// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. // Package discv5 is a prototype implementation of Discvery v5. // Deprecated: do not use this package. package discv5 import ( "crypto/rand" "encoding/binary" "fmt" "net" "sort" "github.com/ethereum/go-ethereum/common" ) const ( alpha = 3 // Kademlia concurrency factor bucketSize = 16 // Kademlia bucket size hashBits = len(common.Hash{}) * 8 nBuckets = hashBits + 1 // Number of buckets maxFindnodeFailures = 5 ) type Table struct { count int // number of nodes buckets [nBuckets]*bucket // index of known nodes by distance nodeAddedHook func(*Node) // for testing self *Node // metadata of the local node } // bucket contains nodes, ordered by their last activity. the entry // that was most recently active is the first element in entries. type bucket struct { entries []*Node replacements []*Node } func newTable(ourID NodeID, ourAddr *net.UDPAddr) *Table { self := NewNode(ourID, ourAddr.IP, uint16(ourAddr.Port), uint16(ourAddr.Port)) tab := &Table{self: self} for i := range tab.buckets { tab.buckets[i] = new(bucket) } return tab } const printTable = false // chooseBucketRefreshTarget selects random refresh targets to keep all Kademlia // buckets filled with live connections and keep the network topology healthy. // This requires selecting addresses closer to our own with a higher probability // in order to refresh closer buckets too. // // This algorithm approximates the distance distribution of existing nodes in the // table by selecting a random node from the table and selecting a target address // with a distance less than twice of that of the selected node. // This algorithm will be improved later to specifically target the least recently // used buckets. func (tab *Table) chooseBucketRefreshTarget() common.Hash { entries := 0 if printTable { fmt.Println() } for i, b := range &tab.buckets { entries += len(b.entries) if printTable { for _, e := range b.entries { fmt.Println(i, e.state, e.addr().String(), e.ID.String(), e.sha.Hex()) } } } prefix := binary.BigEndian.Uint64(tab.self.sha[0:8]) dist := ^uint64(0) entry := int(randUint(uint32(entries + 1))) for _, b := range &tab.buckets { if entry < len(b.entries) { n := b.entries[entry] dist = binary.BigEndian.Uint64(n.sha[0:8]) ^ prefix break } entry -= len(b.entries) } ddist := ^uint64(0) if dist+dist > dist { ddist = dist } targetPrefix := prefix ^ randUint64n(ddist) var target common.Hash binary.BigEndian.PutUint64(target[0:8], targetPrefix) rand.Read(target[8:]) return target } // readRandomNodes fills the given slice with random nodes from the // table. It will not write the same node more than once. The nodes in // the slice are copies and can be modified by the caller. func (tab *Table) readRandomNodes(buf []*Node) (n int) { // TODO: tree-based buckets would help here // Find all non-empty buckets and get a fresh slice of their entries. var buckets [][]*Node for _, b := range &tab.buckets { if len(b.entries) > 0 { buckets = append(buckets, b.entries) } } if len(buckets) == 0 { return 0 } // Shuffle the buckets. for i := uint32(len(buckets)) - 1; i > 0; i-- { j := randUint(i) buckets[i], buckets[j] = buckets[j], buckets[i] } // Move head of each bucket into buf, removing buckets that become empty. var i, j int for ; i < len(buf); i, j = i+1, (j+1)%len(buckets) { b := buckets[j] buf[i] = &(*b[0]) buckets[j] = b[1:] if len(b) == 1 { buckets = append(buckets[:j], buckets[j+1:]...) } if len(buckets) == 0 { break } } return i + 1 } func randUint(max uint32) uint32 { if max < 2 { return 0 } var b [4]byte rand.Read(b[:]) return binary.BigEndian.Uint32(b[:]) % max } func randUint64n(max uint64) uint64 { if max < 2 { return 0 } var b [8]byte rand.Read(b[:]) return binary.BigEndian.Uint64(b[:]) % max } // closest returns the n nodes in the table that are closest to the // given id. The caller must hold tab.mutex. func (tab *Table) closest(target common.Hash, nresults int) *nodesByDistance { // This is a very wasteful way to find the closest nodes but // obviously correct. I believe that tree-based buckets would make // this easier to implement efficiently. close := &nodesByDistance{target: target} for _, b := range &tab.buckets { for _, n := range b.entries { close.push(n, nresults) } } return close } // add attempts to add the given node its corresponding bucket. If the // bucket has space available, adding the node succeeds immediately. // Otherwise, the node is added to the replacement cache for the bucket. func (tab *Table) add(n *Node) (contested *Node) { //fmt.Println("add", n.addr().String(), n.ID.String(), n.sha.Hex()) if n.ID == tab.self.ID { return } b := tab.buckets[logdist(tab.self.sha, n.sha)] switch { case b.bump(n): // n exists in b. return nil case len(b.entries) < bucketSize: // b has space available. b.addFront(n) tab.count++ if tab.nodeAddedHook != nil { tab.nodeAddedHook(n) } return nil default: // b has no space left, add to replacement cache // and revalidate the last entry. // TODO: drop previous node b.replacements = append(b.replacements, n) if len(b.replacements) > bucketSize { copy(b.replacements, b.replacements[1:]) b.replacements = b.replacements[:len(b.replacements)-1] } return b.entries[len(b.entries)-1] } } // stuff adds nodes the table to the end of their corresponding bucket // if the bucket is not full. func (tab *Table) stuff(nodes []*Node) { outer: for _, n := range nodes { if n.ID == tab.self.ID { continue // don't add self } bucket := tab.buckets[logdist(tab.self.sha, n.sha)] for i := range bucket.entries { if bucket.entries[i].ID == n.ID { continue outer // already in bucket } } if len(bucket.entries) < bucketSize { bucket.entries = append(bucket.entries, n) tab.count++ if tab.nodeAddedHook != nil { tab.nodeAddedHook(n) } } } } // delete removes an entry from the node table (used to evacuate // failed/non-bonded discovery peers). func (tab *Table) delete(node *Node) { //fmt.Println("delete", node.addr().String(), node.ID.String(), node.sha.Hex()) bucket := tab.buckets[logdist(tab.self.sha, node.sha)] for i := range bucket.entries { if bucket.entries[i].ID == node.ID { bucket.entries = append(bucket.entries[:i], bucket.entries[i+1:]...) tab.count-- return } } } func (tab *Table) deleteReplace(node *Node) { b := tab.buckets[logdist(tab.self.sha, node.sha)] i := 0 for i < len(b.entries) { if b.entries[i].ID == node.ID { b.entries = append(b.entries[:i], b.entries[i+1:]...) tab.count-- } else { i++ } } // refill from replacement cache // TODO: maybe use random index if len(b.entries) < bucketSize && len(b.replacements) > 0 { ri := len(b.replacements) - 1 b.addFront(b.replacements[ri]) tab.count++ b.replacements[ri] = nil b.replacements = b.replacements[:ri] } } func (b *bucket) addFront(n *Node) { b.entries = append(b.entries, nil) copy(b.entries[1:], b.entries) b.entries[0] = n } func (b *bucket) bump(n *Node) bool { for i := range b.entries { if b.entries[i].ID == n.ID { // move it to the front copy(b.entries[1:], b.entries[:i]) b.entries[0] = n return true } } return false } // nodesByDistance is a list of nodes, ordered by // distance to target. type nodesByDistance struct { entries []*Node target common.Hash } // push adds the given node to the list, keeping the total size below maxElems. func (h *nodesByDistance) push(n *Node, maxElems int) { ix := sort.Search(len(h.entries), func(i int) bool { return distcmp(h.target, h.entries[i].sha, n.sha) > 0 }) if len(h.entries) < maxElems { h.entries = append(h.entries, n) } if ix == len(h.entries) { // farther away than all nodes we already have. // if there was room for it, the node is now the last element. } else { // slide existing entries down to make room // this will overwrite the entry we just appended. copy(h.entries[ix+1:], h.entries[ix:]) h.entries[ix] = n } }