// Copyright 2020 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package eth import ( "fmt" "math/big" "math/rand" "sync/atomic" "testing" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/consensus" "github.com/ethereum/go-ethereum/consensus/ethash" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/forkid" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/eth/downloader" "github.com/ethereum/go-ethereum/eth/protocols/eth" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/p2p" "github.com/ethereum/go-ethereum/p2p/enode" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/rlp" ) // testEthHandler is a mock event handler to listen for inbound network requests // on the `eth` protocol and convert them into a more easily testable form. type testEthHandler struct { blockBroadcasts event.Feed txAnnounces event.Feed txBroadcasts event.Feed } func (h *testEthHandler) Chain() *core.BlockChain { panic("no backing chain") } func (h *testEthHandler) TxPool() eth.TxPool { panic("no backing tx pool") } func (h *testEthHandler) AcceptTxs() bool { return true } func (h *testEthHandler) RunPeer(*eth.Peer, eth.Handler) error { panic("not used in tests") } func (h *testEthHandler) PeerInfo(enode.ID) interface{} { panic("not used in tests") } func (h *testEthHandler) Handle(peer *eth.Peer, packet eth.Packet) error { switch packet := packet.(type) { case *eth.NewBlockPacket: h.blockBroadcasts.Send(packet.Block) return nil case *eth.NewPooledTransactionHashesPacket: h.txAnnounces.Send(([]common.Hash)(*packet)) return nil case *eth.TransactionsPacket: h.txBroadcasts.Send(([]*types.Transaction)(*packet)) return nil case *eth.PooledTransactionsPacket: h.txBroadcasts.Send(([]*types.Transaction)(*packet)) return nil default: panic(fmt.Sprintf("unexpected eth packet type in tests: %T", packet)) } } // Tests that peers are correctly accepted (or rejected) based on the advertised // fork IDs in the protocol handshake. func TestForkIDSplit66(t *testing.T) { testForkIDSplit(t, eth.ETH66) } func testForkIDSplit(t *testing.T, protocol uint) { t.Parallel() var ( engine = ethash.NewFaker() configNoFork = ¶ms.ChainConfig{HomesteadBlock: big.NewInt(1)} configProFork = ¶ms.ChainConfig{ HomesteadBlock: big.NewInt(1), EIP150Block: big.NewInt(2), EIP155Block: big.NewInt(2), EIP158Block: big.NewInt(2), ByzantiumBlock: big.NewInt(3), } dbNoFork = rawdb.NewMemoryDatabase() dbProFork = rawdb.NewMemoryDatabase() gspecNoFork = &core.Genesis{Config: configNoFork} gspecProFork = &core.Genesis{Config: configProFork} chainNoFork, _ = core.NewBlockChain(dbNoFork, nil, gspecNoFork, nil, engine, vm.Config{}, nil, nil) chainProFork, _ = core.NewBlockChain(dbProFork, nil, gspecProFork, nil, engine, vm.Config{}, nil, nil) _, blocksNoFork, _ = core.GenerateChainWithGenesis(gspecNoFork, engine, 2, nil) _, blocksProFork, _ = core.GenerateChainWithGenesis(gspecProFork, engine, 2, nil) ethNoFork, _ = newHandler(&handlerConfig{ Database: dbNoFork, Chain: chainNoFork, TxPool: newTestTxPool(), Merger: consensus.NewMerger(rawdb.NewMemoryDatabase()), Network: 1, Sync: downloader.FullSync, BloomCache: 1, }) ethProFork, _ = newHandler(&handlerConfig{ Database: dbProFork, Chain: chainProFork, TxPool: newTestTxPool(), Merger: consensus.NewMerger(rawdb.NewMemoryDatabase()), Network: 1, Sync: downloader.FullSync, BloomCache: 1, }) ) ethNoFork.Start(1000) ethProFork.Start(1000) // Clean up everything after ourselves defer chainNoFork.Stop() defer chainProFork.Stop() defer ethNoFork.Stop() defer ethProFork.Stop() // Both nodes should allow