// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package snapshot import ( "encoding/binary" "bytes" "fmt" "math" "math/rand" "sort" "sync" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/rlp" "github.com/steakknife/bloomfilter" ) var ( // aggregatorMemoryLimit is the maximum size of the bottom-most diff layer // that aggregates the writes from above until it's flushed into the disk // layer. // // Note, bumping this up might drastically increase the size of the bloom // filters that's stored in every diff layer. Don't do that without fully // understanding all the implications. aggregatorMemoryLimit = uint64(4 * 1024 * 1024) // aggregatorItemLimit is an approximate number of items that will end up // in the agregator layer before it's flushed out to disk. A plain account // weighs around 14B (+hash), a storage slot 32B (+hash), a deleted slot // 0B (+hash). Slots are mostly set/unset in lockstep, so thet average at // 16B (+hash). All in all, the average entry seems to be 15+32=47B. Use a // smaller number to be on the safe side. aggregatorItemLimit = aggregatorMemoryLimit / 42 // bloomTargetError is the target false positive rate when the aggregator // layer is at its fullest. The actual value will probably move around up // and down from this number, it's mostly a ballpark figure. // // Note, dropping this down might drastically increase the size of the bloom // filters that's stored in every diff layer. Don't do that without fully // understanding all the implications. bloomTargetError = 0.02 // bloomSize is the ideal bloom filter size given the maximum number of items // it's expected to hold and the target false positive error rate. bloomSize = math.Ceil(float64(aggregatorItemLimit) * math.Log(bloomTargetError) / math.Log(1/math.Pow(2, math.Log(2)))) // bloomFuncs is the ideal number of bits a single entry should set in the // bloom filter to keep its size to a minimum (given it's size and maximum // entry count). bloomFuncs = math.Round((bloomSize / float64(aggregatorItemLimit)) * math.Log(2)) // bloomHashesOffset is a runtime constant which determines which part of the // the account/storage hash the hasher functions looks at, to determine the // bloom key for an account/slot. This is randomized at init(), so that the // global population of nodes do not all display the exact same behaviour with // regards to bloom content bloomHasherOffset = 0 ) func init() { // Init bloomHasherOffset in the range [0:24] (requires 8 bytes) bloomHasherOffset = rand.Intn(25) } // diffLayer represents a collection of modifications made to a state snapshot // after running a block on top. It contains one sorted list for the account trie // and one-one list for each storage tries. // // The goal of a diff layer is to act as a journal, tracking recent modifications // made to the state, that have not yet graduated into a semi-immutable state. type diffLayer struct { origin *diskLayer // Base disk layer to directly use on bloom misses parent snapshot // Parent snapshot modified by this one, never nil memory uint64 // Approximate guess as to how much memory we use root common.Hash // Root hash to which this snapshot diff belongs to stale bool // Signals that the layer became stale (state progressed) accountList []common.Hash // List of account for iteration. If it exists, it's sorted, otherwise it's nil accountData map[common.Hash][]byte // Keyed accounts for direct retrival (nil means deleted) storageList map[common.Hash][]common.Hash // List of storage slots for iterated retrievals, one per account. Any existing lists are sorted if non-nil storageData map[common.Hash]map[common.Hash][]byte // Keyed storage slots for direct retrival. one per account (nil means deleted) diffed *bloomfilter.Filter // Bloom filter tracking all the diffed items up to the disk layer lock sync.RWMutex } // accountBloomHasher is a wrapper around a common.Hash to satisfy the interface // API requirements of the bloom library used. It's used