// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "bytes" "errors" "fmt" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/ethdb/memorydb" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/rlp" ) // Prove constructs a merkle proof for key. The result contains all encoded nodes // on the path to the value at key. The value itself is also included in the last // node and can be retrieved by verifying the proof. // // If the trie does not contain a value for key, the returned proof contains all // nodes of the longest existing prefix of the key (at least the root node), ending // with the node that proves the absence of the key. func (t *Trie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) error { // Collect all nodes on the path to key. key = keybytesToHex(key) var nodes []node tn := t.root for len(key) > 0 && tn != nil { switch n := tn.(type) { case *shortNode: if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) { // The trie doesn't contain the key. tn = nil } else { tn = n.Val key = key[len(n.Key):] } nodes = append(nodes, n) case *fullNode: tn = n.Children[key[0]] key = key[1:] nodes = append(nodes, n) case hashNode: var err error tn, err = t.resolveHash(n, nil) if err != nil { log.Error(fmt.Sprintf("Unhandled trie error: %v", err)) return err } default: panic(fmt.Sprintf("%T: invalid node: %v", tn, tn)) } } hasher := newHasher(false) defer returnHasherToPool(hasher) for i, n := range nodes { if fromLevel > 0 { fromLevel-- continue } var hn node n, hn = hasher.proofHash(n) if hash, ok := hn.(hashNode); ok || i == 0 { // If the node's database encoding is a hash (or is the // root node), it becomes a proof element. enc, _ := rlp.EncodeToBytes(n) if !ok { hash = hasher.hashData(enc) } proofDb.Put(hash, enc) } } return nil } // Prove constructs a merkle proof for key. The result contains all encoded nodes // on the path to the value at key. The value itself is also included in the last // node and can be retrieved by verifying the proof. // // If the trie does not contain a value for key, the returned proof contains all // nodes of the longest existing prefix of the key (at least the root node), ending // with the node that proves the absence of the key. func (t *SecureTrie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) error { return t.trie.Prove(key, fromLevel, proofDb) } // VerifyProof checks merkle proofs. The given proof must contain the value for // key in a trie with the given root hash. VerifyProof returns an error if the // proof contains invalid trie nodes or the wrong value. func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader) (value []byte, err error) { key = keybytesToHex(key) wantHash := rootHash for i := 0; ; i++ { buf, _ := proofDb.Get(wantHash[:]) if buf == nil { return nil, fmt.Errorf("proof node %d (hash %064x) missing", i, wantHash) } n, err := decodeNode(wantHash[:], buf) if err != nil { return nil, fmt.Errorf("bad proof node %d: %v", i, err) } keyrest, cld := get(n, key, true) switch cld := cld.(type) { case nil: // The trie doesn't contain the key. return nil, nil case hashNode: key = keyrest copy(wantHash[:], cld) case valueNode: return cld, nil } } } // proofToPath converts a merkle proof to trie node path. // The main purpose of this function is recovering a node // path from the merkle proof stream. All necessary nodes // will be resolved and leave the remaining as hashnode. func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, error) { // resolveNode retrieves and resolves trie node from merkle proof stream resolveNode := func(hash common.Hash) (node, error) { buf, _ := proofDb.Get(hash[:]) if buf == nil { return nil, fmt.Errorf("proof node (hash %064x) missing", hash) } n, err := decodeNode(hash[:], buf) if err != nil { return nil, fmt.Errorf("bad proof node %v", err) } return n, err } // If the root node is empty, resolve it first. // Root node must be included in the proof. if root == nil { n, err := resolveNode(rootHash) if err != nil { return nil, err } root = n } var ( err error child, parent node keyrest []byte terminate bool ) key, parent = keybytesToHex(key), root for { keyrest, child = get(parent, key, false) switch cld := child.(type) { case nil: // The trie doesn't contain the key. It's possible // the proof is a non-existing proof, but at least // we can prove all resolved nodes are correct, it's // enough for us to prove range. if allowNonExistent { return root, nil } return nil, errors.New("the node is not contained in trie") case *shortNode: key, parent = keyrest, child // Already resolved continue case *fullNode: key, parent = keyrest, child // Already resolved continue case hashNode: child, err = resolveNode(common.BytesToHash(cld)) if err != nil { return nil, err } case valueNode: terminate = true } // Link the parent and child. switch pnode := parent.