the other to connect (same genesis, next fork is the same) p2pNoFork, p2pProFork := p2p.MsgPipe() defer p2pNoFork.Close() defer p2pProFork.Close() peerNoFork := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{1}, "", nil, p2pNoFork), p2pNoFork, nil) peerProFork := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{2}, "", nil, p2pProFork), p2pProFork, nil) defer peerNoFork.Close() defer peerProFork.Close() errc := make(chan error, 2) go func(errc chan error) { errc <- ethNoFork.runEthPeer(peerProFork, func(peer *eth.Peer) error { return nil }) }(errc) go func(errc chan error) { errc <- ethProFork.runEthPeer(peerNoFork, func(peer *eth.Peer) error { return nil }) }(errc) for i := 0; i < 2; i++ { select { case err := <-errc: if err != nil { t.Fatalf("frontier nofork <-> profork failed: %v", err) } case <-time.After(250 * time.Millisecond): t.Fatalf("frontier nofork <-> profork handler timeout") } } // Progress into Homestead. Fork's match, so we don't care what the future holds chainNoFork.InsertChain(blocksNoFork[:1]) chainProFork.InsertChain(blocksProFork[:1]) p2pNoFork, p2pProFork = p2p.MsgPipe() defer p2pNoFork.Close() defer p2pProFork.Close() peerNoFork = eth.NewPeer(protocol, p2p.NewPeer(enode.ID{1}, "", nil), p2pNoFork, nil) peerProFork = eth.NewPeer(protocol, p2p.NewPeer(enode.ID{2}, "", nil), p2pProFork, nil) defer peerNoFork.Close() defer peerProFork.Close() errc = make(chan error, 2) go func(errc chan error) { errc <- ethNoFork.runEthPeer(peerProFork, func(peer *eth.Peer) error { return nil }) }(errc) go func(errc chan error) { errc <- ethProFork.runEthPeer(peerNoFork, func(peer *eth.Peer) error { return nil }) }(errc) for i := 0; i < 2; i++ { select { case err := <-errc: if err != nil { t.Fatalf("homestead nofork <-> profork failed: %v", err) } case <-time.After(250 * time.Millisecond): t.Fatalf("homestead nofork <-> profork handler timeout") } } // Progress into Spurious. Forks mismatch, signalling differing chains, reject chainNoFork.InsertChain(blocksNoFork[1:2]) chainProFork.InsertChain(blocksProFork[1:2]) p2pNoFork, p2pProFork = p2p.MsgPipe() defer p2pNoFork.Close() defer p2pProFork.Close() peerNoFork = eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{1}, "", nil, p2pNoFork), p2pNoFork, nil) peerProFork = eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{2}, "", nil, p2pProFork), p2pProFork, nil) defer peerNoFork.Close() defer peerProFork.Close() errc = make(chan error, 2) go func(errc chan error) { errc <- ethNoFork.runEthPeer(peerProFork, func(peer *eth.Peer) error { return nil }) }(errc) go func(errc chan error) { errc <- ethProFork.runEthPeer(peerNoFork, func(peer *eth.Peer) error { return nil }) }(errc) var successes int for i := 0; i < 2; i++ { select { case err := <-errc: if err == nil { successes++ if successes == 2 { // Only one side disconnects t.Fatalf("fork ID rejection didn't happen") } } case <-time.After(250 * time.Millisecond): t.Fatalf("split peers not rejected") } } } // Tests that received transactions are added to the local pool. func TestRecvTransactions66(t *testing.T) { testRecvTransactions(t, eth.ETH66) } func testRecvTransactions(t *testing.T, protocol uint) { t.Parallel() // Create a message handler, configure it to accept transactions and watch them handler := newTestHandler() defer handler.close() handler.handler.acceptTxs = 1 // mark synced to accept transactions txs := make(chan core.NewTxsEvent) sub := handler.txpool.SubscribeNewTxsEvent(txs) defer sub.Unsubscribe() // Create a source peer to send messages through and a sink