to convert an account // hash into a 64 bit mini hash. type accountBloomHasher common.Hash func (h accountBloomHasher) Write(p []byte) (n int, err error) { panic("not implemented") } func (h accountBloomHasher) Sum(b []byte) []byte { panic("not implemented") } func (h accountBloomHasher) Reset() { panic("not implemented") } func (h accountBloomHasher) BlockSize() int { panic("not implemented") } func (h accountBloomHasher) Size() int { return 8 } func (h accountBloomHasher) Sum64() uint64 { return binary.BigEndian.Uint64(h[bloomHasherOffset : bloomHasherOffset+8]) } // storageBloomHasher is a wrapper around a [2]common.Hash to satisfy the interface // API requirements of the bloom library used. It's used to convert an account // hash into a 64 bit mini hash. type storageBloomHasher [2]common.Hash func (h storageBloomHasher) Write(p []byte) (n int, err error) { panic("not implemented") } func (h storageBloomHasher) Sum(b []byte) []byte { panic("not implemented") } func (h storageBloomHasher) Reset() { panic("not implemented") } func (h storageBloomHasher) BlockSize() int { panic("not implemented") } func (h storageBloomHasher) Size() int { return 8 } func (h storageBloomHasher) Sum64() uint64 { return binary.BigEndian.Uint64(h[0][bloomHasherOffset:bloomHasherOffset+8]) ^ binary.BigEndian.Uint64(h[1][bloomHasherOffset:bloomHasherOffset+8]) } // newDiffLayer creates a new diff on top of an existing snapshot, whether that's a low // level persistent database or a hierarchical diff already. func newDiffLayer(parent snapshot, root common.Hash, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) *diffLayer { // Create the new layer with some pre-allocated data segments dl := &diffLayer{ parent: parent, root: root, accountData: accounts, storageData: storage, } switch parent := parent.(type) { case *diskLayer: dl.rebloom(parent) case *diffLayer: dl.rebloom(parent.origin) default: panic("unknown parent type") } // Determine memory size and track the dirty writes for _, data := range accounts { dl.memory += uint64(common.HashLength + len(data)) snapshotDirtyAccountWriteMeter.Mark(int64(len(data))) } // Fill the storage hashes and sort them for the iterator dl.storageList = make(map[common.Hash][]common.Hash) for accountHash, slots := range storage { // If the slots are nil, sanity check that it's a deleted account if slots == nil { // Ensure that the account was just marked as deleted if account, ok := accounts[accountHash]; account != nil || !ok { panic(fmt.Sprintf("storage in %#x nil, but account conflicts (%#x, exists: %v)", accountHash, account, ok)) } // Everything ok, store the deletion mark and continue dl.storageList[accountHash] = nil continue } // Storage slots are not nil so entire contract was not deleted, ensure the // account was just updated. if account, ok := accounts[accountHash]; account == nil || !ok { log.Error(fmt.Sprintf("storage in %#x exists, but account nil (exists: %v)", accountHash, ok)) } // Determine memory size and track the dirty writes for _, data := range slots { dl.memory += uint64(common.HashLength + len(data)) snapshotDirtyStorageWriteMeter.Mark(int64(len(data))) } } dl.memory += uint64(len(dl.storageList) * common.HashLength) return dl } // rebloom discards the layer's current bloom and rebuilds it from scratch based // on the parent's and the local diffs. func (dl *diffLayer) rebloom(origin *diskLayer) { dl.lock.Lock() defer dl.lock.Unlock() defer func(start time.Time) { snapshotBloomIndexTimer.Update(time.Since(start)) }(time.Now()) // Inject the new origin that triggered the rebloom dl.origin = origin // Retrieve the parent bloom or create a fresh empty one if parent, ok := dl.parent.