// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package trie // Trie keys are dealt with in three distinct encodings: // // KEYBYTES encoding contains the actual key and nothing else. This encoding is the // input to most API functions. // // HEX encoding contains one byte for each nibble of the key and an optional trailing // 'terminator' byte of value 0x10 which indicates whether or not the node at the key // contains a value. Hex key encoding is used for nodes loaded in memory because it's // convenient to access. // // COMPACT encoding is defined by the Ethereum Yellow Paper (it's called "hex prefix // encoding" there) and contains the bytes of the key and a flag. The high nibble of the // first byte contains the flag; the lowest bit encoding the oddness of the length and // the second-lowest encoding whether the node at the key is a value node. The low nibble // of the first byte is zero in the case of an even number of nibbles and the first nibble // in the case of an odd number. All remaining nibbles (now an even number) fit properly // into the remaining bytes. Compact encoding is used for nodes stored on disk. func hexToCompact(hex []byte) []byte { terminator := byte(0) if hasTerm(hex) { terminator = 1 hex = hex[:len(hex)-1] } buf := make([]byte, len(hex)/2+1) buf[0] = terminator << 5 // the flag byte if len(hex)&1 == 1 { buf[0] |= 1 << 4 // odd flag buf[0] |= hex[0] // first nibble is contained in the first byte hex = hex[1:] } decodeNibbles(hex, buf[1:]) return buf } func compactToHex(compact []byte) []byte { base := keybytesToHex(compact) base = base[:len(base)-1] // apply terminator flag if base[0] >= 2 { base = append(base, 16) } // apply odd flag chop := 2 - base[0]&1 return base[chop:] } func keybytesToHex(str []byte) []byte { l := len(str)*2 + 1 var nibbles = make([]byte, l) for i, b := range str { nibbles[i*2] = b / 16 nibbles[i*2+1] = b % 16 } nibbles[l-1] = 16 return nibbles } // hexToKeybytes turns hex nibbles into key bytes. // This can only be used for keys of even length. func hexToKeybytes(hex []byte) []byte { if hasTerm(hex) { hex = hex[:len(hex)-1] } if len(hex)&1 != 0 { panic("can't convert hex key of odd length") } key := make([]byte, (len(hex)+1)/2) decodeNibbles(hex, key) return key } func decodeNibbles(nibbles []byte, bytes []byte) { for bi, ni := 0, 0; ni < len(nibbles); bi, ni = bi+1, ni+2 { bytes[bi] = nibbles[ni]<<4 | nibbles[ni+1] } } // prefixLen returns the length of the common prefix of a and b. func prefixLen(a, b []byte) int { var i, length = 0, len(a) if len(b) < length { length = len(b) } for ; i < length; i++ { if a[i] != b[i] { break } } return i } // hasTerm returns whether a hex key has the terminator flag. func hasTerm(s []byte) bool { return len(s) > 0 && s[len(s)-1] == 16 }