handler to receive them p2pSrc, p2pSink := p2p.MsgPipe() defer p2pSrc.Close() defer p2pSink.Close() src := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{1}, "", nil, p2pSrc), p2pSrc, handler.txpool) sink := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{2}, "", nil, p2pSink), p2pSink, handler.txpool) defer src.Close() defer sink.Close() go handler.handler.runEthPeer(sink, func(peer *eth.Peer) error { return eth.Handle((*ethHandler)(handler.handler), peer) }) // Run the handshake locally to avoid spinning up a source handler var ( genesis = handler.chain.Genesis() head = handler.chain.CurrentBlock() td = handler.chain.GetTd(head.Hash(), head.NumberU64()) ) if err := src.Handshake(1, td, head.Hash(), genesis.Hash(), forkid.NewIDWithChain(handler.chain), forkid.NewFilter(handler.chain)); err != nil { t.Fatalf("failed to run protocol handshake") } // Send the transaction to the sink and verify that it's added to the tx pool tx := types.NewTransaction(0, common.Address{}, big.NewInt(0), 100000, big.NewInt(0), nil) tx, _ = types.SignTx(tx, types.HomesteadSigner{}, testKey) if err := src.SendTransactions([]*types.Transaction{tx}); err != nil { t.Fatalf("failed to send transaction: %v", err) } select { case event := <-txs: if len(event.Txs) != 1 { t.Errorf("wrong number of added transactions: got %d, want 1", len(event.Txs)) } else if event.Txs[0].Hash() != tx.Hash() { t.Errorf("added wrong tx hash: got %v, want %v", event.Txs[0].Hash(), tx.Hash()) } case <-time.After(2 * time.Second): t.Errorf("no NewTxsEvent received within 2 seconds") } } // This test checks that pending transactions are sent. func TestSendTransactions66(t *testing.T) { testSendTransactions(t, eth.ETH66) } func testSendTransactions(t *testing.T, protocol uint) { t.Parallel() // Create a message handler and fill the pool with big transactions handler := newTestHandler() defer handler.close() insert := make([]*types.Transaction, 100) for nonce := range insert { tx := types.NewTransaction(uint64(nonce), common.Address{}, big.NewInt(0), 100000, big.NewInt(0), make([]byte, 10240)) tx, _ = types.SignTx(tx, types.HomesteadSigner{}, testKey) insert[nonce] = tx } go handler.txpool.AddRemotes(insert) // Need goroutine to not block on feed time.Sleep(250 * time.Millisecond) // Wait until tx events get out of the system (can't use events, tx broadcaster races with peer join) // Create a source handler to send messages through and a sink peer to receive them p2pSrc, p2pSink := p2p.MsgPipe() defer p2pSrc.Close() defer p2pSink.Close() src := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{1}, "", nil, p2pSrc), p2pSrc, handler.txpool) sink := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{2}, "", nil, p2pSink), p2pSink, handler.txpool) defer src.Close() defer sink.Close() go handler.handler.runEthPeer(src, func(peer *eth.Peer) error { return eth.Handle((*ethHandler)(handler.handler), peer) }) // Run the handshake locally to avoid spinning up a source handler var ( genesis = handler.chain.Genesis() head = handler.chain.CurrentBlock() td = handler.chain.GetTd(head.Hash(), head.NumberU64()) ) if err := sink.Handshake(1, td, head.Hash(), genesis.Hash(), forkid.NewIDWithChain(handler.chain), forkid.NewFilter(handler.chain)); err != nil { t.Fatalf("failed to run protocol handshake") } // After the handshake completes, the source handler should stream the sink // the transactions, subscribe to all inbound network events backend := new(testEthHandler) anns := make(chan []common.Hash) annSub := backend.txAnnounces.Subscribe(anns) defer