require=(function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);var f=new Error("Cannot find module '"+o+"'");throw f.code="MODULE_NOT_FOUND",f}var l=n[o]={exports:{}};t[o][0].call(l.exports,function(e){var n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o. */ /** @file abi.js * @authors: * Marek Kotewicz * Gav Wood * @date 2014 */ var utils = require('./utils'); var types = require('./types'); var c = require('./const'); var f = require('./formatters'); var displayTypeError = function (type) { console.error('parser does not support type: ' + type); }; /// This method should be called if we want to check if givent type is an array type /// @returns true if it is, otherwise false var arrayType = function (type) { return type.slice(-2) === '[]'; }; var dynamicTypeBytes = function (type, value) { // TODO: decide what to do with array of strings if (arrayType(type) || type === 'string') // only string itself that is dynamic; stringX is static length. return f.formatInputInt(value.length); return ""; }; var inputTypes = types.inputTypes(); /// Formats input params to bytes /// @param abi contract method inputs /// @param array of params that will be formatted to bytes /// @returns bytes representation of input params var formatInput = function (inputs, params) { var bytes = ""; var toAppendConstant = ""; var toAppendArrayContent = ""; /// first we iterate in search for dynamic inputs.forEach(function (input, index) { bytes += dynamicTypeBytes(input.type, params[index]); }); inputs.forEach(function (input, i) { /*jshint maxcomplexity:5 */ var typeMatch = false; for (var j = 0; j < inputTypes.length && !typeMatch; j++) { typeMatch = inputTypes[j].type(inputs[i].type, params[i]); } if (!typeMatch) { displayTypeError(inputs[i].type); } var formatter = inputTypes[j - 1].format; if (arrayType(inputs[i].type)) toAppendArrayContent += params[i].reduce(function (acc, curr) { return acc + formatter(curr); }, ""); else if (inputs[i].type === 'string') toAppendArrayContent += formatter(params[i]); else toAppendConstant += formatter(params[i]); }); bytes += toAppendConstant + toAppendArrayContent; return bytes; }; var dynamicBytesLength = function (type) { if (arrayType(type) || type === 'string') // only string itself that is dynamic; stringX is static length. return c.ETH_PADDING * 2; return 0; }; var outputTypes = types.outputTypes(); /// Formats output bytes back to param list /// @param contract abi method outputs /// @param bytes representtion of output /// @returns array of output params var formatOutput = function (outs, output) { output = output.slice(2); var result = []; var padding = c.ETH_PADDING * 2; var dynamicPartLength = outs.reduce(function (acc, curr) { return acc + dynamicBytesLength(curr.type); }, 0); var dynamicPart = output.slice(0, dynamicPartLength); output = output.slice(dynamicPartLength); outs.forEach(function (out, i) { /*jshint maxcomplexity:6 */ var typeMatch = false; for (var j = 0; j < outputTypes.length && !typeMatch; j++) { typeMatch = outputTypes[j].type(outs[i].type); } if (!typeMatch) { displayTypeError(outs[i].type); } var formatter = outputTypes[j - 1].format; if (arrayType(outs[i].type)) { var size = f.formatOutputUInt(dynamicPart.slice(0, padding)); dynamicPart = dynamicPart.slice(padding); var array = []; for (var k = 0; k < size; k++) { array.push(formatter(output.slice(0, padding))); output = output.slice(padding); } result.push(array); } else if (types.prefixedType('string')(outs[i].type)) { dynamicPart = dynamicPart.slice(padding); result.push(formatter(output.slice(0, padding))); output = output.slice(padding); } else { result.push(formatter(output.slice(0, padding))); output = output.slice(padding); } }); return result; }; /// @param json abi for contract /// @returns input parser object for given json abi /// TODO: refactor creating the parser, do not double logic from contract var inputParser = function (json) { var parser = {}; json.forEach(function (method) { var displayName = utils.extractDisplayName(method.name); var typeName = utils.extractTypeName(method.name); var impl = function () { var params = Array.prototype.slice.call(arguments); return formatInput(method.inputs, params); }; if (parser[displayName] === undefined) { parser[displayName] = impl; } parser[displayName][typeName] = impl; }); return parser; }; /// @param json abi for contract /// @returns output parser for given json abi var outputParser = function (json) { var parser = {}; json.forEach(function (method) { var displayName = utils.extractDisplayName(method.name); var typeName = utils.extractTypeName(method.name); var impl = function (output) { return formatOutput(method.outputs, output); }; if (parser[displayName] === undefined) { parser[displayName] = impl; } parser[displayName][typeName] = impl; }); return parser; }; module.exports = { inputParser: inputParser, outputParser: outputParser, formatInput: formatInput, formatOutput: formatOutput }; },{"./const":4,"./formatters":5,"./types":6,"./utils":7}],4:[function(require,module,exports){ (function (process){ /* This file is part of ethereum.js. ethereum.js is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. ethereum.js is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with ethereum.js. If not, see . */ /** @file const.js * @authors: * Marek Kotewicz * @date 2015 */ /// required to define ETH_BIGNUMBER_ROUNDING_MODE if (process.env.NODE_ENV !== 'build') { var BigNumber = require('bignumber.js'); // jshint ignore:line } var ETH_UNITS = [ 'wei', 'Kwei', 'Mwei', 'Gwei', 'szabo', 'finney', 'ether', 'grand', 'Mether', 'Gether', 'Tether', 'Pether', 'Eether', 'Zether', 'Yether', 'Nether', 'Dether', 'Vether', 'Uether' ]; module.exports = { ETH_PADDING: 32, ETH_SIGNATURE_LENGTH: 4, ETH_UNITS: ETH_UNITS, ETH_BIGNUMBER_ROUNDING_MODE: { ROUNDING_MODE: BigNumber.ROUND_DOWN }, ETH_POLLING_TIMEOUT: 1000 }; }).call(this,require('_process')) },{"_process":2,"bignumber.js":8}],5:[function(require,module,exports){ (function (process){ /* This file is part of ethereum.js. ethereum.js is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. ethereum.js is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with ethereum.js. If not, see . */ /** @file formatters.js * @authors: * Marek Kotewicz * @date 2015 */ if (process.env.NODE_ENV !== 'build') { var BigNumber = require('bignumber.js'); // jshint ignore:line } var utils = require('./utils'); var c = require('./const'); /// @param string string to be padded /// @param number of characters that result string should have /// @param sign, by default 0 /// @returns right aligned string var padLeft = function (string, chars, sign) { return new Array(chars - string.length + 1).join(sign ? sign : "0") + string; }; /// Formats input value to byte representation of int /// If value is negative, return it's two's complement /// If the value is floating point, round it down /// @returns right-aligned byte representation of int var formatInputInt = function (value) { /*jshint maxcomplexity:7 */ var padding = c.ETH_PADDING * 2; if (value instanceof BigNumber || typeof value === 'number') { if (typeof value === 'number') value = new BigNumber(value); BigNumber.config(c.ETH_BIGNUMBER_ROUNDING_MODE); value = value.round(); if (value.lessThan(0)) value = new BigNumber("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff", 16).plus(value).plus(1); value = value.toString(16); } else if (value.indexOf('0x') === 0) value = value.substr(2); else if (typeof value === 'string') value = formatInputInt(new BigNumber(value)); else value = (+value).toString(16); return padLeft(value, padding); }; /// Formats input value to byte representation of string /// @returns left-algined byte representation of string var formatInputString = function (value) { return utils.fromAscii(value, c.ETH_PADDING).substr(2); }; /// Formats input value to byte representation of bool /// @returns right-aligned byte representation bool var formatInputBool = function (value) { return '000000000000000000000000000000000000000000000000000000000000000' + (value ? '1' : '0'); }; /// Formats input value to byte representation of real /// Values are multiplied by 2^m and encoded as integers /// @returns byte representation of real var formatInputReal = function (value) { return formatInputInt(new BigNumber(value).times(new BigNumber(2).pow(128))); }; /// Check if input value is negative /// @param value is hex format /// @returns true if it is negative, otherwise false var signedIsNegative = function (value) { return (new BigNumber(value.substr(0, 1), 16).toString(2).substr(0, 1)) === '1'; }; /// Formats input right-aligned input bytes to int /// @returns right-aligned input bytes formatted to int var formatOutputInt = function (value) { value = value || "0"; // check if it's negative number // it it is, return two's complement if (signedIsNegative(value)) { return new BigNumber(value, 16).minus(new BigNumber('ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff', 16)).minus(1); } return new BigNumber(value, 16); }; /// Formats big right-aligned input bytes to uint /// @returns right-aligned input bytes formatted to uint var formatOutputUInt = function (value) { value = value || "0"; return new BigNumber(value, 16); }; /// @returns input bytes formatted to real var formatOutputReal = function (value) { return formatOutputInt(value).dividedBy(new BigNumber(2).pow(128)); }; /// @returns input bytes formatted to ureal var formatOutputUReal = function (value) { return formatOutputUInt(value).dividedBy(new BigNumber(2).pow(128)); }; /// @returns right-aligned input bytes formatted to hex var formatOutputHash = function (value) { return "0x" + value; }; /// @returns right-aligned input bytes formatted to bool var formatOutputBool = function (value) { return value === '0000000000000000000000000000000000000000000000000000000000000001' ? true : false; }; /// @returns left-aligned input bytes formatted to ascii string var formatOutputString = function (value) { return utils.toAscii(value); }; /// @returns right-aligned input bytes formatted to address var formatOutputAddress = function (value) { return "0x" + value.slice(value.length - 40, value.length); }; module.exports = { formatInputInt: formatInputInt, formatInputString: formatInputString, formatInputBool: formatInputBool, formatInputReal: formatInputReal, formatOutputInt: formatOutputInt, formatOutputUInt: formatOutputUInt, formatOutputReal: formatOutputReal, formatOutputUReal: formatOutputUReal, formatOutputHash: formatOutputHash, formatOutputBool: formatOutputBool, formatOutputString: formatOutputString, formatOutputAddress: formatOutputAddress }; }).call(this,require('_process')) },{"./const":4,"./utils":7,"_process":2,"bignumber.js":8}],6:[function(require,module,exports){ /* This file is part of ethereum.js. ethereum.js is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. ethereum.js is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with ethereum.js. If not, see . */ /** @file types.js * @authors: * Marek Kotewicz * @date 2015 */ var f = require('./formatters'); /// @param expected type prefix (string) /// @returns function which checks if type has matching prefix. if yes, returns true, otherwise false var prefixedType = function (prefix) { return function (type) { return type.indexOf(prefix) === 0; }; }; /// @param expected type name (string) /// @returns function which checks if type is matching expected one. if yes, returns true, otherwise false var namedType = function (name) { return function (type) { return name === type; }; }; /// Setups input formatters for solidity types /// @returns an array of input formatters var inputTypes = function () { return [ { type: prefixedType('uint'), format: f.formatInputInt }, { type: prefixedType('int'), format: f.formatInputInt }, { type: prefixedType('hash'), format: f.formatInputInt }, { type: prefixedType('string'), format: f.formatInputString }, { type: prefixedType('real'), format: f.formatInputReal }, { type: prefixedType('ureal'), format: f.formatInputReal }, { type: namedType('address'), format: f.formatInputInt }, { type: namedType('bool'), format: f.formatInputBool } ]; }; /// Setups output formaters for solidity types /// @returns an array of output formatters var outputTypes = function () { return [ { type: prefixedType('uint'), format: f.formatOutputUInt }, { type: prefixedType('int'), format: f.formatOutputInt }, { type: prefixedType('hash'), format: f.formatOutputHash }, { type: prefixedType('string'), format: f.formatOutputString }, { type: prefixedType('real'), format: f.formatOutputReal }, { type: prefixedType('ureal'), format: f.formatOutputUReal }, { type: namedType('address'), format: f.formatOutputAddress }, { type: namedType('bool'), format: f.formatOutputBool } ]; }; module.exports = { prefixedType: prefixedType, namedType: namedType, inputTypes: inputTypes, outputTypes: outputTypes }; },{"./formatters":5}],7:[function(require,module,exports){ /* This file is part of ethereum.js. ethereum.js is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. ethereum.js is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with ethereum.js. If not, see . */ /** @file utils.js * @authors: * Marek Kotewicz * @date 2015 */ var c = require('./const'); /// Finds first index of array element matching pattern /// @param array /// @param callback pattern /// @returns index of element var findIndex = function (array, callback) { var end = false; var i = 0; for (; i < array.length && !end; i++) { end = callback(array[i]); } return end ? i - 1 : -1; }; /// @returns ascii string representation of hex value prefixed with 0x var toAscii = function(hex) { // Find termination var str = ""; var i = 0, l = hex.length; if (hex.substring(0, 2) === '0x') { i = 2; } for (; i < l; i+=2) { var code = parseInt(hex.substr(i, 2), 16); if (code === 0) { break; } str += String.fromCharCode(code); } return str; }; var toHex = function(str) { var hex = ""; for(var i = 0; i < str.length; i++) { var n = str.charCodeAt(i).toString(16); hex += n.length < 2 ? '0' + n : n; } return hex; }; /// @returns hex representation (prefixed by 0x) of ascii string var fromAscii = function(str, pad) { pad = pad === undefined ? 0 : pad; var hex = toHex(str); while (hex.length < pad*2) hex += "00"; return "0x" + hex; }; /// @returns display name for function/event eg. multiply(uint256) -> multiply var extractDisplayName = function (name) { var length = name.indexOf('('); return length !== -1 ? name.substr(0, length) : name; }; /// @returns overloaded part of function/event name var extractTypeName = function (name) { /// TODO: make it invulnerable var length = name.indexOf('('); return length !== -1 ? name.substr(length + 1, name.length - 1 - (length + 1)).replace(' ', '') : ""; }; /// Filters all function from input abi /// @returns abi array with filtered objects of type 'function' var filterFunctions = function (json) { return json.filter(function (current) { return current.type === 'function'; }); }; /// Filters all events form input abi /// @returns abi array with filtered objects of type 'event' var filterEvents = function (json) { return json.filter(function (current) { return current.type === 'event'; }); }; /// used to transform value/string to eth string /// TODO: use BigNumber.js to parse int /// TODO: add tests for it! var toEth = function (str) { /*jshint maxcomplexity:7 */ var val = typeof str === "string" ? str.indexOf('0x') === 0 ? parseInt(str.substr(2), 16) : parseInt(str) : str; var unit = 0; var units = c.ETH_UNITS; while (val > 3000 && unit < units.length - 1) { val /= 1000; unit++; } var s = val.toString().length < val.toFixed(2).length ? val.toString() : val.toFixed(2); var replaceFunction = function($0, $1, $2) { return $1 + ',' + $2; }; while (true) { var o = s; s = s.replace(/(\d)(\d\d\d[\.\,])/, replaceFunction); if (o === s) break; } return s + ' ' + units[unit]; }; module.exports = { findIndex: findIndex, toAscii: toAscii, fromAscii: fromAscii, extractDisplayName: extractDisplayName, extractTypeName: extractTypeName, filterFunctions: filterFunctions, filterEvents: filterEvents, toEth: toEth }; },{"./const":4}],8:[function(require,module,exports){ /*! bignumber.js v2.0.3 https://github.com/MikeMcl/bignumber.js/LICENCE */ ;(function (global) { 'use strict'; /* bignumber.js v2.0.3 A JavaScript library for arbitrary-precision arithmetic. https://github.com/MikeMcl/bignumber.js Copyright (c) 2015 Michael Mclaughlin MIT Expat Licence */ var BigNumber, crypto, parseNumeric, isNumeric = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i, mathceil = Math.ceil, mathfloor = Math.floor, notBool = ' not a boolean or binary digit', roundingMode = 'rounding mode', tooManyDigits = 'number type has more than 15 significant digits', ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_', BASE = 1e14, LOG_BASE = 14, MAX_SAFE_INTEGER = 0x1fffffffffffff, // 2^53 - 1 // MAX_INT32 = 0x7fffffff, // 2^31 - 1 POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13], SQRT_BASE = 1e7, /* * The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and * the arguments to toExponential, toFixed, toFormat, and toPrecision, beyond which an * exception is thrown (if ERRORS is true). */ MAX = 1E9; // 0 to MAX_INT32 /* * Create and return a BigNumber constructor. */ function another(configObj) { var div, // id tracks the caller function, so its name can be included in error messages. id = 0, P = BigNumber.prototype, ONE = new BigNumber(1), /********************************* EDITABLE DEFAULTS **********************************/ /* * The default values below must be integers within the inclusive ranges stated. * The values can also be changed at run-time using BigNumber.config. */ // The maximum number of decimal places for operations involving division. DECIMAL_PLACES = 20, // 0 to MAX /* * The rounding mode used when rounding to the above decimal places, and when using * toExponential, toFixed, toFormat and toPrecision, and round (default value). * UP 0 Away from zero. * DOWN 1 Towards zero. * CEIL 2 Towards +Infinity. * FLOOR 3 Towards -Infinity. * HALF_UP 4 Towards nearest neighbour. If equidistant, up. * HALF_DOWN 5 Towards nearest neighbour. If equidistant, down. * HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour. * HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity. * HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity. */ ROUNDING_MODE = 4, // 0 to 8 // EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS] // The exponent value at and beneath which toString returns exponential notation. // Number type: -7 TO_EXP_NEG = -7, // 0 to -MAX // The exponent value at and above which toString returns exponential notation. // Number type: 21 TO_EXP_POS = 21, // 0 to MAX // RANGE : [MIN_EXP, MAX_EXP] // The minimum exponent value, beneath which underflow to zero occurs. // Number type: -324 (5e-324) MIN_EXP = -1e7, // -1 to -MAX // The maximum exponent value, above which overflow to Infinity occurs. // Number type: 308 (1.7976931348623157e+308) // For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow. MAX_EXP = 1e7, // 1 to MAX // Whether BigNumber Errors are ever thrown. ERRORS = true, // true or false // Change to intValidatorNoErrors if ERRORS is false. isValidInt = intValidatorWithErrors, // intValidatorWithErrors/intValidatorNoErrors // Whether to use cryptographically-secure random number generation, if available. CRYPTO = false, // true or false /* * The modulo mode used when calculating the modulus: a mod n. * The quotient (q = a / n) is calculated according to the corresponding rounding mode. * The remainder (r) is calculated as: r = a - n * q. * * UP 0 The remainder is positive if the dividend is negative, else is negative. * DOWN 1 The remainder has the same sign as the dividend. * This modulo mode is commonly known as 'truncated division' and is * equivalent to (a % n) in JavaScript. * FLOOR 3 The remainder has the same sign as the divisor (Python %). * HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function. * EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)). * The remainder is always positive. * * The truncated division, floored division, Euclidian division and IEEE 754 remainder * modes are commonly used for the modulus operation. * Although the other rounding modes can also be used, they may not give useful results. */ MODULO_MODE = 1, // 0 to 9 // The maximum number of significant digits of the result of the toPower operation. // If POW_PRECISION is 0, there will be unlimited significant digits. POW_PRECISION = 100, // 0 to MAX // The format specification used by the BigNumber.prototype.toFormat method. FORMAT = { decimalSeparator: '.', groupSeparator: ',', groupSize: 3, secondaryGroupSize: 0, fractionGroupSeparator: '\xA0', // non-breaking space fractionGroupSize: 0 }; /******************************************************************************************/ // CONSTRUCTOR /* * The BigNumber constructor and exported function. * Create and return a new instance of a BigNumber object. * * n {number|string|BigNumber} A numeric value. * [b] {number} The base of n. Integer, 2 to 64 inclusive. */ function BigNumber( n, b ) { var c, e, i, num, len, str, x = this; // Enable constructor usage without new. if ( !