(type) { case *shortNode: pnode.Val = child case *fullNode: pnode.Children[key[0]] = child default: panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode)) } if terminate { return root, nil // The whole path is resolved } key, parent = keyrest, child } } // unsetInternal removes all internal node references(hashnode, embedded node). // It should be called after a trie is constructed with two edge proofs. Also // the given boundary keys must be the one used to construct the edge proofs. // // It's the key step for range proof. All visited nodes should be marked dirty // since the node content might be modified. Besides it can happen that some // fullnodes only have one child which is disallowed. But if the proof is valid, // the missing children will be filled, otherwise it will be thrown anyway. func unsetInternal(n node, left []byte, right []byte) error { left, right = keybytesToHex(left), keybytesToHex(right) // todo(rjl493456442) different length edge keys should be supported if len(left) != len(right) { return errors.New("inconsistent edge path") } // Step down to the fork point. There are two scenarios can happen: // - the fork point is a shortnode: the left proof MUST point to a // non-existent key and the key doesn't match with the shortnode // - the fork point is a fullnode: the left proof can point to an // existent key or not. var ( pos = 0 parent node ) findFork: for { switch rn := (n).(type) { case *shortNode: // The right proof must point to an existent key. if len(right)-pos < len(rn.Key) || !bytes.Equal(rn.Key, right[pos:pos+len(rn.Key)]) { return errors.New("invalid edge path") } rn.flags = nodeFlag{dirty: true} // Special case, the non-existent proof points to the same path // as the existent proof, but the path of existent proof is longer. // In this case, the fork point is this shortnode. if len(left)-pos < len(rn.Key) || !bytes.Equal(rn.Key, left[pos:pos+len(rn.Key)]) { break findFork } parent = n n, pos = rn.Val, pos+len(rn.Key) case *fullNode: leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]] // The right proof must point to an existent key. if rightnode == nil { return errors.New("invalid edge path") } rn.flags = nodeFlag{dirty: true} if leftnode != rightnode { break findFork } parent = n n, pos = rn.Children[left[pos]], pos+1 default: panic(fmt.Sprintf("%T: invalid node: %v", n, n)) } } switch rn := n.(type) { case *shortNode: if _, ok := rn.Val.(valueNode); ok { parent.(*fullNode).Children[right[pos-1]] = nil return nil } return unset(rn, rn.Val, right[pos:], len(rn.Key), true) case *fullNode: for i := left[pos] + 1; i < right[pos]; i++ { rn.Children[i] = nil } if err := unset(rn, rn.Children[left[pos]], left[pos:], 1, false); err != nil { return err } if err := unset(rn, rn.Children[right[pos]], right[pos:], 1, true); err != nil { return err } return nil default: panic(fmt.Sprintf("%T: invalid node: %v", n, n)) } } // unset removes all internal node references either the left most or right most. // If we try to unset all right most references, it can meet these scenarios: // // - The given path is existent in the trie, unset the associated shortnode // - The given path is non-existent in the trie // - the fork point is a fullnode, the corresponding child pointed by path // is nil, return // - the fork point is a shortnode, the key of shortnode is less than path, // keep the entire branch and return. // - the fork point is a shortnode, the key of shortnode is greater than path, // unset the entire branch. // // If we try to unset all left most references, then the given path should // be existent. func unset(parent node, child node, key []byte, pos int, removeLeft bool) error { switch cld := child.(type) { case *fullNode: if removeLeft { for i := 0; i < int(key[pos]); i++ { cld.Children[i] = nil } cld.flags = nodeFlag{dirty: true} } else { for i := key[pos] + 1; i < 16; i++ { cld.Children[i] = nil } cld.flags = nodeFlag{dirty: true} } return unset(cld, cld.Children[key[pos]], key, pos+1, removeLeft) case *shortNode: if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) { // Find the fork point, it's an non-existent branch. if removeLeft { return errors.New("invalid right edge proof") } if bytes.Compare(cld.Key, key[pos:]) > 0 { // The key of fork shortnode is greater than the // path(it belongs to the range), unset the entrie // branch. The parent must be a fullnode. fn := parent.(*fullNode) fn.Children[key[pos-1]] = nil } else { // The key of fork shortnode is less than the // path(it doesn't belong to the range), keep // it with the cached hash available. } return nil } if _, ok := cld.Val.(valueNode); ok { fn := parent.