package downloader import ( "math" "math/big" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/logger" "github.com/ethereum/go-ethereum/logger/glog" "gopkg.in/fatih/set.v0" ) const maxBlockFetch = 256 type hashFetcherFn func(common.Hash) error type blockFetcherFn func([]common.Hash) error type hashCheckFn func(common.Hash) bool type chainInsertFn func(types.Blocks) error type hashIterFn func() (common.Hash, error) // XXX make threadsafe!!!! type peers map[string]*peer func (p peers) get(state int) []*peer { var peers []*peer for _, peer := range p { peer.mu.RLock() if peer.state == state { peers = append(peers, peer) } peer.mu.RUnlock() } return peers } func (p peers) setState(id string, state int) { if peer, exist := p[id]; exist { peer.mu.Lock() defer peer.mu.Unlock() peer.state = state } } type Downloader struct { queue *queue hasBlock hashCheckFn insertChain chainInsertFn mu sync.RWMutex peers peers currentPeer *peer fetchingHashes int32 downloadingBlocks int32 newPeerCh chan *peer selectPeerCh chan *peer HashCh chan []common.Hash blockCh chan blockPack quit chan struct{} } type blockPack struct { peerId string blocks []*types.Block } func New(hasBlock hashCheckFn, insertChain chainInsertFn) *Downloader { downloader := &Downloader{ queue: newqueue(), peers: make(peers), hasBlock: hasBlock, insertChain: insertChain, newPeerCh: make(chan *peer, 1), selectPeerCh: make(chan *peer, 1), HashCh: make(chan []common.Hash, 1), blockCh: make(chan blockPack, 1), quit: make(chan struct{}), } go downloader.peerHandler() go downloader.update() return downloader } func (d *Downloader) RegisterPeer(id string, td *big.Int, hash common.Hash, getHashes hashFetcherFn, getBlocks blockFetcherFn) error { d.mu.Lock() defer d.mu.Unlock() glog.V(logger.Detail).Infoln("Register peer", id) // Create a new peer and add it to the list of known peers peer := newPeer(id, td, hash, getHashes, getBlocks) // add peer to our peer set d.peers[id] = peer // broadcast new peer d.newPeerCh <- peer return nil } func (d *Downloader) UnregisterPeer(id string) { d.mu.Lock() defer d.mu.Unlock() glog.V(logger.Detail).Infoln("Unregister peer", id) delete(d.peers, id) } func (d *Downloader) peerHandler() { // Fields defined here so we can reduce the amount of locking // that needs to be done var highestTd = new(big.Int) out: for { select { case newPeer := <-d.newPeerCh: // Check if TD of peer is higher than our current if newPeer.td.Cmp(highestTd) > 0 { glog.V(logger.Detail).Infoln("New peer with highest TD =", newPeer.td) highestTd.Set(newPeer.td) // select the peer for downloading d.selectPeerCh <- newPeer } case <-d.quit: break out } } } func (d *Downloader) update() { out: for { select { case selectedPeer := <-d.selectPeerCh: // Make sure it's doing neither. Once done we can restart the // downloading process if the TD is higher. For now just get on // with whatever is going on. This prevents unecessary switching. if !(d.isFetchingHashes() || d.isDownloadingBlocks()) { glog.V(logger.Detail).Infoln("Selected new peer", selectedPeer.id) // Start the fetcher. This will block the update entirely // interupts need to be send to the appropriate channels // respectively. if err := d.startFetchingHashes(selectedPeer); err != nil { // handle error glog.V(logger.Debug).Infoln("Error fetching hashes:", err) // Reset break } // Start fetching blocks in paralel. The strategy is simple // take any available peers, seserve a chunk for each peer available, // let the peer deliver the chunkn and periodically check if a peer // has timedout. When done downloading, process blocks. if err := d.startFetchingBlocks(selectedPeer); err != nil { glog.V(logger.Debug).Infoln("Error downloading blocks:", err) // reset break } // XXX this will move when optimised // Sort the blocks by number. This bit needs much improvement. Right now // it assumes full honesty form peers (i.e. it's not checked when the blocks // link). We should at least check whihc queue match. This code could move // to a seperate goroutine where it periodically checks for linked pieces. types.BlockBy(types.Number).Sort(d.queue.blocks) blocks := d.queue.blocks glog.V(logger.Debug).Infoln("Inserting chain with", len(blocks), "blocks") // Loop untill we're out of queue for len(blocks) != 0 { max := int(math.Min(float64(len(blocks)), 256)) // TODO check