( x instanceof BigNumber ) ) { // 'BigNumber() constructor call without new: {n}' if (ERRORS) raise( 26, 'constructor call without new', n ); return new BigNumber( n, b ); } // 'new BigNumber() base not an integer: {b}' // 'new BigNumber() base out of range: {b}' if ( b == null || !isValidInt( b, 2, 64, id, 'base' ) ) { // Duplicate. if ( n instanceof BigNumber ) { x.s = n.s; x.e = n.e; x.c = ( n = n.c ) ? n.slice() : n; id = 0; return; } if ( ( num = typeof n == 'number' ) && n * 0 == 0 ) { x.s = 1 / n < 0 ? ( n = -n, -1 ) : 1; // Fast path for integers. if ( n === ~~n ) { for ( e = 0, i = n; i >= 10; i /= 10, e++ ); x.e = e; x.c = [n]; id = 0; return; } str = n + ''; } else { if ( !isNumeric.test( str = n + '' ) ) return parseNumeric( x, str, num ); x.s = str.charCodeAt(0) === 45 ? ( str = str.slice(1), -1 ) : 1; } } else { b = b | 0; str = n + ''; // Ensure return value is rounded to DECIMAL_PLACES as with other bases. // Allow exponential notation to be used with base 10 argument. if ( b == 10 ) { x = new BigNumber( n instanceof BigNumber ? n : str ); return round( x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE ); } // Avoid potential interpretation of Infinity and NaN as base 44+ values. // Any number in exponential form will fail due to the [Ee][+-]. if ( ( num = typeof n == 'number' ) && n * 0 != 0 || !( new RegExp( '^-?' + ( c = '[' + ALPHABET.slice( 0, b ) + ']+' ) + '(?:\\.' + c + ')?$',b < 37 ? 'i' : '' ) ).test(str) ) { return parseNumeric( x, str, num, b ); } if (num) { x.s = 1 / n < 0 ? ( str = str.slice(1), -1 ) : 1; if ( ERRORS && str.replace( /^0\.0*|\./, '' ).length > 15 ) { // 'new BigNumber() number type has more than 15 significant digits: {n}' raise( id, tooManyDigits, n ); } // Prevent later check for length on converted number. num = false; } else { x.s = str.charCodeAt(0) === 45 ? ( str = str.slice(1), -1 ) : 1; } str = convertBase( str, 10, b, x.s ); } // Decimal point? if ( ( e = str.indexOf('.') ) > -1 ) str = str.replace( '.', '' ); // Exponential form? if ( ( i = str.search( /e/i ) ) > 0 ) { // Determine exponent. if ( e < 0 ) e = i; e += +str.slice( i + 1 ); str = str.substring( 0, i ); } else if ( e < 0 ) { // Integer. e = str.length; } // Determine leading zeros. for ( i = 0; str.charCodeAt(i) === 48; i++ ); // Determine trailing zeros. for ( len = str.length; str.charCodeAt(--len) === 48; ); str = str.slice( i, len + 1 ); if (str) { len = str.length; // Disallow numbers with over 15 significant digits if number type. // 'new BigNumber() number type has more than 15 significant digits: {n}' if ( num && ERRORS && len > 15 ) raise( id, tooManyDigits, x.s * n ); e = e - i - 1; // Overflow? if ( e > MAX_EXP ) { // Infinity. x.c = x.e = null; // Underflow? } else if ( e < MIN_EXP ) { // Zero. x.c = [ x.e = 0 ]; } else { x.e = e; x.c = []; // Transform base // e is the base 10 exponent. // i is where to slice str to get the first element of the coefficient array. i = ( e + 1 ) % LOG_BASE; if ( e < 0 ) i += LOG_BASE; if ( i < len ) { if (i) x.c.push( +str.slice( 0, i ) ); for ( len -= LOG_BASE; i < len; ) { x.c.push( +str.slice( i, i += LOG_BASE ) ); } str = str.slice(i); i = LOG_BASE - str.length; } else { i -= len; } for ( ; i--; str += '0' ); x.c.push( +str ); } } else { // Zero. x.c = [ x.e = 0 ]; } id = 0; } // CONSTRUCTOR PROPERTIES BigNumber.another = another; BigNumber.ROUND_UP = 0; BigNumber.ROUND_DOWN = 1; BigNumber.ROUND_CEIL = 2; BigNumber.ROUND_FLOOR = 3; BigNumber.ROUND_HALF_UP = 4; BigNumber.ROUND_HALF_DOWN = 5; BigNumber.ROUND_HALF_EVEN = 6; BigNumber.ROUND_HALF_CEIL = 7; BigNumber.ROUND_HALF_FLOOR = 8; BigNumber.EUCLID = 9; /* * Configure infrequently-changing library-wide settings. * * Accept an object or an argument list, with one or many of the following properties or * parameters respectively: * * DECIMAL_PLACES {number} Integer, 0 to MAX inclusive * ROUNDING_MODE {number} Integer, 0 to 8 inclusive * EXPONENTIAL_AT {number|number[]} Integer, -MAX to MAX inclusive or * [integer -MAX to 0 incl., 0 to MAX incl.] * RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or * [integer -MAX to -1 incl., integer 1 to MAX incl.] * ERRORS {boolean|number} true, false, 1 or 0 * CRYPTO {boolean|number} true, false, 1 or 0 * MODULO_MODE {number} 0 to 9 inclusive * POW_PRECISION {number} 0 to MAX inclusive * FORMAT {object} See BigNumber.prototype.toFormat * decimalSeparator {string} * groupSeparator {string} * groupSize {number} * secondaryGroupSize {number} * fractionGroupSeparator {string} * fractionGroupSize {number} * * (The values assigned to the above FORMAT object properties are not checked for validity.) * * E.g. * BigNumber.config(20, 4) is equivalent to * BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 }) * * Ignore properties/parameters set to null or undefined. * Return an object with the properties current values. */ BigNumber.config = function () { var v, p, i = 0, r = {}, a = arguments, o = a[0], has = o && typeof o == 'object' ? function () { if ( o.hasOwnProperty(p) ) return ( v = o[p] ) != null; } : function () { if ( a.length > i ) return ( v = a[i++] ) != null; }; // DECIMAL_PLACES {number} Integer, 0 to MAX inclusive. // 'config() DECIMAL_PLACES not an integer: {v}' // 'config() DECIMAL_PLACES out of range: {v}' if ( has( p = 'DECIMAL_PLACES' ) && isValidInt( v, 0, MAX, 2, p ) ) { DECIMAL_PLACES = v | 0; } r[p] = DECIMAL_PLACES; // ROUNDING_MODE {number} Integer, 0 to 8 inclusive. // 'config() ROUNDING_MODE not an integer: {v}' // 'config() ROUNDING_MODE out of range: {v}' if ( has( p = 'ROUNDING_MODE' ) && isValidInt( v, 0, 8, 2, p ) ) { ROUNDING_MODE = v | 0; } r[p] = ROUNDING_MODE; // EXPONENTIAL_AT {number|number[]} // Integer, -MAX to MAX inclusive or [integer -MAX to 0 inclusive, 0 to MAX inclusive]. // 'config() EXPONENTIAL_AT not an integer: {v}' // 'config() EXPONENTIAL_AT out of range: {v}' if ( has( p = 'EXPONENTIAL_AT' ) ) { if ( isArray(v) ) { if ( isValidInt( v[0], -MAX, 0, 2, p ) && isValidInt( v[1], 0, MAX, 2, p ) ) { TO_EXP_NEG = v[0] | 0; TO_EXP_POS = v[1] | 0; } } else if ( isValidInt( v, -MAX, MAX, 2, p ) ) { TO_EXP_NEG = -( TO_EXP_POS = ( v < 0 ? -v : v ) | 0 ); } } r[p] = [ TO_EXP_NEG, TO_EXP_POS ]; // RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or // [integer -MAX to -1 inclusive, integer 1 to MAX inclusive]. // 'config() RANGE not an integer: {v}' // 'config() RANGE cannot be zero: {v}' // 'config() RANGE out of range: {v}' if ( has( p = 'RANGE' ) ) { if ( isArray(v) ) { if ( isValidInt( v[0], -MAX, -1, 2, p ) && isValidInt( v[1], 1, MAX, 2, p ) ) { MIN_EXP = v[0] | 0; MAX_EXP = v[1] | 0; } } else if ( isValidInt( v, -MAX, MAX, 2, p ) ) { if ( v | 0 ) MIN_EXP = -( MAX_EXP = ( v < 0 ? -v : v ) | 0 ); else if (ERRORS) raise( 2, p + ' cannot be zero', v ); } } r[p] = [ MIN_EXP, MAX_EXP ]; // ERRORS {boolean|number} true, false, 1 or 0. // 'config() ERRORS not a boolean or binary digit: {v}' if ( has( p = 'ERRORS' ) ) { if ( v === !!v || v === 1 || v === 0 ) { id = 0; isValidInt = ( ERRORS = !!v ) ? intValidatorWithErrors : intValidatorNoErrors; } else if (ERRORS) { raise( 2, p + notBool, v ); } } r[p] = ERRORS; // CRYPTO {boolean|number} true, false, 1 or 0. // 'config() CRYPTO not a boolean or binary digit: {v}' // 'config() crypto unavailable: {crypto}' if ( has( p = 'CRYPTO' ) ) { if ( v === !!v || v === 1 || v === 0 ) { CRYPTO = !!( v && crypto && typeof crypto == 'object' ); if ( v && !CRYPTO && ERRORS ) raise( 2, 'crypto unavailable', crypto ); } else if (ERRORS) { raise( 2, p + notBool, v ); } } r[p] = CRYPTO; // MODULO_MODE {number} Integer, 0 to 9 inclusive. // 'config() MODULO_MODE not an integer: {v}' // 'config() MODULO_MODE out of range: {v}' if ( has( p = 'MODULO_MODE' ) && isValidInt( v, 0, 9, 2, p ) ) { MODULO_MODE = v | 0; } r[p] = MODULO_MODE; // POW_PRECISION {number} Integer, 0 to MAX inclusive. // 'config() POW_PRECISION not an integer: {v}' // 'config() POW_PRECISION out of range: {v}' if ( has( p = 'POW_PRECISION' ) && isValidInt( v, 0, MAX, 2, p ) ) { POW_PRECISION = v | 0; } r[p] = POW_PRECISION; // FORMAT {object} // 'config() FORMAT not an object: {v}' if ( has( p = 'FORMAT' ) ) { if ( typeof v == 'object' ) { FORMAT = v; } else if (ERRORS) { raise( 2, p + ' not an object', v ); } } r[p] = FORMAT; return r; }; /* * Return a new BigNumber whose value is the maximum of the arguments. * * arguments {number|string|BigNumber} */ BigNumber.max = function () { return maxOrMin( arguments, P.lt ); }; /* * Return a new BigNumber whose value is the minimum of the arguments. * * arguments {number|string|BigNumber} */ BigNumber.min = function () { return maxOrMin( arguments, P.gt ); }; /* * Return a new BigNumber with a random value equal to or greater than 0 and less than 1, * and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing * zeros are produced). * * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. * * 'random() decimal places not an integer: {dp}' * 'random() decimal places out of range: {dp}' * 'random() crypto unavailable: {crypto}' */ BigNumber.random = (function () { var pow2_53 = 0x20000000000000; // Return a 53 bit integer n, where 0 <= n < 9007199254740992. // Check if Math.random() produces more than 32 bits of randomness. // If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits. // 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1. var random53bitInt = (Math.random() * pow2_53) & 0x1fffff ? function () { return mathfloor( Math.random() * pow2_53 ); } : function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) + (Math.random() * 0x800000 | 0); }; return function (dp) { var a, b, e, k, v, i = 0, c = [], rand = new BigNumber(ONE); dp = dp == null || !isValidInt( dp, 0, MAX, 14 ) ? DECIMAL_PLACES : dp | 0; k = mathceil( dp / LOG_BASE ); if (CRYPTO) { // Browsers supporting crypto.getRandomValues. if ( crypto && crypto.getRandomValues ) { a = crypto.getRandomValues( new Uint32Array( k *= 2 ) ); for ( ; i < k; ) { // 53 bits: // ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2) // 11111 11111111 11111111 11111111 11100000 00000000 00000000 // ((Math.pow(2, 32) - 1) >>> 11).toString(2) // 11111 11111111 11111111 // 0x20000 is 2^21. v = a[i] * 0x20000 + (a[i + 1] >>> 11); // Rejection sampling: // 0 <= v < 9007199254740992 // Probability that v >= 9e15, is // 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251 if ( v >= 9e15 ) { b = crypto.getRandomValues( new Uint32Array(2) ); a[i] = b[0]; a[i + 1] = b[1]; } else { // 0 <= v <= 8999999999999999 // 0 <= (v % 1e14) <= 99999999999999 c.push( v % 1e14 ); i += 2; } } i = k / 2; // Node.js supporting crypto.randomBytes. } else if ( crypto && crypto.randomBytes ) { // buffer a = crypto.randomBytes( k *= 7 ); for ( ; i < k; ) { // 0x1000000000000 is 2^48, 0x10000000000 is 2^40 // 0x100000000 is 2^32, 0x1000000 is 2^24 // 11111 11111111 11111111 11111111 11111111 11111111 11111111 // 0 <= v < 9007199254740992 v = ( ( a[i] & 31 ) * 0x1000000000000 ) + ( a[i + 1] * 0x10000000000 ) + ( a[i + 2] * 0x100000000 ) + ( a[i + 3] * 0x1000000 ) + ( a[i + 4] << 16 ) + ( a[i + 5] << 8 ) + a[i + 6]; if ( v >= 9e15 ) { crypto.randomBytes(7).copy( a, i ); } else { // 0 <= (v % 1e14) <= 99999999999999 c.push( v % 1e14 ); i += 7; } } i = k / 7; } else if (ERRORS) { raise( 14, 'crypto unavailable', crypto ); } } // Use Math.random: CRYPTO is false or crypto is unavailable and ERRORS is false. if (!i) { for ( ; i < k; ) { v = random53bitInt(); if ( v < 9e15 ) c[i++] = v % 1e14; } } k = c[--i]; dp %= LOG_BASE; // Convert trailing digits to zeros according to dp. if ( k && dp ) { v = POWS_TEN[LOG_BASE - dp]; c[i] = mathfloor( k / v ) * v; } // Remove trailing elements which are zero. for ( ; c[i] === 0; c.pop(), i-- ); // Zero? if ( i < 0 ) { c = [ e = 0 ]; } else { // Remove leading elements which are zero and adjust exponent accordingly. for ( e = -1 ; c[0] === 0; c.shift(), e -= LOG_BASE); // Count the digits of the first element of c to determine leading zeros, and... for ( i = 1, v = c[0]; v >= 10; v /= 10, i++); // adjust the exponent accordingly. if ( i < LOG_BASE ) e -= LOG_BASE - i; } rand.e = e; rand.c = c; return rand; }; })(); // PRIVATE FUNCTIONS // Convert a numeric string of baseIn to a numeric string of baseOut. function convertBase( str, baseOut, baseIn, sign ) { var d, e, k, r, x, xc, y, i = str.indexOf( '.' ), dp = DECIMAL_PLACES, rm = ROUNDING_MODE; if ( baseIn < 37 ) str = str.toLowerCase(); // Non-integer. if ( i >= 0 ) { k = POW_PRECISION; // Unlimited precision. POW_PRECISION = 0; str = str.replace( '.', '' ); y = new BigNumber(baseIn); x = y.pow( str.length - i ); POW_PRECISION = k; // Convert str as if an integer, then restore the fraction part by dividing the // result by its base raised to a power. y.c = toBaseOut( toFixedPoint( coeffToString( x.c ), x.e ), 10, baseOut ); y.e = y.c.length; } // Convert the number as integer. xc = toBaseOut( str, baseIn, baseOut ); e = k = xc.length; // Remove trailing zeros. for ( ; xc[--k] == 0; xc.pop() ); if ( !xc[0] ) return '0'; if ( i < 0 ) { --e; } else { x.c = xc; x.e = e; // sign is needed for correct rounding. x.s = sign; x = div( x, y, dp, rm, baseOut ); xc = x.c; r = x.r; e = x.e; } d = e + dp + 1; // The rounding digit, i.e. the digit to the right of the digit that may be rounded up. i = xc[d]; k = baseOut / 2; r = r || d < 0 || xc[d + 1] != null; r = rm < 4 ? ( i != null || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) ) : i > k || i == k &&( rm == 4 || r || rm == 6 && xc[d - 1] & 1 || rm == ( x.s < 0 ? 8 : 7 ) ); if ( d < 1 || !xc[0] ) { // 1^-dp or 0. str = r ? toFixedPoint( '1', -dp ) : '0'; } else { xc.length = d; if (r) { // Rounding up may mean the previous digit has to be rounded up and so on. for ( --baseOut; ++xc[--d] > baseOut; ) { xc[d] = 0; if ( !d ) { ++e; xc.unshift(1); } } } // Determine trailing zeros. for ( k = xc.length; !xc[--k]; ); // E.g. [4, 11, 15] becomes 4bf. for ( i = 0, str = ''; i <= k; str += ALPHABET.charAt( xc[i++] ) ); str = toFixedPoint( str, e ); } // The caller will add the sign. return str; } // Perform division in the specified base. Called by div and convertBase. div = (function () { // Assume non-zero x and k. function multiply( x, k, base ) { var m, temp, xlo, xhi, carry = 0, i = x.length, klo = k % SQRT_BASE, khi = k / SQRT_BASE | 0; for ( x = x.slice(); i--; ) { xlo = x[i] % SQRT_BASE; xhi = x[i] / SQRT_BASE | 0; m = khi * xlo + xhi * klo; temp = klo * xlo + ( ( m % SQRT_BASE ) * SQRT_BASE ) + carry; carry = ( temp / base | 0 ) + ( m / SQRT_BASE | 0 ) + khi * xhi; x[i] = temp % base; } if (carry) x.unshift(carry); return x; } function compare( a, b, aL, bL ) { var i, cmp; if ( aL != bL ) { cmp = aL > bL ? 1 : -1; } else { for ( i = cmp = 0; i < aL; i++ ) { if ( a[i] != b[i] ) { cmp = a[i] > b[i] ? 1 : -1; break; } } } return cmp; } function subtract( a, b, aL, base ) { var i = 0; // Subtract b from a. for ( ; aL--; ) { a[aL] -= i; i = a[aL] < b[aL] ? 1 : 0; a[aL] = i * base + a[aL] - b[aL]; } // Remove leading zeros. for ( ; !a[0] && a.length > 1; a.shift() ); } // x: dividend, y: divisor. return function ( x, y, dp, rm, base ) { var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0, yL, yz, s = x.s == y.s ? 1 : -1, xc = x.c, yc = y.c; // Either NaN, Infinity or 0? if ( !xc || !xc[0] || !yc || !yc[0] ) { return new BigNumber( // Return NaN if either NaN, or both Infinity or 0. !x.s || !y.s || ( xc ? yc && xc[0] == yc[0] : !yc ) ? NaN : // Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0. xc && xc[0] == 0 || !yc ? s * 0 : s / 0 ); } q = new BigNumber(s); qc = q.c = []; e = x.e - y.e; s = dp + e + 1; if ( !base ) { base = BASE; e = bitFloor( x.e / LOG_BASE ) - bitFloor( y.e / LOG_BASE ); s = s / LOG_BASE | 0; } // Result exponent may be one less then the current value of e. // The coefficients of the BigNumbers from convertBase may have trailing zeros. for ( i = 0; yc[i] == ( xc[i] || 0 ); i++ ); if ( yc[i] > ( xc[i] || 0 ) ) e--; if ( s < 0 ) { qc.push(1); more = true; } else { xL = xc.length; yL = yc.length; i = 0; s += 2; // Normalise xc and yc so highest order digit of yc is >= base/2 n = mathfloor( base / ( yc[0] + 1 ) ); if ( n > 1 ) { yc = multiply( yc, n, base ); xc = multiply( xc, n, base ); yL = yc.length; xL = xc.length; } xi = yL; rem = xc.slice( 0, yL ); remL = rem.length; // Add zeros to make remainder as long as divisor. for ( ; remL < yL; rem[remL++] = 0 ); yz = yc.slice(); yz.unshift(0); yc0 = yc[0]; if ( yc[1] >= base / 2 ) yc0++; do { n = 0; // Compare divisor and remainder. cmp = compare( yc, rem, yL, remL ); // If divisor < remainder. if ( cmp < 0 ) { // Calculate trial digit, n. rem0 = rem[0]; if ( yL != remL ) rem0 = rem0 * base + ( rem[1] || 0 ); // n is how many times the divisor goes into the current remainder. n = mathfloor( rem0 / yc0 ); // Algorithm: // 1. product = divisor * trial digit (n) // 2. if product > remainder: product -= divisor, n-- // 3. remainder -= product // 4. if product was < remainder at 2: // 5. compare new remainder and divisor // 6. If remainder > divisor: remainder -= divisor, n++ if ( n > 1 ) { if ( n >= base ) n = base - 1; // product = divisor * trial digit. prod = multiply( yc, n, base ); prodL = prod.length; remL = rem.length; // Compare product and remainder. cmp = compare( prod, rem, prodL, remL ); // product > remainder. if ( cmp == 1 ) { n--; // Subtract divisor from product. subtract( prod, yL < prodL ? yz : yc, prodL, base ); } } else { // cmp is -1. // If n is 0, there is no need to compare yc and rem again // below, so change cmp to 1 to avoid it. // If n is 1, compare yc and rem again below. if ( n == 0 ) cmp = n = 1; prod = yc.slice(); } prodL = prod.length; if ( prodL < remL ) prod.unshift(0); // Subtract product from remainder. subtract( rem, prod, remL, base ); // If product was < previous remainder. if ( cmp == -1 ) { remL = rem.length; // Compare divisor and new remainder. cmp = compare( yc, rem, yL, remL ); // If divisor < new remainder, subtract divisor from remainder. if ( cmp < 1 ) { n++; // Subtract divisor from remainder. subtract( rem, yL < remL ? yz : yc, remL, base ); } } remL = rem.length; } else if ( cmp === 0 ) { n++; rem = [0]; } // if cmp === 1, n will be 0 // Add the next digit, n, to the result array. qc[i++] = n; // Update the remainder. if ( cmp && rem[0] ) { rem[remL++] = xc[xi] || 0; } else { rem = [ xc[xi] ]; remL = 1; } } while ( ( xi++ < xL || rem[0] != null ) && s-- ); more = rem[0] != null; // Leading zero? if ( !qc[0] ) qc.shift(); } if ( base == BASE ) { // To calculate q.e, first get the number of digits of qc[0]. for ( i = 1, s = qc[0]; s >= 10; s /= 10, i++ ); round( q, dp + ( q.e = i + e * LOG_BASE - 1 ) + 1, rm, more ); // Caller is convertBase. } else { q.e = e; q.r = +more; } return q; }; })(); /* * Return a string representing the value of BigNumber n in fixed-point or exponential * notation rounded to the specified decimal places or significant digits. * * n is a BigNumber. * i is the index of the last digit required (i.e. the digit that may be rounded up). * rm is the rounding mode. * caller is caller id: toExponential 19, toFixed 20, toFormat 21, toPrecision 