(*diffLayer); ok { parent.lock.RLock() dl.diffed, _ = parent.diffed.Copy() parent.lock.RUnlock() } else { dl.diffed, _ = bloomfilter.New(uint64(bloomSize), uint64(bloomFuncs)) } // Iterate over all the accounts and storage slots and index them for hash := range dl.accountData { dl.diffed.Add(accountBloomHasher(hash)) } for accountHash, slots := range dl.storageData { for storageHash := range slots { dl.diffed.Add(storageBloomHasher{accountHash, storageHash}) } } // Calculate the current false positive rate and update the error rate meter. // This is a bit cheating because subsequent layers will overwrite it, but it // should be fine, we're only interested in ballpark figures. k := float64(dl.diffed.K()) n := float64(dl.diffed.N()) m := float64(dl.diffed.M()) snapshotBloomErrorGauge.Update(math.Pow(1.0-math.Exp((-k)*(n+0.5)/(m-1)), k)) } // Root returns the root hash for which this snapshot was made. func (dl *diffLayer) Root() common.Hash { return dl.root } // Stale return whether this layer has become stale (was flattened across) or if // it's still live. func (dl *diffLayer) Stale() bool { dl.lock.RLock() defer dl.lock.RUnlock() return dl.stale } // Account directly retrieves the account associated with a particular hash in // the snapshot slim data format. func (dl *diffLayer) Account(hash common.Hash) (*Account, error) { data, err := dl.AccountRLP(hash) if err != nil { return nil, err } if len(data) == 0 { // can be both nil and []byte{} return nil, nil } account := new(Account) if err := rlp.DecodeBytes(data, account); err != nil { panic(err) } return account, nil } // AccountRLP directly retrieves the account RLP associated with a particular // hash in the snapshot slim data format. func (dl *diffLayer) AccountRLP(hash common.Hash) ([]byte, error) { // Check the bloom filter first whether there's even a point in reaching into // all the maps in all the layers below dl.lock.RLock() hit := dl.diffed.Contains(accountBloomHasher(hash)) dl.lock.RUnlock() // If the bloom filter misses, don't even bother with traversing the memory // diff layers, reach straight into the bottom persistent disk layer if !hit { snapshotBloomAccountMissMeter.Mark(1) return dl.origin.AccountRLP(hash) } // The bloom filter hit, start poking in the internal maps return dl.accountRLP(hash, 0) } // accountRLP is an internal version of AccountRLP that skips the bloom filter // checks and uses the internal maps to try and retrieve the data. It's meant // to be used if a higher layer's bloom filter hit already. func (dl *diffLayer) accountRLP(hash common.Hash, depth int) ([]byte, error) { dl.lock.RLock() defer dl.lock.RUnlock() // If the layer was flattened into, consider it invalid (any live reference to // the original should be marked as unusable). if dl.stale { return nil, ErrSnapshotStale } // If the account is known locally, return it. Note, a nil account means it was // deleted, and is a different notion than an unknown account! if data, ok := dl.accountData[hash]; ok { snapshotDirtyAccountHitMeter.Mark(1) snapshotDirtyAccountHitDepthHist.Update(int64(depth)) if n := len(data); n > 0 { snapshotDirtyAccountReadMeter.Mark(int64(n)) } else { snapshotDirtyAccountInexMeter.Mark(1) } snapshotBloomAccountTrueHitMeter.Mark(1) return data, nil } // Account unknown to this diff, resolve from parent if diff, ok := dl.parent.(*diffLayer); ok { return diff.accountRLP(hash, depth+1) } // Failed to resolve through diff layers, mark a bloom error and use the disk snapshotBloomAccountFalseHitMeter.Mark(1) return dl.parent.AccountRLP(hash) } // Storage directly retrieves the storage data associated with a particular hash, // within a particular account. If the slot is unknown to this diff, it's parent // is consulted. func (dl *diffLayer) Storage(accountHash, storageHash common.Hash) ([]byte, error) { // Check the bloom filter first whether there's even a point in reaching into // all the maps in all the layers below dl.lock.RLock() hit := dl.diffed.Contains(storageBloomHasher{accountHash, storageHash}) dl.lock.RUnlock() // If the bloom filter misses, don't even bother with traversing the memory // diff layers, reach straight into the bottom persistent disk layer if !hit { snapshotBloomStorageMissMeter.Mark(1) return dl.origin.Storage(accountHash, storageHash) } // The