &a[1]) } func (e *fp2) mulByNonResidue(c, a *fe2) { t := e.t sub(t[0], &a[0], &a[1]) add(&c[1], &a[0], &a[1]) c[0].set(t[0]) } func (e *fp2) mulByB(c, a *fe2) { t := e.t double(t[0], &a[0]) double(t[1], &a[1]) doubleAssign(t[0]) doubleAssign(t[1]) sub(&c[0], t[0], t[1]) add(&c[1], t[0], t[1]) } func (e *fp2) inverse(c, a *fe2) { t := e.t square(t[0], &a[0]) square(t[1], &a[1]) addAssign(t[0], t[1]) inverse(t[0], t[0]) mul(&c[0], &a[0], t[0]) mul(t[0], t[0], &a[1]) neg(&c[1], t[0]) } func (e *fp2) mulByFq(c, a *fe2, b *fe) { mul(&c[0], &a[0], b) mul(&c[1], &a[1], b) } func (e *fp2) exp(c, a *fe2, s *big.Int) { z := e.one() for i := s.BitLen() - 1; i >= 0; i-- { e.square(z, z) if s.Bit(i) == 1 { e.mul(z, z, a) } } c.set(z) } func (e *fp2) frobeniusMap(c, a *fe2, power uint) { c[0].set(&a[0]) if power%2 == 1 { neg(&c[1], &a[1]) return } c[1].set(&a[1]) } func (e *fp2) frobeniusMapAssign(a *fe2, power uint) { if power%2 == 1 { neg(&a[1], &a[1]) return } } func (e *fp2) sqrt(c, a *fe2) bool { u, x0, a1, alpha := &fe2{}, &fe2{}, &fe2{}, &fe2{} u.set(a) e.exp(a1, a, pMinus3Over4) e.square(alpha, a1) e.mul(alpha, alpha, a) e.mul(x0, a1, a) if alpha.equal(negativeOne2) { neg(&c[0], &x0[1]) c[1].set(&x0[0]) return true } e.add(alpha, alpha, e.one()) e.exp(alpha, alpha, pMinus1Over2) e.mul(c, alpha, x0) e.square(alpha, c) return alpha.equal(u) } func (e *fp2) isQuadraticNonResidue(a *fe2) bool { // https://github.com/leovt/constructible/wiki/Taking-Square-Roots-in-quadratic-extension-Fields c0, c1 := new(fe), new(fe) square(c0, &a[0]) square(c1, &a[1]) add(c1, c1, c0) return isQuadraticNonResidue(c1) }