24. */ function format( n, i, rm, caller ) { var c0, e, ne, len, str; rm = rm != null && isValidInt( rm, 0, 8, caller, roundingMode ) ? rm | 0 : ROUNDING_MODE; if ( !n.c ) return n.toString(); c0 = n.c[0]; ne = n.e; if ( i == null ) { str = coeffToString( n.c ); str = caller == 19 || caller == 24 && ne <= TO_EXP_NEG ? toExponential( str, ne ) : toFixedPoint( str, ne ); } else { n = round( new BigNumber(n), i, rm ); // n.e may have changed if the value was rounded up. e = n.e; str = coeffToString( n.c ); len = str.length; // toPrecision returns exponential notation if the number of significant digits // specified is less than the number of digits necessary to represent the integer // part of the value in fixed-point notation. // Exponential notation. if ( caller == 19 || caller == 24 && ( i <= e || e <= TO_EXP_NEG ) ) { // Append zeros? for ( ; len < i; str += '0', len++ ); str = toExponential( str, e ); // Fixed-point notation. } else { i -= ne; str = toFixedPoint( str, e ); // Append zeros? if ( e + 1 > len ) { if ( --i > 0 ) for ( str += '.'; i--; str += '0' ); } else { i += e - len; if ( i > 0 ) { if ( e + 1 == len ) str += '.'; for ( ; i--; str += '0' ); } } } } return n.s < 0 && c0 ? '-' + str : str; } // Handle BigNumber.max and BigNumber.min. function maxOrMin( args, method ) { var m, n, i = 0; if ( isArray( args[0] ) ) args = args[0]; m = new BigNumber( args[0] ); for ( ; ++i < args.length; ) { n = new BigNumber( args[i] ); // If any number is NaN, return NaN. if ( !n.s ) { m = n; break; } else if ( method.call( m, n ) ) { m = n; } } return m; } /* * Return true if n is an integer in range, otherwise throw. * Use for argument validation when ERRORS is true. */ function intValidatorWithErrors( n, min, max, caller, name ) { if ( n < min || n > max || n != truncate(n) ) { raise( caller, ( name || 'decimal places' ) + ( n < min || n > max ? ' out of range' : ' not an integer' ), n ); } return true; } /* * Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP. * Called by minus, plus and times. */ function normalise( n, c, e ) { var i = 1, j = c.length; // Remove trailing zeros. for ( ; !c[--j]; c.pop() ); // Calculate the base 10 exponent. First get the number of digits of c[0]. for ( j = c[0]; j >= 10; j /= 10, i++ ); // Overflow? if ( ( e = i + e * LOG_BASE - 1 ) > MAX_EXP ) { // Infinity. n.c = n.e = null; // Underflow? } else if ( e < MIN_EXP ) { // Zero. n.c = [ n.e = 0 ]; } else { n.e = e; n.c = c; } return n; } // Handle values that fail the validity test in BigNumber. // Zsolt Felfoldi 15/03/06 // modified regexps in order to compile with go JSRE parseNumeric = (function () { // var basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i, var basePrefix = /^(-?)0([xbo])/i, dotAfter = /^([^.]+)\.$/, dotBefore = /^\.([^.]+)$/, isInfinityOrNaN = /^-?(Infinity|NaN)$/, // whitespaceOrPlus = /^\s*\+(?=[\w.])|^\s+|\s+$/g; whitespaceOrPlus = /^\s*\+[\w.]|^\s+|\s+$/g; return function ( x, str, num, b ) { var base, s = num ? str : str.replace( whitespaceOrPlus, '' ); // No exception on ±Infinity or NaN. if ( isInfinityOrNaN.test(s) ) { x.s = isNaN(s) ? null : s < 0 ? -1 : 1; } else { if ( !num ) { // basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i s = s.replace( basePrefix, function ( m, p1, p2 ) { base = ( p2 = p2.toLowerCase() ) == 'x' ? 16 : p2 == 'b' ? 2 : 8; return !b || b == base ? p1 : m; }); if (b) { base = b; // E.g. '1.' to '1', '.1' to '0.1' s = s.replace( dotAfter, '$1' ).replace( dotBefore, '0.$1' ); } if ( str != s ) return new BigNumber( s, base ); } // 'new BigNumber() not a number: {n}' // 'new BigNumber() not a base {b} number: {n}' if (ERRORS) raise( id, 'not a' + ( b ? ' base ' + b : '' ) + ' number', str ); x.s = null; } x.c = x.e = null; id = 0; } })(); // Throw a BigNumber Error. function raise( caller, msg, val ) { var error = new Error( [ 'new BigNumber', // 0 'cmp', // 1 'config', // 2 'div', // 3 'divToInt', // 4 'eq', // 5 'gt', // 6 'gte', // 7 'lt', // 8 'lte', // 9 'minus', // 10 'mod', // 11 'plus', // 12 'precision', // 13 'random', // 14 'round', // 15 'shift', // 16 'times', // 17 'toDigits', // 18 'toExponential', // 19 'toFixed', // 20 'toFormat', // 21 'toFraction', // 22 'pow', // 23 'toPrecision', // 24 'toString', // 25 'BigNumber' // 26 ][caller] + '() ' + msg + ': ' + val ); error.name = 'BigNumber Error'; id = 0; throw error; } /* * Round x to sd significant digits using rounding mode rm. Check for over/under-flow. * If r is truthy, it is known that there are more digits after the rounding digit. */ function round( x, sd, rm, r ) { var d, i, j, k, n, ni, rd, xc = x.c, pows10 = POWS_TEN; // if x is not Infinity or NaN... if (xc) { // rd is the rounding digit, i.e. the digit after the digit that may be rounded up. // n is a base 1e14 number, the value of the element of array x.c containing rd. // ni is the index of n within x.c. // d is the number of digits of n. // i is the index of rd within n including leading zeros. // j is the actual index of rd within n (if < 0, rd is a leading zero). out: { // Get the number of digits of the first element of xc. for ( d = 1, k = xc[0]; k >= 10; k /= 10, d++ ); i = sd - d; // If the rounding digit is in the first element of xc... if ( i < 0 ) { i += LOG_BASE; j = sd; n = xc[ ni = 0 ]; // Get the rounding digit at index j of n. rd = n / pows10[ d - j - 1 ] % 10 | 0; } else { ni = mathceil( ( i + 1 ) / LOG_BASE ); if ( ni >= xc.length ) { if (r) { // Needed by sqrt. for ( ; xc.length <= ni; xc.push(0) ); n = rd = 0; d = 1; i %= LOG_BASE; j = i - LOG_BASE + 1; } else { break out; } } else { n = k = xc[ni]; // Get the number of digits of n. for ( d = 1; k >= 10; k /= 10, d++ ); // Get the index of rd within n. i %= LOG_BASE; // Get the index of rd within n, adjusted for leading zeros. // The number of leading zeros of n is given by LOG_BASE - d. j = i - LOG_BASE + d; // Get the rounding digit at index j of n. rd = j < 0 ? 0 : n / pows10[ d - j - 1 ] % 10 | 0; } } r = r || sd < 0 || // Are there any non-zero digits after the rounding digit? // The expression n % pows10[ d - j - 1 ] returns all digits of n to the right // of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714. xc[ni + 1] != null || ( j < 0 ? n : n % pows10[ d - j - 1 ] ); r = rm < 4 ? ( rd || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) ) : rd > 5 || rd == 5 && ( rm == 4 || r || rm == 6 && // Check whether the digit to the left of the rounding digit is odd. ( ( i > 0 ? j > 0 ? n / pows10[ d - j ] : 0 : xc[ni - 1] ) % 10 ) & 1 || rm == ( x.s < 0 ? 8 : 7 ) ); if ( sd < 1 || !xc[0] ) { xc.length = 0; if (r) { // Convert sd to decimal places. sd -= x.e + 1; // 1, 0.1, 0.01, 0.001, 0.0001 etc. xc[0] = pows10[ sd % LOG_BASE ]; x.e = -sd || 0; } else { // Zero. xc[0] = x.e = 0; } return x; } // Remove excess digits. if ( i == 0 ) { xc.length = ni; k = 1; ni--; } else { xc.length = ni + 1; k = pows10[ LOG_BASE - i ]; // E.g. 56700 becomes 56000 if 7 is the rounding digit. // j > 0 means i > number of leading zeros of n. xc[ni] = j > 0 ? mathfloor( n / pows10[ d - j ] % pows10[j] ) * k : 0; } // Round up? if (r) { for ( ; ; ) { // If the digit to be rounded up is in the first element of xc... if ( ni == 0 ) { // i will be the length of xc[0] before k is added. for ( i = 1, j = xc[0]; j >= 10; j /= 10, i++ ); j = xc[0] += k; for ( k = 1; j >= 10; j /= 10, k++ ); // if i != k the length has increased. if ( i != k ) { x.e++; if ( xc[0] == BASE ) xc[0] = 1; } break; } else { xc[ni] += k; if ( xc[ni] != BASE ) break; xc[ni--] = 0; k = 1; } } } // Remove trailing zeros. for ( i = xc.length; xc[--i] === 0; xc.pop() ); } // Overflow? Infinity. if ( x.e > MAX_EXP ) { x.c = x.e = null; // Underflow? Zero. } else if ( x.e < MIN_EXP ) { x.c = [ x.e = 0 ]; } } return x; } // PROTOTYPE/INSTANCE METHODS /* * Return a new BigNumber whose value is the absolute value of this BigNumber. */ P.absoluteValue = P.abs = function () { var x = new BigNumber(this); if ( x.s < 0 ) x.s = 1; return x; }; /* * Return a new BigNumber whose value is the value of this BigNumber rounded to a whole * number in the direction of Infinity. */ P.ceil = function () { return round( new BigNumber(this), this.e + 1, 2 ); }; /* * Return * 1 if the value of this BigNumber is greater than the value of BigNumber(y, b), * -1 if the value of this BigNumber is less than the value of BigNumber(y, b), * 0 if they have the same value, * or null if the value of either is NaN. */ P.comparedTo = P.cmp = function ( y, b ) { id = 1; return compare( this, new BigNumber( y, b ) ); }; /* * Return the number of decimal places of the value of this BigNumber, or null if the value * of this BigNumber is ±Infinity or NaN. */ P.decimalPlaces = P.dp = function () { var n, v, c = this.c; if ( !c ) return null; n = ( ( v = c.length - 1 ) - bitFloor( this.e / LOG_BASE ) ) * LOG_BASE; // Subtract the number of trailing zeros of the last number. if ( v = c[v] ) for ( ; v % 10 == 0; v /= 10, n-- ); if ( n < 0 ) n = 0; return n; }; /* * n / 0 = I * n / N = N * n / I = 0 * 0 / n = 0 * 0 / 0 = N * 0 / N = N * 0 / I = 0 * N / n = N * N / 0 = N * N / N = N * N / I = N * I / n = I * I / 0 = I * I / N = N * I / I = N * * Return a new BigNumber whose value is the value of this BigNumber divided by the value of * BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE. */ P.dividedBy = P.div = function ( y, b ) { id = 3; return div( this, new BigNumber( y, b ), DECIMAL_PLACES, ROUNDING_MODE ); }; /* * Return a new BigNumber whose value is the integer part of dividing the value of this * BigNumber by the value of BigNumber(y, b). */ P.dividedToIntegerBy = P.divToInt = function ( y, b ) { id = 4; return div( this, new BigNumber( y, b ), 0, 1 ); }; /* * Return true if the value of this BigNumber is equal to the value of BigNumber(y, b), * otherwise returns false. */ P.equals = P.eq = function ( y, b ) { id = 5; return compare( this, new BigNumber( y, b ) ) === 0; }; /* * Return a new BigNumber whose value is the value of this BigNumber rounded to a whole * number in the direction of -Infinity. */ P.floor = function () { return round( new