bloom filter hit, start poking in the internal maps return dl.storage(accountHash, storageHash, 0) } // storage is an internal version of Storage that skips the bloom filter checks // and uses the internal maps to try and retrieve the data. It's meant to be // used if a higher layer's bloom filter hit already. func (dl *diffLayer) storage(accountHash, storageHash common.Hash, depth int) ([]byte, error) { dl.lock.RLock() defer dl.lock.RUnlock() // If the layer was flattened into, consider it invalid (any live reference to // the original should be marked as unusable). if dl.stale { return nil, ErrSnapshotStale } // If the account is known locally, try to resolve the slot locally. Note, a nil // account means it was deleted, and is a different notion than an unknown account! if storage, ok := dl.storageData[accountHash]; ok { if storage == nil { snapshotDirtyStorageHitMeter.Mark(1) snapshotDirtyStorageHitDepthHist.Update(int64(depth)) snapshotDirtyStorageInexMeter.Mark(1) snapshotBloomStorageTrueHitMeter.Mark(1) return nil, nil } if data, ok := storage[storageHash]; ok { snapshotDirtyStorageHitMeter.Mark(1) snapshotDirtyStorageHitDepthHist.Update(int64(depth)) if n := len(data); n > 0 { snapshotDirtyStorageReadMeter.Mark(int64(n)) } else { snapshotDirtyStorageInexMeter.Mark(1) } snapshotBloomStorageTrueHitMeter.Mark(1) return data, nil } } // Storage slot unknown to this diff, resolve from parent if diff, ok := dl.parent.(*diffLayer); ok { return diff.storage(accountHash, storageHash, depth+1) } // Failed to resolve through diff layers, mark a bloom error and use the disk snapshotBloomStorageFalseHitMeter.Mark(1) return dl.parent.Storage(accountHash, storageHash) } // Update creates a new layer on top of the existing snapshot diff tree with // the specified data items. func (dl *diffLayer) Update(blockRoot common.Hash, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) *diffLayer { return newDiffLayer(dl, blockRoot, accounts, storage) } // flatten pushes all data from this point downwards, flattening everything into // a single diff at the bottom. Since usually the lowermost diff is the largest, // the flattening bulds up from there in reverse. func (dl *diffLayer) flatten() snapshot { // If the parent is not diff, we're the first in line, return unmodified parent, ok := dl.parent.(*diffLayer) if !ok { return dl } // Parent is a diff, flatten it first (note, apart from weird corned cases, // flatten will realistically only ever merge 1 layer, so there's no need to // be smarter about grouping flattens together). parent = parent.flatten().(*diffLayer) parent.lock.Lock() defer parent.lock.Unlock() // Before actually writing all our data to the parent, first ensure that the // parent hasn't been 'corrupted' by someone else already flattening into it if parent.stale { panic("parent diff layer is stale") // we've flattened into the same parent from two children, boo } parent.stale = true // Overwrite all the updated accounts blindly, merge the sorted list for hash, data := range dl.accountData { parent.accountData[hash] = data } // Overwrite all the updates storage slots (individually) for accountHash, storage := range dl.storageData { // If storage didn't exist (or was deleted) in the parent; or if the storage // was freshly deleted in the child, overwrite blindly if parent.storageData[accountHash] == nil || storage == nil { parent.storageData[accountHash] = storage continue } // Storage exists in both parent and child, merge the slots comboData := parent.storageData[accountHash] for storageHash, data := range storage { comboData[storageHash] = data } parent.storageData[accountHash] = comboData } // Return the combo parent return &diffLayer{ parent: parent.parent, origin: parent.origin, root: dl.root, storageList: parent.storageList, storageData: parent.storageData, accountList: parent.accountList, accountData: parent.accountData, diffed: dl.diffed, memory: parent.memory + dl.memory, } } // AccountList