annSub.Unsubscribe() bcasts := make(chan []*types.Transaction) bcastSub := backend.txBroadcasts.Subscribe(bcasts) defer bcastSub.Unsubscribe() go eth.Handle(backend, sink) // Make sure we get all the transactions on the correct channels seen := make(map[common.Hash]struct{}) for len(seen) < len(insert) { switch protocol { case 66: select { case hashes := <-anns: for _, hash := range hashes { if _, ok := seen[hash]; ok { t.Errorf("duplicate transaction announced: %x", hash) } seen[hash] = struct{}{} } case <-bcasts: t.Errorf("initial tx broadcast received on post eth/66") } default: panic("unsupported protocol, please extend test") } } for _, tx := range insert { if _, ok := seen[tx.Hash()]; !ok { t.Errorf("missing transaction: %x", tx.Hash()) } } } // Tests that transactions get propagated to all attached peers, either via direct // broadcasts or via announcements/retrievals. func TestTransactionPropagation66(t *testing.T) { testTransactionPropagation(t, eth.ETH66) } func testTransactionPropagation(t *testing.T, protocol uint) { t.Parallel() // Create a source handler to send transactions from and a number of sinks // to receive them. We need multiple sinks since a one-to-one peering would // broadcast all transactions without announcement. source := newTestHandler() source.handler.snapSync = 0 // Avoid requiring snap, otherwise some will be dropped below defer source.close() sinks := make([]*testHandler, 10) for i := 0; i < len(sinks); i++ { sinks[i] = newTestHandler() defer sinks[i].close() sinks[i].handler.acceptTxs = 1 // mark synced to accept transactions } // Interconnect all the sink handlers with the source handler for i, sink := range sinks { sink := sink // Closure for gorotuine below sourcePipe, sinkPipe := p2p.MsgPipe() defer sourcePipe.Close() defer sinkPipe.Close() sourcePeer := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{byte(i + 1)}, "", nil, sourcePipe), sourcePipe, source.txpool) sinkPeer := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{0}, "", nil, sinkPipe), sinkPipe, sink.txpool) defer sourcePeer.Close() defer sinkPeer.Close() go source.handler.runEthPeer(sourcePeer, func(peer *eth.Peer) error { return eth.Handle((*ethHandler)(source.handler), peer) }) go sink.handler.runEthPeer(sinkPeer, func(peer *eth.Peer) error { return eth.Handle((*ethHandler)(sink.handler), peer) }) } // Subscribe to all the transaction pools txChs := make([]chan core.NewTxsEvent, len(sinks)) for i := 0; i < len(sinks); i++ { txChs[i] = make(chan core.NewTxsEvent, 1024) sub := sinks[i].txpool.SubscribeNewTxsEvent(txChs[i]) defer sub.Unsubscribe() } // Fill the source pool with transactions and wait for them at the sinks txs := make([]*types.Transaction, 1024) for nonce := range txs { tx := types.NewTransaction(uint64(nonce), common.Address{}, big.NewInt(0), 100000, big.NewInt(0), nil) tx, _ = types.SignTx(tx, types.HomesteadSigner{}, testKey) txs[nonce] = tx } source.txpool.AddRemotes(txs) // Iterate through all the sinks and ensure they all got the transactions for i := range sinks { for arrived, timeout := 0, false; arrived < len(txs) && !timeout; { select { case event := <-txChs[i]: arrived += len(event.Txs) case <-time.After(time.Second): t.Errorf("sink %d: transaction propagation timed out: have %d, want %d", i, arrived, len(txs)) timeout = true } } } } // Tests that post eth protocol handshake, clients perform a mutual checkpoint // challenge to validate each other's chains. Hash mismatches, or missing ones // during a fast sync should lead to the peer getting