(*fullNode) fn.Children[key[pos-1]] = nil return nil } cld.flags = nodeFlag{dirty: true} return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft) case nil: // If the node is nil, it's a child of the fork point // fullnode(it's an non-existent branch). if removeLeft { return errors.New("invalid right edge proof") } return nil default: panic("it shouldn't happen") // hashNode, valueNode } } // VerifyRangeProof checks whether the given leaf nodes and edge proofs // can prove the given trie leaves range is matched with given root hash // and the range is consecutive(no gap inside). // // Note the given first edge proof can be non-existing proof. For example // the first proof is for an non-existent values 0x03. The given batch // leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove. But the // last edge proof should always be an existent proof. // // The firstKey is paired with firstProof, not necessarily the same as keys[0] // (unless firstProof is an existent proof). // // Expect the normal case, this function can also be used to verify the following // range proofs: // // - All elements proof. In this case the left and right proof can be nil, but the // range should be all the leaves in the trie. // // - Zero element proof(left edge proof should be a non-existent proof). In this // case if there are still some other leaves available on the right side, then // an error will be returned. // // - One element proof. In this case no matter the left edge proof is a non-existent // proof or not, we can always verify the correctness of the proof. func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, values [][]byte, firstProof ethdb.KeyValueReader, lastProof ethdb.KeyValueReader) error { if len(keys) != len(values) { return fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values)) } // Special case, there is no edge proof at all. The given range is expected // to be the whole leaf-set in the trie. if firstProof == nil && lastProof == nil { emptytrie, err := New(common.Hash{}, NewDatabase(memorydb.New())) if err != nil { return err } for index, key := range keys { emptytrie.TryUpdate(key, values[index]) } if emptytrie.Hash() != rootHash { return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, emptytrie.Hash()) } return nil } // Special case, there is a provided non-existence proof and zero key/value // pairs, meaning there are no more accounts / slots in the trie. if len(keys) == 0 { // Recover the non-existent proof to a path, ensure there is nothing left root, err := proofToPath(rootHash, nil, firstKey, firstProof, true) if err != nil { return err } node, pos, firstKey := root, 0, keybytesToHex(firstKey) for node != nil { switch rn := node.(type) { case *fullNode: for i := firstKey[pos] + 1; i < 16; i++ { if rn.Children[i] != nil { return errors.New("more leaves available") } } node, pos = rn.Children[firstKey[pos]], pos+1 case *shortNode: if len(firstKey)-pos < len(rn.Key) || !bytes.Equal(rn.Key, firstKey[pos:pos+len(rn.Key)]) { if bytes.Compare(rn.Key, firstKey[pos:]) < 0 { node = nil continue } else { return errors.New("more leaves available") } } node, pos = rn.Val, pos+len(rn.Key) case valueNode, hashNode: return errors.New("more leaves available") } } // Yeah, although we receive nothing, but we can prove // there is no more leaf in the trie, return nil. return nil } // Special case, there is only one element and left edge // proof is an existent one. if len(keys) == 1 && bytes.Equal(keys[0], firstKey) { value, err := VerifyProof(rootHash, keys[0], firstProof) if err != nil { return err } if !bytes.Equal(value, values[0]) { return fmt.Errorf("correct proof but invalid data") } return nil } // Convert the edge proofs to edge trie paths. Then we can // have the same tree architecture with the original one. // For the first edge proof, non-existent proof is allowed. root, err := proofToPath(rootHash, nil, firstKey, firstProof, true) if err != nil { return err } // Pass the root node here, the second path will be merged // with the first one. For the last edge proof, non-existent // proof is not allowed. root, err = proofToPath(rootHash, root, keys[len(keys)-1], lastProof, false) if err != nil { return err } // Remove all internal references. All the removed parts should // be re-filled(or re-constructed) by the given leaves range. if err := unsetInternal(root, firstKey, keys[len(keys)-1]); err != nil { return err } // Rebuild the trie with the leave stream, the shape of trie // should be same with the original one. newtrie := &Trie{root: root, db: NewDatabase(memorydb.New())} for index, key := range keys { newtrie.TryUpdate(key, values[index]) } if newtrie.Hash() != rootHash { return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, newtrie.Hash()) } return nil } // get returns the child of the given node. Return nil if the // node with specified key doesn't exist at all. // // There is an additional flag `skipResolved`. If it's set then // all resolved nodes won't be returned. func get(tn node, key []byte, skipResolved bool) ([]byte, node) { for { switch n := tn.(type) { case *shortNode: if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) { return nil, nil } tn = n.Val key = key[len(n.Key):] if !skipResolved { return key, tn } case *fullNode: tn = n.Children[key[0]] key = key[1:] if !skipResolved { return key, tn } case hashNode: return key, n case nil: return key, nil case valueNode: return nil, n default: panic(fmt.Sprintf("%T: invalid node: %v", tn, tn)) } } }