returns a sorted list of all accounts in this difflayer. func (dl *diffLayer) AccountList() []common.Hash { dl.lock.Lock() defer dl.lock.Unlock() if dl.accountList != nil { return dl.accountList } accountList := make([]common.Hash, len(dl.accountData)) i := 0 for k, _ := range dl.accountData { accountList[i] = k i++ // This would be a pretty good opportunity to also // calculate the size, if we want to } sort.Sort(hashes(accountList)) dl.accountList = accountList return dl.accountList } // StorageList returns a sorted list of all storage slot hashes // in this difflayer for the given account. func (dl *diffLayer) StorageList(accountHash common.Hash) []common.Hash { dl.lock.Lock() defer dl.lock.Unlock() if dl.storageList[accountHash] != nil { return dl.storageList[accountHash] } accountStorageMap := dl.storageData[accountHash] accountStorageList := make([]common.Hash, len(accountStorageMap)) i := 0 for k, _ := range accountStorageMap { accountStorageList[i] = k i++ // This would be a pretty good opportunity to also // calculate the size, if we want to } sort.Sort(hashes(accountStorageList)) dl.storageList[accountHash] = accountStorageList return accountStorageList } type Iterator interface { // Next steps the iterator forward one element, and returns false if // the iterator is exhausted Next() bool // Key returns the current key Key() common.Hash // Seek steps the iterator forward as many elements as needed, so that after // calling Next(), the iterator will be at a key higher than the given hash Seek(common.Hash) } func (dl *diffLayer) newIterator() Iterator { dl.AccountList() return &dlIterator{dl, -1} } type dlIterator struct { layer *diffLayer index int } func (it *dlIterator) Next() bool { if it.index < len(it.layer.accountList) { it.index++ } return it.index < len(it.layer.accountList) } func (it *dlIterator) Key() common.Hash { if it.index < len(it.layer.accountList) { return it.layer.accountList[it.index] } return common.Hash{} } func (it *dlIterator) Seek(key common.Hash) { // Search uses binary search to find and return the smallest index i // in [0, n) at which f(i) is true size := len(it.layer.accountList) index := sort.Search(size, func(i int) bool { v := it.layer.accountList[i] return bytes.Compare(key[:], v[:]) < 0 }) it.index = index - 1 } type binaryIterator struct { a Iterator b Iterator aDone bool bDone bool k common.Hash } func (dl *diffLayer) newBinaryIterator() Iterator { parent, ok := dl.parent.(*diffLayer) if !ok { // parent is the disk layer return dl.newIterator() } l := &binaryIterator{ a: dl.newIterator(), b: parent.newBinaryIterator()} l.aDone = !l.a.Next() l.bDone = !l.b.Next() return l } func (it *binaryIterator) Next() bool { if it.aDone && it.bDone { return false } nextB := it.b.Key() first: nextA := it.a.Key() if it.aDone { it.bDone = !it.b.Next() it.k = nextB return true } if it.bDone { it.aDone = !it.a.Next() it.k = nextA return true } if diff := bytes.Compare(nextA[:], nextB[:]); diff < 0 { it.aDone = !it.a.Next() it.k = nextA return true } else if diff == 0 { // Now we need to advance one of them it.aDone = !it.a.Next() goto first } it.bDone = !it.b.Next() it.k = nextB return true } func (it *binaryIterator) Key() common.Hash { return it.k } func (it *binaryIterator) Seek(key common.Hash) { panic("todo: implement") } func (dl *diffLayer) iterators() []Iterator { if parent, ok := dl.parent.