// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package snapshot import ( "bytes" "encoding/binary" "math/big" "math/rand" "testing" "github.com/VictoriaMetrics/fastcache" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb/memorydb" "github.com/ethereum/go-ethereum/rlp" ) func randomAccount() []byte { root := randomHash() a := Account{ Balance: big.NewInt(rand.Int63()), Nonce: rand.Uint64(), Root: root[:], CodeHash: emptyCode[:], } data, _ := rlp.EncodeToBytes(a) return data } // TestMergeBasics tests some simple merges func TestMergeBasics(t *testing.T) { var ( accounts = make(map[common.Hash][]byte) storage = make(map[common.Hash]map[common.Hash][]byte) ) // Fill up a parent for i := 0; i < 100; i++ { h := randomHash() data := randomAccount() accounts[h] = data if rand.Intn(20) < 10 { accStorage := make(map[common.Hash][]byte) value := make([]byte, 32) rand.Read(value) accStorage[randomHash()] = value storage[h] = accStorage } } // Add some (identical) layers on top parent := newDiffLayer(emptyLayer(), common.Hash{}, accounts, storage) child := newDiffLayer(parent, common.Hash{}, accounts, storage) child = newDiffLayer(child, common.Hash{}, accounts, storage) child = newDiffLayer(child, common.Hash{}, accounts, storage) child = newDiffLayer(child, common.Hash{}, accounts, storage) // And flatten merged := (child.flatten()).(*diffLayer) { // Check account lists // Should be zero/nil first if got, exp := len(merged.accountList), 0; got != exp { t.Errorf("accountList wrong, got %v exp %v", got, exp) } // Then set when we call AccountList if got, exp := len(merged.AccountList()), len(accounts); got != exp { t.Errorf("AccountList() wrong, got %v exp %v", got, exp) } if got, exp := len(merged.accountList), len(accounts); got != exp { t.Errorf("accountList [2] wrong, got %v exp %v", got, exp) } } { // Check storage lists i := 0 for aHash, sMap := range storage { if got, exp := len(merged.storageList), i; got != exp { t.Errorf("[1] storageList wrong, got %v exp %v", got, exp) } if got, exp := len(merged.StorageList(aHash)), len(sMap); got != exp { t.Errorf("[2] StorageList() wrong, got %v exp %v", got, exp) } if got, exp := len(merged.storageList[aHash]), len(sMap); got != exp { t.Errorf("storageList wrong, got %v exp %v", got, exp) } i++ } } } // TestMergeDelete tests some deletion func TestMergeDelete(t *testing.T) { var ( storage = make(map[common.Hash]map[common.Hash][]byte) ) // Fill up a parent h1 := common.HexToHash("0x01") h2 := common.HexToHash("0x02") flip := func() map[common.Hash][]byte { accs := make(map[common.Hash][]byte) accs[h1] = randomAccount() accs[h2] = nil return accs } flop := func() map[common.Hash][]byte { accs := make(map[common.Hash][]byte) accs[h1] = nil accs[h2] = randomAccount() return accs } // Add some flip-flopping layers on top parent := newDiffLayer(emptyLayer(), common.Hash{}, flip(), storage) child := parent.Update(common.Hash{}, flop(), storage) child = child.Update(common.Hash{}, flip(), storage) child = child.Update(common.Hash{}, flop(), storage) child = child.Update(common.Hash{}, flip(), storage) child = child.Update(common.Hash{}, flop(), storage) child = child.Update(common.Hash{}, flip(), storage) if data, _ := child.Account(h1); data == nil { t.Errorf("last diff layer: expected %x to be non-nil", h1) } if data, _ := child.Account(h2); data != nil { t.Errorf("last diff layer: expected %x to be nil", h2) } // And flatten merged := (child.flatten()).