dropped. func TestCheckpointChallenge(t *testing.T) { tests := []struct { syncmode downloader.SyncMode checkpoint bool timeout bool empty bool match bool drop bool }{ // If checkpointing is not enabled locally, don't challenge and don't drop {downloader.FullSync, false, false, false, false, false}, {downloader.SnapSync, false, false, false, false, false}, // If checkpointing is enabled locally and remote response is empty, only drop during fast sync {downloader.FullSync, true, false, true, false, false}, {downloader.SnapSync, true, false, true, false, true}, // Special case, fast sync, unsynced peer // If checkpointing is enabled locally and remote response mismatches, always drop {downloader.FullSync, true, false, false, false, true}, {downloader.SnapSync, true, false, false, false, true}, // If checkpointing is enabled locally and remote response matches, never drop {downloader.FullSync, true, false, false, true, false}, {downloader.SnapSync, true, false, false, true, false}, // If checkpointing is enabled locally and remote times out, always drop {downloader.FullSync, true, true, false, true, true}, {downloader.SnapSync, true, true, false, true, true}, } for _, tt := range tests { t.Run(fmt.Sprintf("sync %v checkpoint %v timeout %v empty %v match %v", tt.syncmode, tt.checkpoint, tt.timeout, tt.empty, tt.match), func(t *testing.T) { testCheckpointChallenge(t, tt.syncmode, tt.checkpoint, tt.timeout, tt.empty, tt.match, tt.drop) }) } } func testCheckpointChallenge(t *testing.T, syncmode downloader.SyncMode, checkpoint bool, timeout bool, empty bool, match bool, drop bool) { // Reduce the checkpoint handshake challenge timeout defer func(old time.Duration) { syncChallengeTimeout = old }(syncChallengeTimeout) syncChallengeTimeout = 250 * time.Millisecond // Create a test handler and inject a CHT into it. The injection is a bit // ugly, but it beats creating everything manually just to avoid reaching // into the internals a bit. handler := newTestHandler() defer handler.close() if syncmode == downloader.SnapSync { atomic.StoreUint32(&handler.handler.snapSync, 1) } else { atomic.StoreUint32(&handler.handler.snapSync, 0) } var response *types.Header if checkpoint { number := (uint64(rand.Intn(500))+1)*params.CHTFrequency - 1 response = &types.Header{Number: big.NewInt(int64(number)), Extra: []byte("valid")} handler.handler.checkpointNumber = number handler.handler.checkpointHash = response.Hash() } // Create a challenger peer and a challenged one. p2pLocal, p2pRemote := p2p.MsgPipe() defer p2pLocal.Close() defer p2pRemote.Close() local := eth.NewPeer(eth.ETH66, p2p.NewPeerPipe(enode.ID{1}, "", nil, p2pLocal), p2pLocal, handler.txpool) remote := eth.NewPeer(eth.ETH66, p2p.NewPeerPipe(enode.ID{2}, "", nil, p2pRemote), p2pRemote, handler.txpool) defer local.Close() defer remote.Close() handlerDone := make(chan struct{}) go func() { defer close(handlerDone) handler.handler.runEthPeer(local, func(peer *eth.Peer) error { return eth.Handle((*ethHandler)(handler.handler), peer) }) }() // Run the handshake locally to avoid spinning up a remote handler. var ( genesis = handler.chain.Genesis() head = handler.chain.CurrentBlock() td = handler.chain.GetTd(head.Hash(), head.NumberU64()) ) if err := remote.Handshake(1, td, head.Hash(), genesis.Hash(), forkid.NewIDWithChain(handler.chain), forkid.NewFilter(handler.chain)); err != nil { t.Fatalf("failed to run protocol handshake") } // Connect a new peer and check that we receive the checkpoint challenge. if checkpoint { msg, err := p2pRemote.ReadMsg() if