BigNumber(this), this.e + 1, 3 ); }; /* * Return true if the value of this BigNumber is greater than the value of BigNumber(y, b), * otherwise returns false. */ P.greaterThan = P.gt = function ( y, b ) { id = 6; return compare( this, new BigNumber( y, b ) ) > 0; }; /* * Return true if the value of this BigNumber is greater than or equal to the value of * BigNumber(y, b), otherwise returns false. */ P.greaterThanOrEqualTo = P.gte = function ( y, b ) { id = 7; return ( b = compare( this, new BigNumber( y, b ) ) ) === 1 || b === 0; }; /* * Return true if the value of this BigNumber is a finite number, otherwise returns false. */ P.isFinite = function () { return !!this.c; }; /* * Return true if the value of this BigNumber is an integer, otherwise return false. */ P.isInteger = P.isInt = function () { return !!this.c && bitFloor( this.e / LOG_BASE ) > this.c.length - 2; }; /* * Return true if the value of this BigNumber is NaN, otherwise returns false. */ P.isNaN = function () { return !this.s; }; /* * Return true if the value of this BigNumber is negative, otherwise returns false. */ P.isNegative = P.isNeg = function () { return this.s < 0; }; /* * Return true if the value of this BigNumber is 0 or -0, otherwise returns false. */ P.isZero = function () { return !!this.c && this.c[0] == 0; }; /* * Return true if the value of this BigNumber is less than the value of BigNumber(y, b), * otherwise returns false. */ P.lessThan = P.lt = function ( y, b ) { id = 8; return compare( this, new BigNumber( y, b ) ) < 0; }; /* * Return true if the value of this BigNumber is less than or equal to the value of * BigNumber(y, b), otherwise returns false. */ P.lessThanOrEqualTo = P.lte = function ( y, b ) { id = 9; return ( b = compare( this, new BigNumber( y, b ) ) ) === -1 || b === 0; }; /* * n - 0 = n * n - N = N * n - I = -I * 0 - n = -n * 0 - 0 = 0 * 0 - N = N * 0 - I = -I * N - n = N * N - 0 = N * N - N = N * N - I = N * I - n = I * I - 0 = I * I - N = N * I - I = N * * Return a new BigNumber whose value is the value of this BigNumber minus the value of * BigNumber(y, b). */ P.minus = P.sub = function ( y, b ) { var i, j, t, xLTy, x = this, a = x.s; id = 10; y = new BigNumber( y, b ); b = y.s; // Either NaN? if ( !a || !b ) return new BigNumber(NaN); // Signs differ? if ( a != b ) { y.s = -b; return x.plus(y); } var xe = x.e / LOG_BASE, ye = y.e / LOG_BASE, xc = x.c, yc = y.c; if ( !xe || !ye ) { // Either Infinity? if ( !xc || !yc ) return xc ? ( y.s = -b, y ) : new BigNumber( yc ? x : NaN ); // Either zero? if ( !xc[0] || !yc[0] ) { // Return y if y is non-zero, x if x is non-zero, or zero if both are zero. return yc[0] ? ( y.s = -b, y ) : new BigNumber( xc[0] ? x : // IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity ROUNDING_MODE == 3 ? -0 : 0 ); } } xe = bitFloor(xe); ye = bitFloor(ye); xc = xc.slice(); // Determine which is the bigger number. if ( a = xe - ye ) { if ( xLTy = a < 0 ) { a = -a; t = xc; } else { ye = xe; t = yc; } t.reverse(); // Prepend zeros to equalise exponents. for ( b = a; b--; t.push(0) ); t.reverse(); } else { // Exponents equal. Check digit by digit. j = ( xLTy = ( a = xc.length ) < ( b = yc.length ) ) ? a : b; for ( a = b = 0; b < j; b++ ) { if ( xc[b] != yc[b] ) { xLTy = xc[b] < yc[b]; break; } } } // x < y? Point xc to the array of the bigger number. if (xLTy) t = xc, xc = yc, yc = t, y.s = -y.s; b = ( j = yc.length ) - ( i = xc.length ); // Append zeros to xc if shorter. // No need to add zeros to yc if shorter as subtract only needs to start at yc.length. if ( b > 0 ) for ( ; b--; xc[i++] = 0 ); b = BASE - 1; // Subtract yc from xc. for ( ; j > a; ) { if ( xc[--j] < yc[j] ) { for ( i = j; i && !xc[--i]; xc[i] = b ); --xc[i]; xc[j] += BASE; } xc[j] -= yc[j]; } // Remove leading zeros and adjust exponent accordingly. for ( ; xc[0] == 0; xc.shift(), --ye ); // Zero? if ( !xc[0] ) { // Following IEEE 754 (2008) 6.3, // n - n = +0 but n - n = -0 when rounding towards -Infinity. y.s = ROUNDING_MODE == 3 ? -1 : 1; y.c = [ y.e = 0 ]; return y; } // No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity // for finite x and y. return normalise( y, xc, ye ); }; /* * n % 0 = N * n % N = N * n % I = n * 0 % n = 0 * -0 % n = -0 * 0 % 0 = N * 0 % N = N * 0 % I = 0 * N % n = N * N % 0 = N * N % N = N * N % I = N * I % n = N * I % 0 = N * I % N = N * I % I = N * * Return a new BigNumber whose value is the value of this BigNumber modulo the value of * BigNumber(y, b). The result depends on the value of MODULO_MODE. */ P.modulo = P.mod = function ( y, b ) { var q, s, x = this; id = 11; y = new BigNumber( y, b ); // Return NaN if x is Infinity or NaN, or y is NaN or zero. if ( !x.c || !y.s || y.c && !y.c[0] ) { return new BigNumber(NaN); // Return x if y is Infinity or x is zero. } else if ( !y.c || x.c && !x.c[0] ) { return new BigNumber(x); } if ( MODULO_MODE == 9 ) { // Euclidian division: q = sign(y) * floor(x / abs(y)) // r = x - qy where 0 <= r < abs(y) s = y.s; y.s = 1; q = div( x, y, 0, 3 ); y.s = s; q.s *= s; } else { q = div( x, y, 0, MODULO_MODE ); } return x.minus( q.times(y) ); }; /* * Return a new BigNumber whose value is the value of this BigNumber negated, * i.e. multiplied by -1. */ P.negated = P.neg = function () { var x = new BigNumber(this); x.s = -x.s || null; return x; }; /* * n + 0 = n * n + N = N * n + I = I * 0 + n = n * 0 + 0 = 0 * 0 + N = N * 0 + I = I * N + n = N * N + 0 = N * N + N = N * N + I = N * I + n = I * I + 0 = I * I + N = N * I + I = I * * Return a new BigNumber whose value is the value of this BigNumber plus the value of * BigNumber(y, b). */ P.plus = P.add = function ( y, b ) { var t, x = this, a = x.s; id = 12; y = new BigNumber( y, b ); b = y.s; // Either NaN? if ( !a || !b ) return new BigNumber(NaN); // Signs differ? if ( a != b ) { y.s = -b; return x.minus(y); } var xe = x.e / LOG_BASE, ye = y.e / LOG_BASE, xc = x.c, yc = y.c; if ( !xe || !ye ) { // Return ±Infinity if either ±Infinity. if ( !xc || !yc ) return new BigNumber( a / 0 ); // Either zero? // Return y if y is non-zero, x if x is non-zero, or zero if both are zero. if ( !xc[0] || !yc[0] ) return yc[0] ? y : new BigNumber( xc[0] ? x : a * 0 ); } xe = bitFloor(xe); ye = bitFloor(ye); xc = xc.slice(); // Prepend zeros to equalise exponents. Faster to use reverse then do unshifts. if ( a = xe - ye ) { if ( a > 0 ) { ye = xe; t = yc; } else { a = -a; t = xc; } t.reverse(); for ( ; a--; t.push(0) ); t.reverse(); } a = xc.length; b = yc.length; // Point xc to the longer array, and b to the shorter length. if ( a - b < 0 ) t = yc, yc = xc, xc = t, b = a; // Only start adding at yc.length - 1 as the further digits of xc can be ignored. for ( a = 0; b; ) { a = ( xc[--b] = xc[b] + yc[b] + a ) / BASE | 0; xc[b] %= BASE; } if (a) { xc.unshift(a); ++ye; } // No need to check for zero, as +x + +y != 0 && -x + -y != 0 // ye = MAX_EXP + 1 possible return normalise( y, xc, ye ); }; /* * Return the number of significant digits of the value of this BigNumber. * * [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0. */ P.precision = P.sd = function (z) { var n, v, x = this, c = x.c; // 'precision() argument not a boolean or binary digit: {z}' if ( z != null && z !== !!z && z !== 1 && z !== 0 ) { if (ERRORS) raise( 13, 'argument' + notBool, z ); if ( z != !!z ) z = null; } if ( !c ) return null; v = c.length - 1; n = v * LOG_BASE + 1; if ( v = c[v] ) { // Subtract the number of trailing zeros of the last element. for ( ; v % 10 == 0; v /= 10, n-- ); // Add the number of digits of the first element. for ( v = c[0]; v >= 10; v /= 10, n++ ); } if ( z && x.e + 1 > n ) n = x.e + 1; return n; }; /* * Return a new BigNumber whose value is the value of this BigNumber rounded to a maximum of * dp decimal places using rounding mode rm, or to 0 and ROUNDING_MODE respectively if * omitted. * * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. * * 'round() decimal places out of range: {dp}' * 'round() decimal places not an integer: {dp}' * 'round() rounding mode not an integer: {rm}' * 'round() rounding mode out of range: {rm}' */ P.round = function ( dp, rm ) { var n = new BigNumber(this); if ( dp == null || isValidInt( dp, 0, MAX, 15 ) ) { round( n, ~~dp + this.e + 1, rm == null || !isValidInt( rm, 0, 8, 15, roundingMode ) ? ROUNDING_MODE : rm | 0 ); } return n; }; /* * Return a new BigNumber whose value is the value of this BigNumber shifted by k places * (powers of 10). Shift to the right if n > 0, and to the left if n < 0. * * k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive. * * If k is out of range and ERRORS is false, the result will be ±0 if k < 0, or ±Infinity * otherwise. * * 'shift() argument not an integer: {k}' * 'shift() argument out of range: {k}' */ P.shift = function (k) { var n = this; return isValidInt( k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER, 16, 'argument' ) // k < 1e+21, or truncate(k) will produce exponential notation. ? n.times( '1e' + truncate(k) ) : new BigNumber( n.c && n.c[0] && ( k < -MAX_SAFE_INTEGER || k > MAX_SAFE_INTEGER ) ? n.s * ( k < 0 ? 0 : 1 / 0 ) : n ); }; /* * sqrt(-n) = N * sqrt( N) = N * sqrt(-I) = N * sqrt( I) = I * sqrt( 0) = 0 * sqrt(-0) = -0 * * Return a new BigNumber whose value is the square root of the value of this BigNumber, * rounded according to DECIMAL_PLACES and ROUNDING_MODE. */ P.squareRoot = P.sqrt = function () { var m, n, r, rep, t, x = this, c = x.c, s = x.s, e = x.e, dp = DECIMAL_PLACES + 4, half = new BigNumber('0.5'); // Negative/NaN/Infinity/zero? if ( s !