for parent error. When there's a parent error we should stop // processing and start requesting the `block.hash` so that it's parent and // grandparents can be requested and queued. d.insertChain(blocks[:max]) blocks = blocks[max:] } } case <-d.quit: break out } } } func (d *Downloader) startFetchingHashes(p *peer) error { glog.V(logger.Debug).Infoln("Downloading hashes") start := time.Now() // Get the first batch of hashes p.getHashes(p.recentHash) atomic.StoreInt32(&d.fetchingHashes, 1) out: for { select { case hashes := <-d.HashCh: var done bool // determines whether we're done fetching hashes (i.e. common hash found) hashSet := set.New() for _, hash := range hashes { if d.hasBlock(hash) { glog.V(logger.Debug).Infof("Found common hash %x\n", hash) done = true break } hashSet.Add(hash) } d.queue.put(hashSet) // Add hashes to the chunk set // Check if we're done fetching if !done { //fmt.Println("re-fetch. current =", d.queue.hashPool.Size()) // Get the next set of hashes p.getHashes(hashes[len(hashes)-1]) atomic.StoreInt32(&d.fetchingHashes, 1) } else { atomic.StoreInt32(&d.fetchingHashes, 0) break out } } } glog.V(logger.Detail).Infoln("Download hashes: done. Took", time.Since(start)) return nil } func (d *Downloader) DeliverBlocks(id string, block []*types.Block) { d.blockCh <- blockPack{id, block} } func (d *Downloader) startFetchingBlocks(p *peer) error { glog.V(logger.Detail).Infoln("Downloading", d.queue.hashPool.Size(), "blocks") atomic.StoreInt32(&d.downloadingBlocks, 1) start := time.Now() // default ticker for re-fetching blocks everynow and then ticker := time.NewTicker(20 * time.Millisecond) out: for { select { case blockPack := <-d.blockCh: //fmt.Println("get for", blockPack.peerId) d.queue.deliver(blockPack.peerId, blockPack.blocks) d.peers.setState(blockPack.peerId, idleState) case <-ticker.C: // If there are unrequested hashes left start fetching // from the available peers. if d.queue.hashPool.Size() > 0 { availablePeers := d.peers.get(idleState) for _, peer := range availablePeers { // Get a possible chunk. If nil is returned no chunk // could be returned due to no hashes available. chunk := d.queue.get(peer, maxBlockFetch) if chunk != nil { //fmt.Println("fetching for", peer.id) // Fetch the chunk and check for error. If the peer was somehow // already fetching a chunk due to a bug, it will be returned to // the queue if err := peer.fetch(chunk); err != nil { // log for tracing glog.V(logger.Debug).Infof("peer %s received double work (state = %v)\n", peer.id, peer.state) d.queue.put(chunk.hashes) } } } atomic.StoreInt32(&d.downloadingBlocks, 1) } else if len(d.queue.fetching) == 0 { // Whene there are no more queue and no more `fetching`. We can // safely assume we're done. Another part of the process will check // for parent errors and will re-request anything that's missing atomic.StoreInt32(&d.downloadingBlocks, 0) // Break out so that we can process with processing blocks break out } else { // Check for bad peers. Bad peers may indicate a peer not responding // to a `getBlocks` message. A timeout of 5 seconds is set. Peers // that badly or poorly behave are removed from the peer set (not banned). // Bad peers are excluded from the available peer set and therefor won't be // reused. XXX We could re-introduce peers after X time. d.queue.mu.Lock() var badPeers []string for pid, chunk := range d.queue.fetching { if time.Since(chunk.itime) > 5*time.Second { badPeers = append(badPeers, pid) // remove peer as good peer from peer list d.UnregisterPeer(pid) } } d.queue.mu.Unlock() for _, pid := range badPeers { // A nil chunk is delivered so that the chunk's hashes are given // back to the queue objects. When hashes are put back in the queue // other (decent) peers can pick them up. // XXX We could make use of a reputation system here ranking peers // in their performance // 1) Time for them to respond; // 2) Measure their speed; // 3) Amount and availability. d.queue.deliver(pid, nil) } } //fmt.Println(d.queue.hashPool.Size(), len(d.queue.fetching)) } } glog.V(logger.Detail).Infoln("Download blocks: done. Took", time.Since(start)) return nil } func (d *Downloader) isFetchingHashes() bool { return atomic.LoadInt32(&d.fetchingHashes) == 1 } func (d *Downloader) isDownloadingBlocks() bool { return atomic.LoadInt32(&d.downloadingBlocks) == 1 }