(*diffLayer) if data, _ := merged.Account(h1); data == nil { t.Errorf("merged layer: expected %x to be non-nil", h1) } if data, _ := merged.Account(h2); data != nil { t.Errorf("merged layer: expected %x to be nil", h2) } // If we add more granular metering of memory, we can enable this again, // but it's not implemented for now //if got, exp := merged.memory, child.memory; got != exp { // t.Errorf("mem wrong, got %d, exp %d", got, exp) //} } // This tests that if we create a new account, and set a slot, and then merge // it, the lists will be correct. func TestInsertAndMerge(t *testing.T) { // Fill up a parent var ( acc = common.HexToHash("0x01") slot = common.HexToHash("0x02") parent *diffLayer child *diffLayer ) { var accounts = make(map[common.Hash][]byte) var storage = make(map[common.Hash]map[common.Hash][]byte) parent = newDiffLayer(emptyLayer(), common.Hash{}, accounts, storage) } { var accounts = make(map[common.Hash][]byte) var storage = make(map[common.Hash]map[common.Hash][]byte) accounts[acc] = randomAccount() accstorage := make(map[common.Hash][]byte) storage[acc] = accstorage storage[acc][slot] = []byte{0x01} child = newDiffLayer(parent, common.Hash{}, accounts, storage) } // And flatten merged := (child.flatten()).(*diffLayer) { // Check that slot value is present got, _ := merged.Storage(acc, slot) if exp := []byte{0x01}; bytes.Compare(got, exp) != 0 { t.Errorf("merged slot value wrong, got %x, exp %x", got, exp) } } } func emptyLayer() *diskLayer { return &diskLayer{ diskdb: memorydb.New(), cache: fastcache.New(500 * 1024), } } // BenchmarkSearch checks how long it takes to find a non-existing key // BenchmarkSearch-6 200000 10481 ns/op (1K per layer) // BenchmarkSearch-6 200000 10760 ns/op (10K per layer) // BenchmarkSearch-6 100000 17866 ns/op // // BenchmarkSearch-6 500000 3723 ns/op (10k per layer, only top-level RLock() func BenchmarkSearch(b *testing.B) { // First, we set up 128 diff layers, with 1K items each fill := func(parent snapshot) *diffLayer { accounts := make(map[common.Hash][]byte) storage := make(map[common.Hash]map[common.Hash][]byte) for i := 0; i < 10000; i++ { accounts[randomHash()] = randomAccount() } return newDiffLayer(parent, common.Hash{}, accounts, storage) } var layer snapshot layer = emptyLayer() for i := 0; i < 128; i++ { layer = fill(layer) } key := crypto.Keccak256Hash([]byte{0x13, 0x38}) b.ResetTimer() for i := 0; i < b.N; i++ { layer.AccountRLP(key) } } // BenchmarkSearchSlot checks how long it takes to find a non-existing key // - Number of layers: 128 // - Each layers contains the account, with a couple of storage slots // BenchmarkSearchSlot-6 100000 14554 ns/op // BenchmarkSearchSlot-6 100000 22254 ns/op (when checking parent root using mutex) // BenchmarkSearchSlot-6 100000 14551 ns/op (when checking parent number using atomic) // With bloom filter: // BenchmarkSearchSlot-6 3467835 351 ns/op func BenchmarkSearchSlot(b *testing.B) { // First, we set up 128 diff layers, with 1K items each accountKey := crypto.Keccak256Hash([]byte{0x13, 0x37}) storageKey := crypto.Keccak256Hash([]byte{0x13, 0x37}) accountRLP := randomAccount() fill := func(parent snapshot) *diffLayer { accounts := make(map[common.Hash][]byte) accounts[accountKey] = accountRLP storage := make(map[common.Hash]map[common.Hash][]byte) accStorage := make(map[common.Hash][]byte) for i := 0; i < 5; i++ { value := make([]byte, 32) rand.Read(value) accStorage[randomHash()] = value storage[accountKey] = accStorage } return newDiffLayer(parent, common.Hash{}, accounts, storage) } var layer snapshot layer = emptyLayer() for i := 0; i < 128; i++ { layer = fill(layer) } b.ResetTimer() for i := 0; i < b.N; i++ { layer.Storage(accountKey, storageKey) } } // With accountList and sorting //BenchmarkFlatten-6 50 29890856 ns/op // // Without sorting and tracking accountlist // BenchmarkFlatten-6 300 5511511 ns/op func BenchmarkFlatten(b *testing.B) { fill := func(parent snapshot) *diffLayer { accounts := make(map[common.Hash][]byte) storage := make(map[common.Hash]map[common.Hash][]byte) for i := 0; i < 100; i++ { accountKey := randomHash() accounts[accountKey] = randomAccount() accStorage := make(map[common.Hash][]byte) for i := 0; i < 20; i++ { value := make([]byte, 32) rand.Read(value) accStorage[randomHash()] = value } storage[accountKey] = accStorage } return newDiffLayer(parent, common.Hash{}, accounts, storage) } b.ResetTimer() for i := 0; i < b.N; i++ { b.StopTimer() var layer snapshot layer = emptyLayer() for i := 1; i < 128; i++ { layer = fill(layer) } b.StartTimer() for i := 1; i < 128; i++ { dl, ok := layer.(*diffLayer) if !ok { break } layer = dl.flatten() } b.StopTimer() } } // This test writes ~324M of diff layers to disk, spread over // - 128 individual layers, // - each with 200 accounts // - containing 200 slots // // BenchmarkJournal-6 1 1471373923 ns/ops // BenchmarkJournal-6 1 1208083335 ns/op // bufio writer func BenchmarkJournal(b *testing.B) { fill := func(parent snapshot) *diffLayer { accounts := make(map[common.Hash][]byte) storage := make(map[common.Hash]map[common.Hash][]byte) for i := 0; i < 200; i++ { accountKey := randomHash() accounts[accountKey] = randomAccount() accStorage := make(map[common.Hash][]byte) for i := 0; i < 200; i++ { value := make([]byte, 32) rand.Read(value) accStorage[randomHash()] = value } storage[accountKey] = accStorage } return newDiffLayer(parent, common.Hash{}, accounts, storage) } layer := snapshot(new(diskLayer)) for i := 1; i < 128; i++ { layer = fill(layer) } b.ResetTimer() for i := 0; i < b.N; i++ { layer.Journal(new(bytes.Buffer)) } } // TestIteratorBasics tests some simple single-layer iteration func TestIteratorBasics(t *testing.T) { var ( accounts = make(map[common.Hash][]byte) storage = make(map[common.Hash]map[common.Hash][]byte) ) // Fill up a parent for i := 0; i < 100; i++ { h := randomHash() data := randomAccount() accounts[h] = data if rand.Intn(20) < 10 { accStorage := make(map[common.Hash][]byte) value := make([]byte, 32) rand.Read(value) accStorage[randomHash()] = value storage[h] = accStorage } } // Add some (identical) layers on top parent := newDiffLayer(emptyLayer{}, common.Hash{}, accounts, storage) it := parent.newIterator() verifyIterator(t, 100, it) } type testIterator struct { values []byte } func newTestIterator(values ...byte) *testIterator { return &testIterator{values} } func (ti *testIterator) Next() bool { ti.values = ti.values[1:] if len(ti.values) == 0 { return false } return true } func (ti *testIterator) Key() common.Hash { return common.BytesToHash([]byte{ti.values[0]}) } func (ti *testIterator) Seek(common.Hash) { panic("implement me") } func TestFastIteratorBasics(t *testing.T) { type testCase struct { lists [][]byte expKeys []byte } for i, tc := range []testCase{ {lists: [][]byte{{0, 1, 8}, {1, 2, 8}, {2, 9}, {4}, {7, 14, 15}, {9, 13, 15, 16}}, expKeys: []byte{0, 1, 2, 4, 7, 8, 9, 13, 14, 15, 16}}, {lists: [][]byte{{0, 8}, {1, 2, 8}, {7, 14, 15}, {8, 9}, {9, 10}, {10, 13, 15, 16}}, expKeys: []byte{0, 1, 2, 7, 8, 9, 10, 13, 14, 15, 16}}, } { var iterators []Iterator for _, data := range tc.lists { iterators = append(iterators, newTestIterator(data...)) } fi := &fastIterator{ iterators: iterators, initiated: false, } count := 0 for fi.Next() { if got, exp := fi.Key()[31], tc.expKeys[count]; exp != got { t.Errorf("tc %d, [%d]: got %d exp %d", i, count, got, exp) } count++ } } } func verifyIterator(t *testing.T, expCount int, it Iterator) { var ( i = 0 last = common.Hash{} ) for it.Next() { v := it.Key() if bytes.Compare(last[:], v[:]) >= 0 { t.Errorf("Wrong order:\n%x \n>=\n%x", last, v) } i++ } if i != expCount { t.Errorf("iterator len wrong, expected %d, got %d", expCount, i) } } // TestIteratorTraversal tests some simple multi-layer iteration func TestIteratorTraversal(t *testing.T) { var ( storage = make(map[common.Hash]map[common.Hash][]byte) ) mkAccounts := func(args ...string) map[common.Hash][]byte { accounts := make(map[common.Hash][]byte) for _, h := range args { accounts[common.HexToHash(h)] = randomAccount() } return accounts } // entries in multiple layers should only become output once parent := newDiffLayer(emptyLayer{}, common.Hash{}, mkAccounts("0xaa", "0xee", "0xff", "0xf0"), storage) child := parent.Update(common.Hash{}, mkAccounts("0xbb", "0xdd", "0xf0"), storage) child = child.Update(common.Hash{}, mkAccounts("0xcc", "0xf0", "0xff"), storage) // single layer iterator verifyIterator(t, 3, child.newIterator()) // multi-layered binary iterator verifyIterator(t, 7, child.newBinaryIterator()) // multi-layered fast iterator verifyIterator(t, 7, child.newFastIterator()) } func TestIteratorLargeTraversal(t *testing.T) { // This testcase is a bit notorious -- all layers contain the exact // same 200 accounts. var storage = make(map[common.Hash]map[common.Hash][]byte) mkAccounts := func(num int) map[common.Hash][]byte { accounts := make(map[common.Hash][]byte) for i := 0; i < num; i++ { h := common.Hash{} binary.BigEndian.PutUint64(h[:], uint64(i+1)) accounts[h] = randomAccount() } return accounts } parent := newDiffLayer(emptyLayer{}, common.Hash{}, mkAccounts(200), storage) child := parent.Update(common.Hash{}, mkAccounts(200), storage) for i := 2; i < 100; i++ { child = child.Update(common.Hash{}, mkAccounts(200), storage) } // single layer iterator verifyIterator(t, 200, child.newIterator()) // multi-layered binary iterator verifyIterator(t, 200, child.newBinaryIterator()) // multi-layered fast iterator verifyIterator(t, 200, child.newFastIterator()) } // BenchmarkIteratorTraversal is a bit a bit notorious -- all layers contain the exact // same 200 accounts. That means that we need to process 2000 items, but only // spit out 200 values eventually. // //BenchmarkIteratorTraversal/binary_iterator-6 2008 573290 ns/op 9520 B/op 199 allocs/op //BenchmarkIteratorTraversal/fast_iterator-6 1946 575596 ns/op 20146 B/op 134 allocs/op func BenchmarkIteratorTraversal(b *testing.B) { var storage = make(map[common.Hash]map[common.Hash][]byte) mkAccounts := func(num int) map[common.Hash][]byte { accounts := make(map[common.Hash][]byte) for i := 0; i < num; i++ { h := common.Hash{} binary.BigEndian.PutUint64(h[:], uint64(i+1)) accounts[h] = randomAccount() } return accounts } parent := newDiffLayer(emptyLayer{}, common.Hash{}, mkAccounts(200), storage) child := parent.Update(common.Hash{}, mkAccounts(200), storage) for i := 2; i < 100; i++ { child = child.Update(common.Hash{}, mkAccounts(200), storage) } // We call this once before the benchmark, so the creation of // sorted accountlists are not included in the results. child.newBinaryIterator() b.Run("binary iterator", func(b *testing.B) { for i := 0; i < b.N; i++ { got := 0 it := child.newBinaryIterator() for it.Next() { got++ } if exp := 200; got != exp { b.Errorf("iterator len wrong, expected %d, got %d", exp, got) } } }) b.Run("fast iterator", func(b *testing.B) { for i := 0; i < b.N; i++ { got := 0 it := child.newFastIterator() for it.Next() { got++ } if exp := 200; got != exp { b.Errorf("iterator len wrong, expected %d, got %d", exp, got) } } }) } // BenchmarkIteratorLargeBaselayer is a pretty realistic benchmark, where // the baselayer is a lot larger than the upper layer. // // This is heavy on the binary iterator, which in most cases will have to // call recursively 100 times for the majority of the values // // BenchmarkIteratorLargeBaselayer/binary_iterator-6 585 2067377 