== 1 || !c || !c[0] ) { return new BigNumber( !s || s < 0 && ( !c || c[0] ) ? NaN : c ? x : 1 / 0 ); } // Initial estimate. s = Math.sqrt( +x ); // Math.sqrt underflow/overflow? // Pass x to Math.sqrt as integer, then adjust the exponent of the result. if ( s == 0 || s == 1 / 0 ) { n = coeffToString(c); if ( ( n.length + e ) % 2 == 0 ) n += '0'; s = Math.sqrt(n); e = bitFloor( ( e + 1 ) / 2 ) - ( e < 0 || e % 2 ); if ( s == 1 / 0 ) { n = '1e' + e; } else { n = s.toExponential(); n = n.slice( 0, n.indexOf('e') + 1 ) + e; } r = new BigNumber(n); } else { r = new BigNumber( s + '' ); } // Check for zero. // r could be zero if MIN_EXP is changed after the this value was created. // This would cause a division by zero (x/t) and hence Infinity below, which would cause // coeffToString to throw. if ( r.c[0] ) { e = r.e; s = e + dp; if ( s < 3 ) s = 0; // Newton-Raphson iteration. for ( ; ; ) { t = r; r = half.times( t.plus( div( x, t, dp, 1 ) ) ); if ( coeffToString( t.c ).slice( 0, s ) === ( n = coeffToString( r.c ) ).slice( 0, s ) ) { // The exponent of r may here be one less than the final result exponent, // e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits // are indexed correctly. if ( r.e < e ) --s; n = n.slice( s - 3, s + 1 ); // The 4th rounding digit may be in error by -1 so if the 4 rounding digits // are 9999 or 4999 (i.e. approaching a rounding boundary) continue the // iteration. if ( n == '9999' || !rep && n == '4999' ) { // On the first iteration only, check to see if rounding up gives the // exact result as the nines may infinitely repeat. if ( !rep ) { round( t, t.e + DECIMAL_PLACES + 2, 0 ); if ( t.times(t).eq(x) ) { r = t; break; } } dp += 4; s += 4; rep = 1; } else { // If rounding digits are null, 0{0,4} or 50{0,3}, check for exact // result. If not, then there are further digits and m will be truthy. if ( !+n || !+n.slice(1) && n.charAt(0) == '5' ) { // Truncate to the first rounding digit. round( r, r.e + DECIMAL_PLACES + 2, 1 ); m = !r.times(r).eq(x); } break; } } } } return round( r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m ); }; /* * n * 0 = 0 * n * N = N * n * I = I * 0 * n = 0 * 0 * 0 = 0 * 0 * N = N * 0 * I = N * N * n = N * N * 0 = N * N * N = N * N * I = N * I * n = I * I * 0 = N * I * N = N * I * I = I * * Return a new BigNumber whose value is the value of this BigNumber times the value of * BigNumber(y, b). */ P.times = P.mul = function ( y, b ) { var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc, base, sqrtBase, x = this, xc = x.c, yc = ( id = 17, y = new BigNumber( y, b ) ).c; // Either NaN, ±Infinity or ±0? if ( !xc || !yc || !xc[0] || !yc[0] ) { // Return NaN if either is NaN, or one is 0 and the other is Infinity. if ( !x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc ) { y.c = y.e = y.s = null; } else { y.s *= x.s; // Return ±Infinity if either is ±Infinity. if ( !xc || !yc ) { y.c = y.e = null; // Return ±0 if either is ±0. } else { y.c = [0]; y.e = 0; } } return y; } e = bitFloor( x.e / LOG_BASE ) + bitFloor( y.e / LOG_BASE ); y.s *= x.s; xcL = xc.length; ycL = yc.length; // Ensure xc points to longer array and xcL to its length. if ( xcL < ycL ) zc = xc, xc = yc, yc = zc, i = xcL, xcL = ycL, ycL = i; // Initialise the result array with zeros. for ( i = xcL + ycL, zc = []; i--; zc.push(0) ); base = BASE; sqrtBase = SQRT_BASE; for ( i = ycL; --i >= 0; ) { c = 0; ylo = yc[i] % sqrtBase; yhi = yc[i] / sqrtBase | 0; for ( k = xcL, j = i + k; j > i; ) { xlo = xc[--k] % sqrtBase; xhi = xc[k] / sqrtBase | 0; m = yhi * xlo + xhi * ylo; xlo = ylo * xlo + ( ( m % sqrtBase ) * sqrtBase ) + zc[j] + c; c = ( xlo / base | 0 ) + ( m / sqrtBase | 0 ) + yhi * xhi; zc[j--] = xlo % base; } zc[j] = c; } if (c) { ++e; } else { zc.shift(); } return normalise( y, zc, e ); }; /* * Return a new BigNumber whose value is the value of this BigNumber rounded to a maximum of * sd significant digits using rounding mode rm, or ROUNDING_MODE if rm is omitted. * * [sd] {number} Significant digits. Integer, 1 to MAX inclusive. * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. * * 'toDigits() precision out of range: {sd}' * 'toDigits() precision not an integer: {sd}' * 'toDigits() rounding mode not an integer: {rm}' * 'toDigits() rounding mode out of range: {rm}' */ P.toDigits = function ( sd, rm ) { var n = new BigNumber(this); sd = sd == null || !isValidInt( sd, 1, MAX, 18, 'precision' ) ? null : sd | 0; rm = rm == null || !isValidInt( rm, 0, 8, 18, roundingMode ) ? ROUNDING_MODE : rm | 0; return sd ? round( n, sd, rm ) : n; }; /* * Return a string representing the value of this BigNumber in exponential notation and * rounded using ROUNDING_MODE to dp fixed decimal places. * * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. * * 'toExponential() decimal places not an integer: {dp}' * 'toExponential() decimal places out of range: {dp}' * 'toExponential() rounding mode not an integer: {rm}' * 'toExponential() rounding mode out of range: {rm}' */ P.toExponential = function ( dp, rm ) { return format( this, dp != null && isValidInt( dp, 0, MAX, 19 ) ? ~~dp + 1 : null, rm, 19 ); }; /* * Return a string representing the value of this BigNumber in fixed-point notation rounding * to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted. * * Note: as with JavaScript's number type, (-0).toFixed(0) is '0', * but e.g. (-0.00001).toFixed(0) is '-0'. * * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. * * 'toFixed() decimal places not an integer: {dp}' * 'toFixed() decimal places out of range: {dp}' * 'toFixed() rounding mode not an integer: {rm}' * 'toFixed() rounding mode out of range: {rm}' */ P.toFixed = function ( dp, rm ) { return format( this, dp != null && isValidInt( dp, 0, MAX, 20 ) ? ~~dp + this.e + 1 : null, rm, 20 ); }; /* * Return a string representing the value of this BigNumber in fixed-point notation rounded * using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties * of the FORMAT object (see BigNumber.config). * * FORMAT = { * decimalSeparator : '.', * groupSeparator : ',', * groupSize : 3, * secondaryGroupSize : 0, * fractionGroupSeparator : '\xA0', // non-breaking space * fractionGroupSize : 0 * }; * * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. * * 'toFormat() decimal places not an integer: {dp}' * 'toFormat() decimal places out of range: {dp}' * 'toFormat() rounding mode not an integer: {rm}' * 'toFormat() rounding mode out of range: {rm}' */ P.toFormat = function ( dp, rm ) { var str = format( this, dp != null && isValidInt( dp, 0, MAX, 21 ) ? ~~dp + this.e + 1 : null, rm, 21 ); if ( this.c ) { var i, arr = str.split('.'), g1 = +FORMAT.groupSize, g2 = +FORMAT.secondaryGroupSize, groupSeparator = FORMAT.groupSeparator, intPart = arr[0], fractionPart = arr[1], isNeg = this.s < 0, intDigits = isNeg ? intPart.slice(1) : intPart, len = intDigits.length; if (g2) i = g1, g1 = g2, g2 = i, len -= i; if ( g1 > 0 && len > 0 ) { i = len % g1 || g1; intPart = intDigits.substr( 0, i ); for ( ; i < len; i += g1 ) { intPart += groupSeparator + intDigits.substr( i, g1 ); } if ( g2 > 0 ) intPart += groupSeparator + intDigits.slice(i); if (isNeg) intPart = '-' + intPart; } str = fractionPart ? intPart + FORMAT.decimalSeparator + ( ( g2 = +FORMAT.fractionGroupSize ) ? fractionPart.replace( new RegExp( '\\d{' + g2 + '}\\B', 'g' ), '$&' + FORMAT.fractionGroupSeparator ) : fractionPart ) : intPart; } return str; }; /* * Return a string array representing the value of this BigNumber as a simple fraction with * an integer numerator and an integer denominator. The denominator will be a positive * non-zero value less than or equal to the specified maximum denominator. If a maximum * denominator is not specified, the denominator will be the lowest value necessary to * represent the number exactly. * * [md] {number|string|BigNumber} Integer >= 1 and < Infinity. The maximum denominator. * * 'toFraction() max denominator not an integer: {md}' * 'toFraction() max denominator out of range: {md}' */ P.toFraction = function (md) { var arr, d0, d2, e, exp, n, n0, q, s, k = ERRORS, x = this, xc = x.c, d = new BigNumber(ONE), n1 = d0 = new BigNumber(ONE), d1 = n0 = new BigNumber(ONE); if ( md != null ) { ERRORS = false; n = new BigNumber(md); ERRORS = k; if ( !( k = n.isInt() ) || n.lt(ONE) ) { if (ERRORS) { raise( 22, 'max denominator ' + ( k ? 'out of range' : 'not an integer' ), md ); } // ERRORS is false: // If md is a finite non-integer >= 1, round it to an integer and use it. md = !k && n.c && round( n, n.e + 1, 1 ).gte(ONE) ? n : null; } } if ( !xc ) return x.toString(); s = coeffToString(xc); // Determine initial denominator. // d is a power of 10 and the minimum max denominator that specifies the value exactly. e = d.e = s.length - x.e - 1; d.c[0] = POWS_TEN[ ( exp = e % LOG_BASE ) < 0 ? LOG_BASE + exp : exp ]; md = !md || n.cmp(d) > 0 ? ( e > 0 ? d : n1 ) : n; exp = MAX_EXP; MAX_EXP = 1 / 0; n = new BigNumber(s); // n0 = d1 = 0 n0.c[0] = 0; for ( ; ; ) { q = div( n, d, 0, 1 ); d2 = d0.plus( q.times(d1) ); if ( d2.cmp(md) == 1 ) break; d0 = d1; d1 = d2; n1 = n0.plus( q.times( d2 = n1 ) ); n0 = d2; d = n.minus( q.times( d2 = d ) ); n = d2; } d2 = div( md.minus(d0), d1, 0, 1 ); n0 = n0.plus( d2.times(n1) ); d0 = d0.plus( d2.times(d1) ); n0.s = n1.s = x.s; e *= 2; // Determine which fraction is closer to x, n0/d0 or n1/d1 arr = div( n1, d1, e, ROUNDING_MODE ).minus(x).abs().cmp( div( n0, d0, e, ROUNDING_MODE ).minus(x).abs() ) < 1 ? [ n1.toString(), d1.toString() ] : [ n0.toString(), d0.toString() ]; MAX_EXP = exp; return arr; }; /* * Return the value of this BigNumber converted to a number primitive. */ P.toNumber = function () { var x = this; // Ensure zero has correct sign. return +x || ( x.s ? x.s * 0 : NaN ); }; /* * Return a BigNumber whose value is the value of this BigNumber raised to the power n. * If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE. * If POW_PRECISION is not 0, round to POW_PRECISION using ROUNDING_MODE. * * n {number} Integer, -9007199254740992 to 9007199254740992 inclusive. * (Performs 54 loop iterations for n of 9007199254740992.) * * 'pow() exponent not an integer: {n}' * 'pow() exponent out of range: {n}' */ P.toPower = P.pow = function (n) { var k, y, i = mathfloor( n < 0 ? -n : +n ), x = this; // Pass ±Infinity to Math.pow if exponent is out of range. if ( !isValidInt( n, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER, 23, 'exponent' ) && ( !isFinite(n) || i > MAX_SAFE_INTEGER && ( n /= 0 ) || parseFloat(n) != n && !