(*diffLayer); ok { iterators := parent.iterators() return append(iterators, dl.newIterator()) } return []Iterator{dl.newIterator()} } // fastIterator is a more optimized multi-layer iterator which maintains a // direct mapping of all iterators leading down to the bottom layer type fastIterator struct { iterators []Iterator initiated bool } // Len returns the number of active iterators func (fi *fastIterator) Len() int { return len(fi.iterators) } // Less implements sort.Interface func (fi *fastIterator) Less(i, j int) bool { a := fi.iterators[i].Key() b := fi.iterators[j].Key() return bytes.Compare(a[:], b[:]) < 0 } // Swap implements sort.Interface func (fi *fastIterator) Swap(i, j int) { fi.iterators[i], fi.iterators[j] = fi.iterators[j], fi.iterators[i] } // Next implements the Iterator interface. It returns false if no more elemnts // can be retrieved (false == exhausted) func (fi *fastIterator) Next() bool { if len(fi.iterators) == 0 { return false } if !fi.initiated { // Don't forward first time -- we had to 'Next' once in order to // do the sorting already fi.initiated = true return true } return fi.innerNext(0) } // innerNext handles the next operation internally, // and should be invoked when we know that two elements in the list may have // the same value. // For example, if the list becomes [2,3,5,5,8,9,10], then we should invoke // innerNext(3), which will call Next on elem 3 (the second '5'). It will continue // along the list and apply the same operation if needed func (fi *fastIterator) innerNext(pos int) bool { if !fi.iterators[pos].Next() { //Exhausted, remove this iterator fi.remove(pos) if len(fi.iterators) == 0 { return false } return true } if pos == len(fi.iterators)-1 { // Only one iterator left return true } // We next:ed the elem at 'pos'. Now we may have to re-sort that elem val, neighbour := fi.iterators[pos].Key(), fi.iterators[pos+1].Key() diff := bytes.Compare(val[:], neighbour[:]) if diff < 0 { // It is still in correct place return true } if diff == 0 { // It has same value as the neighbour. So still in correct place, but // we need to iterate on the neighbour fi.innerNext(pos + 1) return true } // At this point, the elem is in the wrong location, but the // remaining list is sorted. Find out where to move the elem iterationNeeded := false index := sort.Search(len(fi.iterators), func(n int) bool { if n <= pos { // No need to search 'behind' us return false } if n == len(fi.iterators)-1 { // Can always place an elem last return true } neighbour := fi.iterators[n+1].Key() diff := bytes.Compare(val[:], neighbour[:]) if diff == 0 { // The elem we're placing it next to has the same value, // so it's going to need further iteration iterationNeeded = true } return diff < 0 }) fi.move(pos, index) if iterationNeeded { fi.innerNext(index) } return true } // move moves an iterator to another position in the list func (fi *fastIterator) move(index, newpos int) { if newpos > len(fi.iterators)-1 { newpos = len(fi.iterators) - 1 } var ( elem = fi.iterators[index] middle = fi.iterators[index+1 : newpos+1] suffix []Iterator ) if newpos < len(fi.iterators)-1 { suffix = fi.iterators[newpos+1:] } fi.iterators = append(fi.iterators[:index], middle...) fi.iterators = append(fi.iterators, elem) fi.iterators = append(fi.iterators, suffix...) } // remove drops an iterator from the list func (fi *fastIterator) remove(index int) { fi.iterators = append(fi.iterators[:index], fi.iterators[index+1:]...) } // Key returns the current key func (fi *fastIterator) Key() common.Hash { return fi.iterators[0].Key() } func (fi *fastIterator) Seek(key common.Hash) { // We need to apply this across all iterators var seen = make(map[common.Hash]struct{}) length := len(fi.iterators) for i, it := range fi.iterators { it.Seek(key) for { if !it.Next() { // To be removed // swap it to the last position for now fi.iterators[i], fi.iterators[length-1] = fi.iterators[length-1], fi.iterators[i] length-- break } v := it.Key() if _, exist := seen[v]; !exist { seen[v] = struct{}{} break } } } // Now remove those that were placed in the end fi.iterators = fi.iterators[:length] // The list is now totally unsorted, need to re-sort the entire list sort.Sort(fi) fi.initiated = false } // The fast iterator does not query parents as much. func (dl *diffLayer) newFastIterator() Iterator { f := &fastIterator{dl.iterators(), false} f.Seek(common.Hash{}) return f } // Debug is a convencience helper during testing func (fi *fastIterator) Debug() { for _, it := range fi.iterators { fmt.Printf(" %v ", it.Key()[31]) } fmt.Println() }