ns/op 9520 B/op 199 allocs/op // BenchmarkIteratorLargeBaselayer/fast_iterator-6 13198 91043 ns/op 8601 B/op 118 allocs/op func BenchmarkIteratorLargeBaselayer(b *testing.B) { var storage = make(map[common.Hash]map[common.Hash][]byte) mkAccounts := func(num int) map[common.Hash][]byte { accounts := make(map[common.Hash][]byte) for i := 0; i < num; i++ { h := common.Hash{} binary.BigEndian.PutUint64(h[:], uint64(i+1)) accounts[h] = randomAccount() } return accounts } parent := newDiffLayer(emptyLayer{}, common.Hash{}, mkAccounts(2000), storage) child := parent.Update(common.Hash{}, mkAccounts(20), storage) for i := 2; i < 100; i++ { child = child.Update(common.Hash{}, mkAccounts(20), storage) } // We call this once before the benchmark, so the creation of // sorted accountlists are not included in the results. child.newBinaryIterator() b.Run("binary iterator", func(b *testing.B) { for i := 0; i < b.N; i++ { got := 0 it := child.newBinaryIterator() for it.Next() { got++ } if exp := 2000; got != exp { b.Errorf("iterator len wrong, expected %d, got %d", exp, got) } } }) b.Run("fast iterator", func(b *testing.B) { for i := 0; i < b.N; i++ { got := 0 it := child.newFastIterator() for it.Next() { got++ } if exp := 2000; got != exp { b.Errorf("iterator len wrong, expected %d, got %d", exp, got) } } }) } // TestIteratorFlatting tests what happens when we // - have a live iterator on child C (parent C1 -> C2 .. CN) // - flattens C2 all the way into CN // - continues iterating // Right now, this "works" simply because the keys do not change -- the // iterator is not aware that a layer has become stale. This naive // solution probably won't work in the long run, however func TestIteratorFlattning(t *testing.T) { var ( storage = make(map[common.Hash]map[common.Hash][]byte) ) mkAccounts := func(args ...string) map[common.Hash][]byte { accounts := make(map[common.Hash][]byte) for _, h := range args { accounts[common.HexToHash(h)] = randomAccount() } return accounts } // entries in multiple layers should only become output once parent := newDiffLayer(emptyLayer{}, common.Hash{}, mkAccounts("0xaa", "0xee", "0xff", "0xf0"), storage) child := parent.Update(common.Hash{}, mkAccounts("0xbb", "0xdd", "0xf0"), storage) child = child.Update(common.Hash{}, mkAccounts("0xcc", "0xf0", "0xff"), storage) it := child.newFastIterator() child.parent.(*diffLayer).flatten() // The parent should now be stale verifyIterator(t, 7, it) } func TestIteratorSeek(t *testing.T) { storage := make(map[common.Hash]map[common.Hash][]byte) mkAccounts := func(args ...string) map[common.Hash][]byte { accounts := make(map[common.Hash][]byte) for _, h := range args { accounts[common.HexToHash(h)] = randomAccount() } return accounts } parent := newDiffLayer(emptyLayer{}, common.Hash{}, mkAccounts("0xaa", "0xee", "0xff", "0xf0"), storage) it := parent.newIterator() // expected: ee, f0, ff it.Seek(common.HexToHash("0xdd")) verifyIterator(t, 3, it) it = parent.newIterator().(*dlIterator) // expected: ee, f0, ff it.Seek(common.HexToHash("0xaa")) verifyIterator(t, 3, it) it = parent.newIterator().(*dlIterator) // expected: nothing it.Seek(common.HexToHash("0xff")) verifyIterator(t, 0, it) child := parent.Update(common.Hash{}, mkAccounts("0xbb", "0xdd", "0xf0"), storage) child = child.Update(common.Hash{}, mkAccounts("0xcc", "0xf0", "0xff"), storage) it = child.newFastIterator() // expected: cc, dd, ee, f0, ff it.Seek(common.HexToHash("0xbb")) verifyIterator(t, 5, it) it = child.newFastIterator() it.Seek(common.HexToHash("0xef")) // exp: f0, ff verifyIterator(t, 2, it) it = child.newFastIterator() it.Seek(common.HexToHash("0xf0")) verifyIterator(t, 1, it) it.Seek(common.HexToHash("0xff")) verifyIterator(t, 0, it) }