( n = NaN ) ) ) { return new BigNumber( Math.pow( +x, n ) ); } // Truncating each coefficient array to a length of k after each multiplication equates // to truncating significant digits to POW_PRECISION + [28, 41], i.e. there will be a // minimum of 28 guard digits retained. (Using + 1.5 would give [9, 21] guard digits.) k = POW_PRECISION ? mathceil( POW_PRECISION / LOG_BASE + 2 ) : 0; y = new BigNumber(ONE); for ( ; ; ) { if ( i % 2 ) { y = y.times(x); if ( !y.c ) break; if ( k && y.c.length > k ) y.c.length = k; } i = mathfloor( i / 2 ); if ( !i ) break; x = x.times(x); if ( k && x.c && x.c.length > k ) x.c.length = k; } if ( n < 0 ) y = ONE.div(y); return k ? round( y, POW_PRECISION, ROUNDING_MODE ) : y; }; /* * Return a string representing the value of this BigNumber rounded to sd significant digits * using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits * necessary to represent the integer part of the value in fixed-point notation, then use * exponential notation. * * [sd] {number} Significant digits. Integer, 1 to MAX inclusive. * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. * * 'toPrecision() precision not an integer: {sd}' * 'toPrecision() precision out of range: {sd}' * 'toPrecision() rounding mode not an integer: {rm}' * 'toPrecision() rounding mode out of range: {rm}' */ P.toPrecision = function ( sd, rm ) { return format( this, sd != null && isValidInt( sd, 1, MAX, 24, 'precision' ) ? sd | 0 : null, rm, 24 ); }; /* * Return a string representing the value of this BigNumber in base b, or base 10 if b is * omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and * ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent * that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than * TO_EXP_NEG, return exponential notation. * * [b] {number} Integer, 2 to 64 inclusive. * * 'toString() base not an integer: {b}' * 'toString() base out of range: {b}' */ P.toString = function (b) { var str, n = this, s = n.s, e = n.e; // Infinity or NaN? if ( e === null ) { if (s) { str = 'Infinity'; if ( s < 0 ) str = '-' + str; } else { str = 'NaN'; } } else { str = coeffToString( n.c ); if ( b == null || !isValidInt( b, 2, 64, 25, 'base' ) ) { str = e <= TO_EXP_NEG || e >= TO_EXP_POS ? toExponential( str, e ) : toFixedPoint( str, e ); } else { str = convertBase( toFixedPoint( str, e ), b | 0, 10, s ); } if ( s < 0 && n.c[0] ) str = '-' + str; } return str; }; /* * Return a new BigNumber whose value is the value of this BigNumber truncated to a whole * number. */ P.truncated = P.trunc = function () { return round( new BigNumber(this), this.e + 1, 1 ); }; /* * Return as toString, but do not accept a base argument. */ P.valueOf = P.toJSON = function () { return this.toString(); }; // Aliases for BigDecimal methods. //P.add = P.plus; // P.add included above //P.subtract = P.minus; // P.sub included above //P.multiply = P.times; // P.mul included above //P.divide = P.div; //P.remainder = P.mod; //P.compareTo = P.cmp; //P.negate = P.neg; if ( configObj != null ) BigNumber.config(configObj); return BigNumber; } // PRIVATE HELPER FUNCTIONS function bitFloor(n) { var i = n | 0; return n > 0 || n === i ? i : i - 1; } // Return a coefficient array as a string of base 10 digits. function coeffToString(a) { var s, z, i = 1, j = a.length, r = a[0] + ''; for ( ; i < j; ) { s = a[i++] + ''; z = LOG_BASE - s.length; for ( ; z--; s = '0' + s ); r += s; } // Determine trailing zeros. for ( j = r.length; r.charCodeAt(--j) === 48; ); return r.slice( 0, j + 1 || 1 ); } // Compare the value of BigNumbers x and y. function compare( x, y ) { var a, b, xc = x.c, yc = y.c, i = x.s, j = y.s, k = x.e, l = y.e; // Either NaN? if ( !i || !j ) return null; a = xc && !xc[0]; b = yc && !yc[0]; // Either zero? if ( a || b ) return a ? b ? 0 : -j : i; // Signs differ? if ( i != j ) return i; a = i < 0; b = k == l; // Either Infinity? if ( !xc || !yc ) return b ? 0 : !xc ^ a ? 1 : -1; // Compare exponents. if ( !b ) return k > l ^ a ? 1 : -1; j = ( k = xc.length ) < ( l = yc.length ) ? k : l; // Compare digit by digit. for ( i = 0; i < j; i++ ) if ( xc[i] != yc[i] ) return xc[i] > yc[i] ^ a ? 1 : -1; // Compare lengths. return k == l ? 0 : k > l ^ a ? 1 : -1; } /* * Return true if n is a valid number in range, otherwise false. * Use for argument validation when ERRORS is false. * Note: parseInt('1e+1') == 1 but parseFloat('1e+1') == 10. */ function intValidatorNoErrors( n, min, max ) { return ( n = truncate(n) ) >= min && n <= max; } function isArray(obj) { return Object.prototype.toString.call(obj) == '[object Array]'; } /* * Convert string of baseIn to an array of numbers of baseOut. * Eg. convertBase('255', 10, 16) returns [15, 15]. * Eg. convertBase('ff', 16, 10) returns [2, 5, 5]. */ function toBaseOut( str, baseIn, baseOut ) { var j, arr = [0], arrL, i = 0, len = str.length; for ( ; i < len; ) { for ( arrL = arr.length; arrL--; arr[arrL] *= baseIn ); arr[ j = 0 ] += ALPHABET.indexOf( str.charAt( i++ ) ); for ( ; j < arr.length; j++ ) { if ( arr[j] > baseOut - 1 ) { if ( arr[j + 1] == null ) arr[j + 1] = 0; arr[j + 1] += arr[j] / baseOut | 0; arr[j] %= baseOut; } } } return arr.reverse(); } function toExponential( str, e ) { return ( str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str ) + ( e < 0 ? 'e' : 'e+' ) + e; } function toFixedPoint( str, e ) { var len, z; // Negative exponent? if ( e < 0 ) { // Prepend zeros. for ( z = '0.'; ++e; z += '0' ); str = z + str; // Positive exponent } else { len = str.length; // Append zeros. if ( ++e > len ) { for ( z = '0', e -= len; --e; z += '0' ); str += z; } else if ( e < len ) { str = str.slice( 0, e ) + '.' + str.slice(e); } } return str; } function truncate(n) { n = parseFloat(n); return n < 0 ? mathceil(n) : mathfloor(n); } // EXPORT BigNumber = another(); // AMD. if ( typeof define == 'function' && define.amd ) { define( function () { return BigNumber; } ); // Node and other environments that support module.exports. } else if ( typeof module != 'undefined' && module.exports ) { module.exports = BigNumber; if ( !crypto ) try { crypto = require('crypto'); } catch (e) {} // Browser. } else { global.BigNumber = BigNumber; } })(this); },{"crypto":1}],"natspec":[function(require,module,exports){ (function (global){ /* This file is part of natspec.js. natspec.js is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. natspec.js is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with natspec.js. If not, see . */ /** @file natspec.js * @authors: * Marek Kotewicz * @date 2015 */ var abi = require('./node_modules/ethereum.js/lib/abi.js'); /** * This object should be used to evaluate natspec expression * It has one method evaluateExpression which shoul be used */ var natspec = (function () { /// Helper method /// Modifications by Zsolt Felfoldi, 15/03/06 /// eval() under go JSRE is unable to reach variables that /// are added to the global context runtime, so now we /// create a variable assignment code for each param /// and run in an isolated function(context) /// variable assignment code is returned by copyToContext var copyToContext = function (obj, context) { var code = ""; var keys = Object.keys(obj); keys.forEach(function (key) { context[key] = obj[key]; code = code + "var "+key+" = context['"+key+"'];\n"; }); return code; } /// this function will not be used in 'production' natspec evaluation /// it's only used to enable tests in node environment /// it copies all functions from current context to nodejs global context var copyToNodeGlobal = function (obj) { if (typeof global === 'undefined') { return; } copyToContext(obj, global); }; /// Helper method /// Should be called to get method with given name from the abi /// @param contract's abi /// @param name of the method that we are looking for var getMethodWithName = function(abi, name) { return abi.filter(function (method) { return method.name === name; })[0]; }; /// Function called to get all contract's storage values /// @returns hashmap with contract properties which are used /// TODO: check if this function will be used var getContractProperties = function (address, abi) { return {}; }; /// Function called to get all contract method input variables /// @returns hashmap with all contract's method input variables var getMethodInputParams = function (method, transaction) { // do it with output formatter (cause we have to decode) var params = abi.formatOutput(method.inputs, '0x' + transaction.params[0].data.slice(10)); return method.inputs.reduce(function (acc, current, index) { acc[current.name] = params[index]; return acc; }, {}); }; /// Should be called to evaluate single expression /// Is internally using javascript's 'eval' method /// @param expression which should be evaluated /// @param [call] object containing contract abi, transaction, called method /// TODO: separate evaluation from getting input params, so as not to spoil 'evaluateExpression' function var evaluateExpression = function (expression, call) { var self = this; var code = ""; var context = []; if (!!call) { try { var method = getMethodWithName(call.abi, call.method); var params = getMethodInputParams(method, call.transaction); code = copyToContext(params, context); // see copyToContext comments } catch (err) { return "Natspec evaluation failed, wrong input params"; } } // used only for tests copyToNodeGlobal(context); var evaluatedExpression = ""; // match everything in `` quotes var pattern = /\`(?:\\.|[^`\\])*\`/gim var match; var lastIndex = 0; while ((match = pattern.exec(expression)) !== null) { var startIndex = pattern.lastIndex - match[0].length; var toEval = match[0].slice(1, match[0].length - 1); evaluatedExpression += expression.slice(lastIndex, startIndex); var evaluatedPart; try { var fn = new Function("context", code + "return "+toEval+";"); evaluatedPart = fn(context).toString(); // see copyToContext comments // evaluatedPart = eval(toEval).toString(); } catch (err) { evaluatedPart = 'undefined'; } evaluatedExpression += evaluatedPart; lastIndex = pattern.lastIndex; } evaluatedExpression += expression.slice(lastIndex); return evaluatedExpression; }; return { evaluateExpression: evaluateExpression }; })(); module.exports = natspec; }).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) },{"./node_modules/ethereum.js/lib/abi.js":3}]},{},[]);