err != nil { t.Fatalf("failed to read checkpoint challenge: %v", err) } request := new(eth.GetBlockHeadersPacket66) if err := msg.Decode(request); err != nil { t.Fatalf("failed to decode checkpoint challenge: %v", err) } query := request.GetBlockHeadersPacket if query.Origin.Number != response.Number.Uint64() || query.Amount != 1 || query.Skip != 0 || query.Reverse { t.Fatalf("challenge mismatch: have [%d, %d, %d, %v] want [%d, %d, %d, %v]", query.Origin.Number, query.Amount, query.Skip, query.Reverse, response.Number.Uint64(), 1, 0, false) } // Create a block to reply to the challenge if no timeout is simulated. if !timeout { if empty { if err := remote.ReplyBlockHeadersRLP(request.RequestId, []rlp.RawValue{}); err != nil { t.Fatalf("failed to answer challenge: %v", err) } } else if match { responseRlp, _ := rlp.EncodeToBytes(response) if err := remote.ReplyBlockHeadersRLP(request.RequestId, []rlp.RawValue{responseRlp}); err != nil { t.Fatalf("failed to answer challenge: %v", err) } } else { responseRlp, _ := rlp.EncodeToBytes(&types.Header{Number: response.Number}) if err := remote.ReplyBlockHeadersRLP(request.RequestId, []rlp.RawValue{responseRlp}); err != nil { t.Fatalf("failed to answer challenge: %v", err) } } } } // Wait until the test timeout passes to ensure proper cleanup time.Sleep(syncChallengeTimeout + 300*time.Millisecond) // Verify that the remote peer is maintained or dropped. if drop { <-handlerDone if peers := handler.handler.peers.len(); peers != 0 { t.Fatalf("peer count mismatch: have %d, want %d", peers, 0) } } else { if peers := handler.handler.peers.len(); peers != 1 { t.Fatalf("peer count mismatch: have %d, want %d", peers, 1) } } } // Tests that blocks are broadcast to a sqrt number of peers only. func TestBroadcastBlock1Peer(t *testing.T) { testBroadcastBlock(t, 1, 1) } func TestBroadcastBlock2Peers(t *testing.T) { testBroadcastBlock(t, 2, 1) } func TestBroadcastBlock3Peers(t *testing.T) { testBroadcastBlock(t, 3, 1) } func TestBroadcastBlock4Peers(t *testing.T) { testBroadcastBlock(t, 4, 2) } func TestBroadcastBlock5Peers(t *testing.T) { testBroadcastBlock(t, 5, 2) } func TestBroadcastBlock8Peers(t *testing.T) { testBroadcastBlock(t, 9, 3) } func TestBroadcastBlock12Peers(t *testing.T) { testBroadcastBlock(t, 12, 3) } func TestBroadcastBlock16Peers(t *testing.T) { testBroadcastBlock(t, 16, 4) } func TestBroadcastBloc26Peers(t *testing.T) { testBroadcastBlock(t, 26, 5) } func TestBroadcastBlock100Peers(t *testing.T) { testBroadcastBlock(t, 100, 10) } func testBroadcastBlock(t *testing.T, peers, bcasts int) { t.Parallel() // Create a source handler to broadcast blocks from and a number of sinks // to receive them. source := newTestHandlerWithBlocks(1) defer source.close() sinks := make([]*testEthHandler, peers) for i := 0; i < len(sinks); i++ { sinks[i] = new(testEthHandler) } // Interconnect all the sink handlers with the source handler var ( genesis = source.chain.Genesis() td = source.chain.GetTd(genesis.Hash(), genesis.NumberU64()) ) for i, sink := range sinks { sink := sink // Closure for gorotuine below sourcePipe, sinkPipe := p2p.MsgPipe() defer sourcePipe.Close() defer sinkPipe.Close() sourcePeer := eth.NewPeer(eth.ETH66, p2p.NewPeerPipe(enode.ID{byte(i)}, "", nil, sourcePipe), sourcePipe, nil) sinkPeer := eth.NewPeer(eth.ETH66, p2p.NewPeerPipe(enode.ID{0}, "", nil, sinkPipe), sinkPipe, nil) defer sourcePeer.Close() defer sinkPeer.Close() go source.handler.runEthPeer(sourcePeer, func(peer *eth.Peer) error { return eth.Handle((*ethHandler)(source.handler), peer) }) if err := sinkPeer.Handshake(1, td, genesis.Hash(), genesis.Hash(), forkid.NewIDWithChain(source.chain), forkid.NewFilter(source.chain)); err != nil { t.Fatalf("failed to run protocol handshake") } go eth.Handle(sink, sinkPeer) } // Subscribe to all the transaction pools blockChs := make([]chan *types.Block, len(sinks)) for i := 0; i < len(sinks); i++ { blockChs[i] = make(chan *types.Block, 1) defer close(blockChs[i]) sub := sinks[i].blockBroadcasts.Subscribe(blockChs[i]) defer sub.Unsubscribe() } // Initiate a block propagation across the peers time.Sleep(100 * time.Millisecond) source.handler.BroadcastBlock(source.chain.CurrentBlock(), true) // Iterate through all the sinks and ensure the correct number got the block done := make(chan struct{}, peers) for _, ch := range blockChs { ch := ch go func() { <-ch done <- struct{}{} }() } var received int for { select { case <-done: received++ case <-time.After(100 * time.Millisecond): if received != bcasts { t.Errorf("broadcast count mismatch: have %d, want %d", received, bcasts) } return } } } // Tests that a propagated malformed block (uncles or transactions don't match // with the hashes in the header) gets discarded and not broadcast forward. func TestBroadcastMalformedBlock66(t *testing.T) { testBroadcastMalformedBlock(t, eth.ETH66) } func testBroadcastMalformedBlock(t *testing.T, protocol uint) { t.Parallel() // Create a source handler to broadcast blocks from and a number of sinks // to receive them. source := newTestHandlerWithBlocks(1) defer source.close() // Create a source handler to send messages through and a sink peer to receive them p2pSrc, p2pSink := p2p.MsgPipe() defer p2pSrc.Close() defer p2pSink.Close() src := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{1}, "", nil, p2pSrc), p2pSrc, source.txpool) sink := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{2}, "", nil, p2pSink), p2pSink, source.txpool) defer src.Close() defer sink.Close() go source.handler.runEthPeer(src, func(peer *eth.Peer) error { return eth.Handle((*ethHandler)(source.handler), peer) }) // Run the handshake locally to avoid spinning up a sink handler var ( genesis = source.chain.Genesis() td = source.chain.GetTd(genesis.Hash(), genesis.NumberU64()) ) if err := sink.Handshake(1, td, genesis.Hash(), genesis.Hash(), forkid.NewIDWithChain(source.chain), forkid.NewFilter(source.chain)); err != nil { t.Fatalf("failed to run protocol handshake") } // After the handshake completes, the source handler should stream the sink // the blocks, subscribe to inbound network events backend := new(testEthHandler) blocks := make(chan *types.Block, 1) sub := backend.blockBroadcasts.Subscribe(blocks) defer sub.Unsubscribe() go eth.Handle(backend, sink) // Create various combinations of malformed blocks head := source.chain.CurrentBlock() malformedUncles := head.Header() malformedUncles.UncleHash[0]++ malformedTransactions := head.Header() malformedTransactions.TxHash[0]++ malformedEverything := head.Header() malformedEverything.UncleHash[0]++ malformedEverything.TxHash[0]++ // Try to broadcast all malformations and ensure they all get discarded for _, header := range []*types.Header{malformedUncles, malformedTransactions, malformedEverything} { block := types.NewBlockWithHeader(header).WithBody(head.Transactions(), head.Uncles()) if err := src.SendNewBlock(block, big.NewInt(131136)); err != nil { t.Fatalf("failed to broadcast block: %v", err) } select { case <-blocks: t.Fatalf("malformed block forwarded") case <-time.After(100 * time.Millisecond): } } }